

Housekeeping

- ***** Attendance
 - We will use the recorded sessions for attendance
 - ★ If you are unable to attend live sessions (due to network or other issues, please indicate by email before or after class to the instructor and copy the FAs).
- **Mid-term exam**
 - 1st week of Dec. (Modules I and II).

Housekeeping

- ****** 1st mini-project
 - ✓ Deadlines
 - * Abstract submission deadline (Nov 2nd, Monday)
 - * Using the google form given in the webpage
 - * Solo projects or 2-member projects
 - * Indicate roles of each member in 2-member project
 - ★ 200 word abstract of the work. If modifications are needed, we will review and let you know in 2-3 days.

Housekeeping

- 1st mini-project
 - ✓ Deadlines
 - * Report and presentation slides (Nov 19th, 10 AM).
 - ★ 1-page pdf with second page only for references and tools used (Template will be provided).
 - * Report Indicate prior work, technical details and your contribution. Strictly adhere to the guidelines given in the template.
 - ★ Slides (max 4 slides) 4 min presentation for solo project and 6 min. for two member teams. 3 mins for your presentation and 1 min for Q&A.
 - ★ Two slots are available on 2 days (pick the suitable based on your other class schedules).

Recap of previous class

State of affairs

- Encoder-decoder models.
 - Issues with single encoder embedding for all outputs
 - Introduction to attention
 - Attention network and attention weights
 - Visualizing attention weights.
 - Self-attention and multi-head attention.,

Visualizing attention

Encoder hidden state

Je

hidden state #1

suis

hidden state #2

étudiant

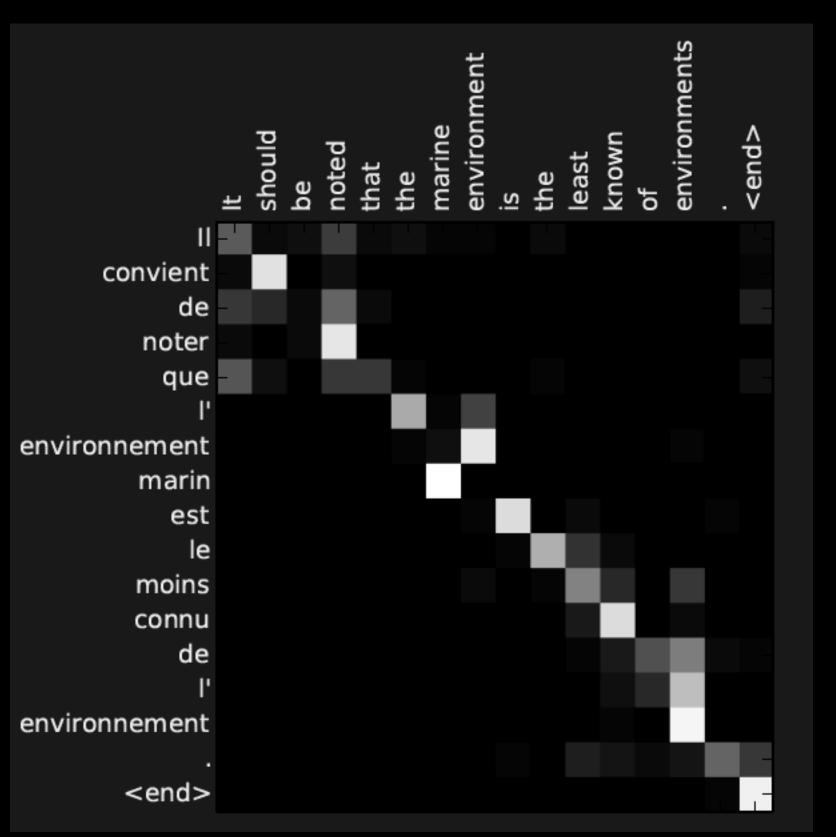
hidden state #3

Analysis of attention networks

- \blacksquare Attention weights $\alpha(s,t)$
 - Probability of linking (attending) to input at t for generating output at s
 - Useful in analyzing the internal structure of the encoder-decoder model

