

Housekeeping

- * lst mini-project
 - ✓ Deadlines
 - * Presentation on Nov19 and Nov20
 - * Your date allocation has been finalized
 - * Presentation and report template will be sent out this week.
 - * Report 1 page + references and tools
 - * Slides 4 slides for individual project and 6 slides for 2-member.

Recap of previous class

Representation learning/data-visualization

- * Restricted Boltzmann machine
 - → Energy based model
 - √ Conditional independence
 - ✓ Sigmoidal function for conditional probability
 - → Issues in RBM training

RBM - Training

- ullet Model parameters $oldsymbol{\Theta} = \{ \mathbf{W}, \mathbf{b}, \mathbf{c} \}$ $\mathbf{x} = [\mathbf{v}^T \ \mathbf{h}^T]^T$
 - ✓ Learnt by maximizing the log-likelihood $log(p(\mathbf{x}; \Theta))$
 - ✓ Non-convex optimization.
- * Gradient descent based optimization

$$\frac{\partial log(p(\mathbf{x};\Theta))}{\partial \Theta} = \frac{\partial log(\tilde{p}(\mathbf{x};\Theta))}{\partial \Theta} - \frac{\partial log(Z(\Theta))}{\partial \Theta}$$
$$\frac{\partial log(Z(\Theta))}{\partial \Theta} = \frac{1}{Z} \frac{\partial Z(\Theta)}{\partial \Theta}$$
$$Z(\Theta) = \sum_{z \in S} \tilde{p}(\mathbf{x};\Theta)$$

X

RBM - Training

* For exponential families

$$\tilde{p}(\mathbf{x}; \Theta) > 0 \quad \forall \mathbf{x}$$

$$\frac{\partial log(Z(\Theta))}{\partial \Theta} = \frac{1}{Z} \sum_{\mathbf{x}} \frac{\partial \tilde{p}(\mathbf{x}; \Theta)}{\partial \Theta}$$

$$\begin{split} \frac{\partial log(Z(\Theta))}{\partial \Theta} &= \frac{1}{Z} \sum_{\mathbf{x}} \frac{\partial exp(log(\tilde{p}(\mathbf{x}; \Theta)))}{\partial \Theta} \\ &= \frac{1}{Z} \sum_{\mathbf{x}} exp(log(\tilde{p}(\mathbf{x}; \Theta))) \frac{\partial (log(\tilde{p}(\mathbf{x}; \Theta)))}{\partial \Theta} \\ &= \sum_{\mathbf{x}} p(\mathbf{x}; \Theta) \frac{\partial (log(\tilde{p}(\mathbf{x}; \Theta)))}{\partial \Theta} \end{split}$$

RBM - Training

$$\frac{\partial (log Z(\Theta))}{\partial \Theta} = \mathbb{E}_{\mathbf{x} \sim p} \left[\frac{\partial \tilde{p}(\mathbf{x}, \Theta)}{\partial \Theta} \right]$$

- * Intractable to compute the exact gradient of the negative phase
 - → Using approximations to gradients
 - ✓ Based on sampling methods.
 - * Monte-carlo Markov Chain (MCMC) based approximation
 - * Resorting to Gibbs sampling.

Approximating expectations

* Expectation is intractable in the gradient computation.

$$\mathbf{s} = \mathbb{E}_{x \sim p}[f(\mathbf{x})]$$

$$\hat{\mathbf{s}}_n = \frac{1}{n} \sum_{i=1}^n f(\mathbf{x}_i)$$

* Using law of large numbers and central limit theorem

$$\mathbb{E}[\hat{\mathbf{s}}_n] = \mathbf{s} \; ; \quad \lim_{n \to \infty} \hat{\mathbf{s}}_n = \mathbf{s} \; ; \; Var[\hat{\mathbf{s}}_n] = \frac{Var[f(\mathbf{x})]}{n}$$

Sampling

- * The question of finding the right samples \mathbf{x}_i
- * Should we sample based on the p or some other function q

$$p(\mathbf{x})f(\mathbf{x}) = q(\mathbf{x})\frac{p(\mathbf{x})f(\mathbf{x})}{q(\mathbf{x})}$$

* Using a suitable function q, the estimate of the intractable expectation is

$$\hat{\mathbf{s}}_q = \frac{1}{n} \sum_{i=1,\mathbf{x}_i \sim q}^{n} \frac{p(\mathbf{x}_i) f(\mathbf{x}_i)}{q(\mathbf{x}_i)}$$

Importance Sampling

- * Using Markov chain Monte-Carlo (MCMC) sampling $p_{model}(\mathbf{x})$
 - ✓ Initialize random samples using uniform distribution.
 - ✓ Use the data samples to perform new updates of the samples
 - ✓ Perform k steps of this update.

