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Housekeeping

* lst mini-project
v Deadlines
* Presentation on Nov19 and Nov20
* Your date allocation has been finalized
* Presentation and report template will be sent out this week.
* Report 1 page + references and tools

* Slides 4 slides for individual project and 6 slides for 2-member.




Recap of previous class




Representation learning/data-visualization

* Restricted Boltzmann machine
- Energy based model
v Conditional independence
v Sigmoildal function for conditional probability

= Issues 1in RBM training




RBM - Training

* Model parameters () — {VV7 b. C} v — [vi hil?¥

v Learnt by maximizing the log-likelihood [o( ( D (X; @) )

v Non-convex optimization.

* Gradient descent based optimization
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RBM - Training

* For exponential families Alog(Z(©)) 1 0p(x; ©)
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RBM - Training
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* Intractable to compute the exact gradient of the negative phase
- Using approximations to gradients
v Based on sampling methods.
* Monte-carlo Markov Chain (MCMC) based approximation

* Resorting to Gibbs sampling.




Approximating expectations

* Expectation i1s intractable in the gradient computation.

* Using law of large numbers and central limit theorem
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Sampling
* The question of finding the right samples X,

* Should we sample based on the p or some other function g

* Using a suitable function g, the estimate of the intractable expectation is
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Importance Sampling




Gibbs sampling with random initialization

x Using Markov chain Monte-Carlo (MCMC) sampling Prmodel (X)
v Initialize random samples using uniform distribution.
v Use the data samples to perform new updates of the samples

v Perform k steps of this update.




Gibbs sampling with random initialization

Algorithm 18.1 A naive MCMC algorithm for maximizing the log-likelihood
with an intractable partition function using gradient ascent.

Set €, the step size, to a small positive number.
Set k, the number of Gibbs steps, high enough to allow burn in. Perhaps 100 to

train an RBM on a small image patch.
while not converged do

Sample a minibatch of m examples {x(1),...,x(™)} from the training set.
g+ L3> ™M Vo log p(x(%); 9).
Initialize a set of m samples {%(1), ..., X(™)} to random values (e.g., from

a uniform or normal distribution, or possibly a distribution with marginals
matched to the model’s marginals).
for i =1 to k do

for j =1tom do

%) < gibbs_update(x)).

end for
end for
g g— 23", Velogp(x®;0).
0 < 0 + eg.

end while




Gibbs sampling with random initialization

* Using Markov chain Monte-Carlo (MCMC) sampling Pmodel (X)

v Use the given data samples and the current model weights to periorm
Gibbs sampling

* Initially the model weights make for a poor estimation of the
negative phase of the gradient.

* But the positive phase makes up for the lossy estimate.
* Once the model weights are updated for a few 1terations

* The negative phase becomes more accurate.

Contrastive Divergence




Gibbs sampling with random initialization

Algorithm 18.2 The contrastive divergence algorithm, using gradient ascent as
the optimization procedure.

Set €, the step size, to a small positive number.
Set k, the number of Gibbs steps, high enough to allow a Markov chain sampling
from p(x;0) to mix when initialized from pgatn. Perhaps 1-20 to train an RBM
on a small image patch.
while not converged do
Sample a minibatch of m examples {x(), ... ,x(m)} from the training set.
g = > ™ Vglogp(x{); ).
for 1 =1 to m do
%)  x(@)
end for
for i =1 to k do
for 7 =1 tom do
%) « gibbs_update(x9)).
end for
end for
g 8— 7 iz Vologp(x(9);0).
06— 0+ eg
end while




One step contrastive divergence - Training example

1 hT'T

L, X=1v
= Glven a set of visible data {Vl, Vo,..., VN} c b

= Randomly 1nitialize the model parameters @O — {VVO7 bo7 CO} =
v Sampling {hl, h,, ..., hN} c B
e Using conditional independence of hidden given visible

* Sample each {hl,flg, ...,ININ} - Bd

p(hQ7j — 1|VC]) — U(ngfj + Cj) q = {17 7N}7j — {17 7d}




One step contrastive divergence - Training example

1 hT'T

L, X=1v
= Glven a set of visible data {Vl, Vo,..., VN} c b

= Randomly 1nitialize the model parameters @O — {WO, bo7 CO} k= ()
v Sampling visible nodes again
e Using conditional independence of visible given hidden

* Sample visible nodes {{}1, Vo, ..., \NIN} c BP

p(vg; = 1|hy) = g(wq’f:fqu +b% ¢={1,.,N},i={1,..,D}




One-step contrastive divergence

* Computing the gradient

O(p([v h, rol e~ o
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* Performing gradient ascent using the approximate gradient
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Positive phase and negative phase

The positive phase The negative phase
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Motivation

* Neuroscientific motivation of the learning in the brain
= Real world samples in our day-to-day [Positive phase]

= Hallucinations and dreams [Negative phase]

* Learning from the data.

= Balancing the positive phase based learning with the negative phase.




Gaussian Bernoulli RBM

* For modeling real observations v & RD

* Define the energy function
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* The conditional distributions

p(vih) = N(Wh + a,I)
p(h; =1|v) = o(v' W, +b;)




Properties of GRBM

xd=0

* The marginal distribution 1s a Gaussian.




Properties of GRBM
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v 2-mixture Gaussian




Properties of GRBM

* For any general d dimensions

E[V, hd] —- E[V, hd—l] + hy VTW;,d + bghg
p([V, [hd—la ha = O”) — p([V, hd—l])
p([v, [hag-1,ha = 1]]) = (1 — a) p([(v+ W.4),hq_1])

¥ For d=0, 1 Gaussian, d=1, 2-mix Gaussian, ...

= 2"d mixture Gaussian for any arbitrary d.




GRBMs and GMMs

(a)
. d=0

(c)

d=2
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Deep Belief Networks (DBN)

* Stacking RBMs in a disjoint fashion

v Layer-wise training for each RBM.

e Weights are frozen each layer before training
the next layer.

v Ancestral sampling can be performed for data
generation

* Lossy sample generation due to
accumulation of errors.

x Most common use - pre-training of DNNs.




DBNs for initialization

RBEM DBEN




DBNs for visualization

oo~ = 0O




More reading

Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey
Hinton. "Restricted Boltzmann machines for
collaborative filtering." Proceedings of the 24th
International conference on Machine learning. 2007 .




Data generation using RBMs

learning generating

hidden units hidden units

parameter fitting sampling

visible units

---------

o112

training data samples
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Data generation using RBMs

Source — https://Ime.tf.fau.de/lecture-notes/lecture-notes-in-deep-learning-unsupervised-learning-part-1/




Deep Boltzmann machine

* Deep layers of connections with
RBM structure.

= Joint energy function.

- Undirected graph