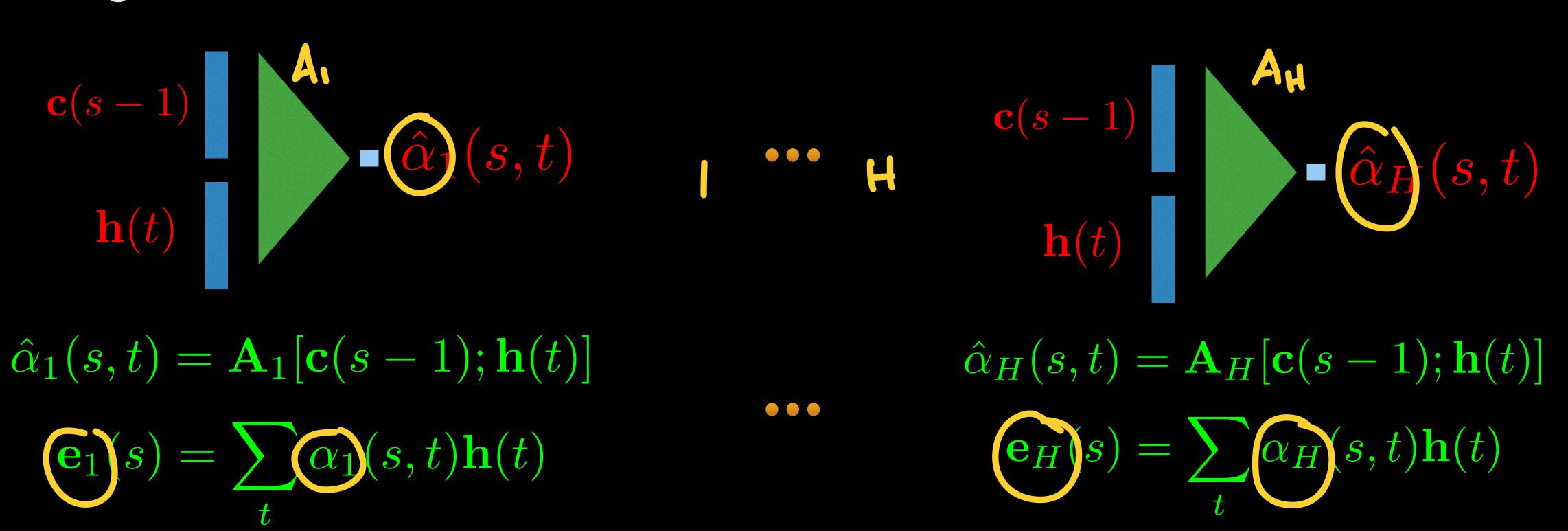
Visualizing the attention weights

Reading Assignment - "Neural Machine Translation by Jointly Learning to Align and Translate" https://arxiv.org/pdf/1409.0473.pdf



Multi-head attention

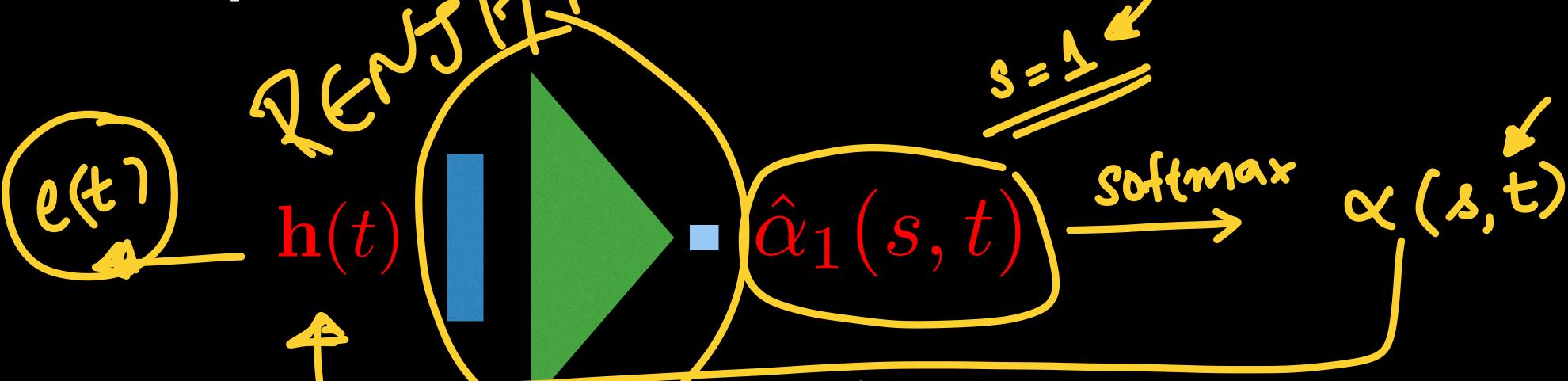
Having more than one attention heads



 $e(s) = [e_1(s); ...; e_H(s)]$

Self-attention

William Using attention layers without feedback from decoder.