Algorithm 18.1 A naive MCMC algorithm for maximizing the log-likelihood with an intractable partition function using gradient ascent.

```
Set \epsilon, the step size, to a small positive number.
```

Set k, the number of Gibbs steps, high enough to allow burn in. Perhaps 100 to train an RBM on a small image patch.

while not converged do

```
Sample a minibatch of m examples \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\} from the training set. \mathbf{g} \leftarrow \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} \log \tilde{p}(\mathbf{x}^{(i)}; \boldsymbol{\theta}).
```

Initialize a set of m samples $\{\tilde{\mathbf{x}}^{(1)}, \dots, \tilde{\mathbf{x}}^{(m)}\}$ to random values (e.g., from a uniform or normal distribution, or possibly a distribution with marginals matched to the model's marginals).

```
\begin{aligned} & \textbf{for } i = 1 \textbf{ to } k \textbf{ do} \\ & \textbf{ for } j = 1 \textbf{ to } m \textbf{ do} \\ & \tilde{\mathbf{x}}^{(j)} \leftarrow \textbf{gibbs\_update}(\tilde{\mathbf{x}}^{(j)}). \\ & \textbf{ end for} \\ & \textbf{ end for} \\ & \mathbf{g} \leftarrow \mathbf{g} - \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} \log \tilde{p}(\tilde{\mathbf{x}}^{(i)}; \boldsymbol{\theta}). \\ & \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \epsilon \mathbf{g}. \end{aligned}
```


- * Using Markov chain Monte-Carlo (MCMC) sampling $p_{model}(\mathbf{x})$
 - √ Use the given data samples and the current model weights to perform Gibbs sampling
 - * Initially the model weights make for a poor estimation of the negative phase of the gradient.
 - * But the positive phase makes up for the lossy estimate.
 - * Once the model weights are updated for a few iterations
 - * The negative phase becomes more accurate.

Algorithm 18.2 The contrastive divergence algorithm, using gradient ascent as the optimization procedure.

```
Set \epsilon, the step size, to a small positive number.
Set k, the number of Gibbs steps, high enough to allow a Markov chain sampling
from p(\mathbf{x};\boldsymbol{\theta}) to mix when initialized from p_{\text{data}}. Perhaps 1-20 to train an RBM
on a small image patch.
while not converged do
   Sample a minibatch of m examples \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\} from the training set.
   \mathbf{g} \leftarrow \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} \log \tilde{p}(\mathbf{x}^{(i)}; \boldsymbol{\theta}).
    for i = 1 to m do
       \tilde{\mathbf{x}}^{(i)} \leftarrow \mathbf{x}^{(i)}.
    end for
    for i = 1 to k do
        for j = 1 to m do
           \tilde{\mathbf{x}}^{(j)} \leftarrow \text{gibbs update}(\tilde{\mathbf{x}}^{(j)}).
        end for
    end for
    \mathbf{g} \leftarrow \mathbf{g} - \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} \log \tilde{p}(\tilde{\mathbf{x}}^{(i)}; \boldsymbol{\theta}).
    \theta \leftarrow \theta + \epsilon \mathbf{g}.
end while
```


One step contrastive divergence - Training example

- ullet Given a set of visible data $\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_N\}\in\mathcal{B}^D$ $\mathbf{x}=[\mathbf{v}^T\ \mathbf{h}^T]^T$
- \rightarrow Randomly initialize the model parameters $\Theta^0 = \{W^0, b^0, c^0\}$ k = 0
 - \checkmark Sampling $\{\mathbf{h}_1,\mathbf{h}_2,...,\mathbf{h}_N\}\in\mathcal{B}^d$
 - Using conditional independence of hidden given visible
 - \star Sample each $\{ ilde{\mathbf{h}}_1, ilde{\mathbf{h}}_2, ..., ilde{\mathbf{h}}_N\} \in \mathcal{B}^d$

$$p(h_{q,j} = 1|\mathbf{v}_q) = \sigma(\mathbf{v}_q^T \mathbf{W}_{:,j}^k + c_j)$$
 $q = \{1, ..., N\}, j = \{1, ..., d\}$

One step contrastive divergence - Training example

- ullet Given a set of visible data $\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_N\}\in\mathcal{B}^D$ $\mathbf{x}=[\mathbf{v}^T \ \mathbf{h}^T]^T$
- \rightarrow Randomly initialize the model parameters $\Theta^0 = \{W^0, b^0, c^0\}$ k = 0
 - √ Sampling visible nodes again
 - Using conditional independence of visible given hidden
 - \star Sample visible nodes $\{\tilde{\mathbf{v}}_1, \tilde{\mathbf{v}}_2, ..., \tilde{\mathbf{v}}_N\} \in \mathcal{B}^D$

$$p(v_{q,i} = 1|\tilde{\mathbf{h}}_q) = \sigma(\mathbf{W}_{i,:}^k \tilde{\mathbf{h}}_q^T + b_i^k) \quad q = \{1, ..., N\}, i = \{1, ..., D\}$$

