E9: 309 Advanced Deep Learning 12-10-2020

Instructor: Sriram Ganapathy sriramg@iisc.ac.in

Teaching Assistant : Akshara Soman, Prachi Singh, Jaswanth Reddy aksharas@iisc.ac.in, prachis@iisc.ac.in, jaswanthk@iisc.ac.in

> Schedule - MW - 430-6pm (Microsoft Teams) http://leap.ee.iisc.ac.in/sriram/teaching/ADL2020/

http://phdcomics.com/

E9:309 Advanced Deep Learning

www.phdcomics.com

Recap of deep learning

* Filling the google form in the webpage

- Contents will be made available to the folks in the mailing lists.

with creditors as well as video links.

* Online registration portal from <u>academics.iisc.ac.in</u>

Your research/faculty advisor may need to approve also before the deadline (Oct. 20th?)

- Announcements regarding evaluations and projects will be shared only
 - ***** Teams channel interaction and TA session for creditors only.

Some notations

 $* \mathbf{x} \in \mathbf{R}^{D}$ - input data.

 $* \mathcal{Y} \in \mathcal{R}^{\mathcal{C}}$ - neural network targets.

 $* \hat{y} \in B^C$ - model outputs.

$*e, h \in \mathbb{R}^d$ - hidden model representations or embeddings.

* 🖯 - collection of learnable parameters in the model.

 $* E(y, \hat{y})$ - error function used in the model training.

* $\{x_1, ..., x_N, y_1, ..., y_N\}$ - labeled training data

 $*q = \{1...Q\}$ - iteration index.

 $* t = \{1...T\}$ - discrete time index.

 $*^{l} = \{1...L\}$ - layer index

* - learning rate (hyper-parameter)

* N_b - mini-batch size and B is the number of mini-batches.

* Training data, validation data, test data.

* Model training data - used for parameter learning.

* Validation data - used for hyper-parameter tuning (cross validation CV).

E9:309 Advanced Deep Learning

<section-header><section-header>

Unseen Test Data

Evaluation data

Last lecture

- * Feedforward networks
- * Convolutional networks
- * Learning in deep networks
 - Parameters, hyper-parameters etc
 - → SGD learning rule
 - Adam optimization, batch normalization.
- * Reading assignments.

Module - I Visual and Time Series Modeling

- * Learn from ordered pairs of \mathcal{I}, \mathcal{Y}
 - ✓ All the data samples are treated independently.
 - ***** Data are shuffled before mini-batch formation
- * If the input data and output labels are time-series data x(t), y(t)
 - DNNs/CNNs may fail to model the correlation of the data across the time
 - Question how can we build models that capture the time evolution of the data and the labels.

* An interesting subset of this problem is where the input alone is a time series x(t), y or have different indices x(t), y(u)

- * Examples
 - ✓ Text sequences Speech and audio Video sequences

First order recurrence - hidden layer

* Making the hidden layer a function of the previous outputs from the hidden layer along with the input

h(t) = f(h(t-1), x(t)) $\boldsymbol{x}(t)$

First order recurrence - output layer

* Making the hidden layer a function of the previous outputs from the output layer along with the input

 $\boldsymbol{x}(t)$

E9:309 Advanced Deep Learning

$h(t) = f(\hat{y}(t-1), x(t))$

First order recurrence - output layer

* Making the hidden layer a function of the previous outputs from the output layer along with the input

 $\hat{y}(t)$ Training

E9:309 Advanced Deep Learning

$\boldsymbol{h}(t) = f(\hat{\boldsymbol{y}}(t-1), \boldsymbol{x}(t))$ $\hat{\boldsymbol{x}}(t)$ **Testing**

* Learning in recurrence networks: Back-propagation in time.

* Learning considerations : Issues with forgetting and long-short-term memory networks

First order recurrence - hidden layer

* Making the hidden layer a function of the previous outputs from the hidden layer along with the input.

* Makes the hidden layer dependent of previous layer outputs in a recurring fashion.

First order recurrence - hidden layer

* Making the hidden layer a function of the previous outputs from the hidden layer along with the input.

$h(t) = f(h(t-1), \boldsymbol{x}(t))$ $\boldsymbol{x}(t)$ $\hat{\boldsymbol{y}}(t)$

* Makes the hidden layer dependent of previous layer outputs in a recurring fashion.

E9:309 Advanced Deep Learning

Model Forward Pass - 1 hidden layer

* Error functions are computed at every time-instant

E9:309 Advanced Deep Learning

 $E(y(T), \hat{y}(T))$ k(t+1) h(T-1) x(T)

Error back propagation

 Output activations $\frac{\partial E}{\partial a^2(t)} = \hat{y}(t) - y(t) \quad for \quad t = 1 \dots T$ ✓ Hidden activations at last instant T \checkmark Hidden activations for previous instances t = T-1,... l $(W^2)^T \frac{\partial E}{\partial t} + \frac{\partial h^1(t+1)}{\partial t}$

 \checkmark Hidden activations for previous instances t = T-1,... 1

E9:309 Advanced Deep Learning

✓ Using the above gradient the rest of the gradients can be computed ...

Long-term dependency issues

Gradients tend to vanish or explode

✓ Intial frames may not have impact in the final predictions.

Long short term memory (LSTM) idea