One-step contrastive divergence

* Computing the gradient

$$\frac{\partial (p([\mathbf{v} \ \mathbf{h}], \Theta)}{\partial \mathbf{W}} \approx \frac{1}{N} \sum_{q=1}^{N} \mathbf{v}_q \mathbf{h}_q^T - \frac{1}{N} \sum_{q=1}^{N} \tilde{\mathbf{v}}_q \tilde{\mathbf{h}}_q^T$$

* Performing gradient ascent using the approximate gradient

$$\mathbf{\Theta}^{k+1} = \mathbf{\Theta}^k + \eta \frac{\partial log(p(\mathbf{X}, \mathbf{\Theta}))}{\partial \mathbf{\Theta}} \bigg|_{\mathbf{\Theta} = \mathbf{\Theta}^k}$$

Positive phase and negative phase

"Motivation"

- * Neuroscientific motivation of the learning in the brain
 - Real world samples in our day-to-day [Positive phase]
 - → Hallucinations and dreams [Negative phase]

- * Learning from the data.
 - → Balancing the positive phase based learning with the negative phase.

Gaussian Bernoulli RBM

- * For modeling real observations $\mathbf{v} \in \mathcal{R}^D$
- * Define the energy function

$$E[\mathbf{v}, \mathbf{h}] = \frac{1}{2} (\mathbf{v} - \mathbf{a})^T (\mathbf{v} - \mathbf{a}) - \mathbf{v}^T \mathbf{W} \mathbf{h} - \mathbf{b}^T \mathbf{h}$$

$$p([\mathbf{v}, \mathbf{h}]) = \frac{e^{-E[\mathbf{v}, \mathbf{h}]}}{Z}$$

* The conditional distributions

$$p(\mathbf{v}|\mathbf{h}) = \mathcal{N}(\mathbf{W}\mathbf{h} + \mathbf{a}, \mathbf{I})$$

$$p(h_j = 1|\mathbf{v}) = \sigma(\mathbf{v}^T \mathbf{W}_{:,j}^k + b_j)$$

Properties of GRBM

$$* d = 0$$

$$E(\mathbf{v}) = \frac{1}{2}(\mathbf{v} - \mathbf{a})^T(\mathbf{v} - \mathbf{a})$$
$$p(\mathbf{v}) = \frac{e^{-E(\mathbf{v})}}{Z}$$

* The marginal distribution is a Gaussian.

Properties of GRBM

* d = 1
$$E[\mathbf{v}, h] = \frac{1}{2} (\mathbf{v} - \mathbf{a})^T (\mathbf{v} - \mathbf{a}) - h \mathbf{v}^T \mathbf{w} - h b$$

$$p([\mathbf{v}, h]) = \frac{e^{-E[\mathbf{v}, h]}}{Z}$$

$$p([\mathbf{v}, h = 0]) = \alpha \mathcal{N}(\mathbf{a}, \mathbf{I})$$
$$p([\mathbf{v}, h = 1]) = (1 - \alpha)\mathcal{N}(\mathbf{a} + \mathbf{w}, \mathbf{I})$$

* The marginal distribution is then

$$p(\mathbf{v}) = p([\mathbf{v}, h = 0]) + p([\mathbf{v}, h = 1])$$

✓ 2-mixture Gaussian

Properties of GRBM

* For any general d dimensions

$$E[\mathbf{v}, \mathbf{h}_d] = E[\mathbf{v}, \mathbf{h}_{d-1}] + h_d \mathbf{v}^T \mathbf{W}_{:,d} + b_d h_d$$
$$p([\mathbf{v}, [\mathbf{h}_{d-1}, h_d = 0]]) = \alpha \ p([\mathbf{v}, \mathbf{h}_{d-1}])$$
$$p([\mathbf{v}, [\mathbf{h}_{d-1}, h_d = 1]]) = (1 - \alpha) \ p([(\mathbf{v} + \mathbf{W}_{:,d}), \mathbf{h}_{d-1}])$$

- * For d=0, 1 Gaussian, d=1, 2-mix Gaussian, ...
 - → 2^d mixture Gaussian for any arbitrary d.

GRBMs and GMMs

Deep Belief Networks (DBN)

- * Stacking RBMs in a disjoint fashion
 - ✓ Layer-wise training for each RBM.
 - Weights are frozen each layer before training the next layer.
 - ✓ Ancestral sampling can be performed for data generation
 - * Lossy sample generation due to accumulation of errors.
- * Most common use pre-training of DNNs.

DBNs for initialization

DBN-DNN

DBNs for visualization

PCA

More reading

Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton. "Restricted Boltzmann machines for collaborative filtering." *Proceedings of the 24th international conference on Machine learning*. 2007.

Data generation using RBMs

learning generating hidden units hidden units parameter fitting sampling visible units visible units L-----_____ training data samples

Data generation using RBMs

Deep Boltzmann machine

- * Deep layers of connections with RBM structure.
 - → Joint energy function.
 - → Undirected graph