Without feedback the attention performs,

$$\alpha(t) = 1/t$$

temporal relevance weighting of the input time-series (hidden layer representations).

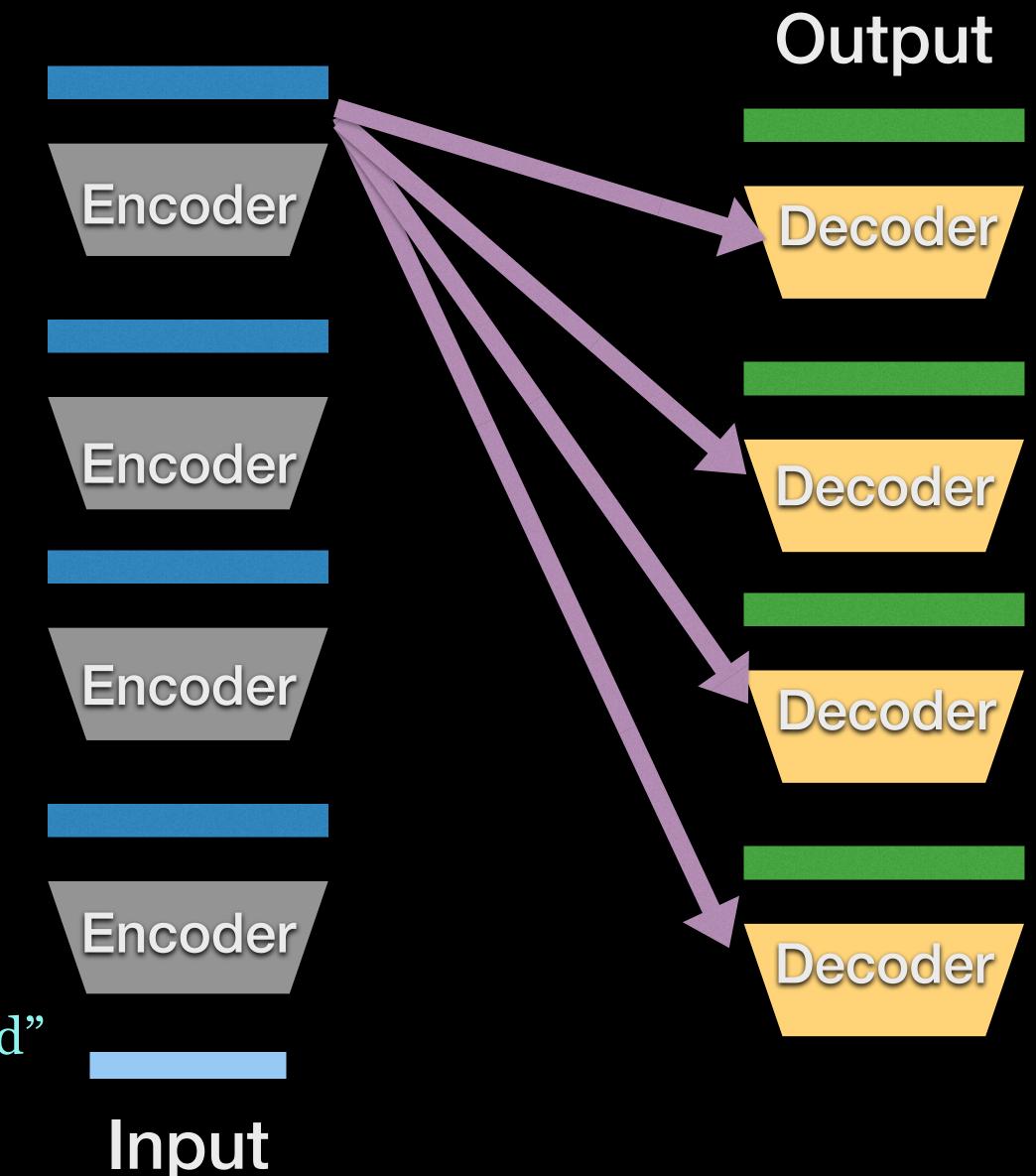
Issues in RNNs/LSTMs

- Issues of long-term dependency
 - LSTMs have partial solutions
- Back propagation through time
 - Does not allow parallelism in forward pass or backward pass.
 - Significant increase in training time as well as in forward propagation.
- Question can we use attention mechanism itself to build temporal dependencies without recurrence.

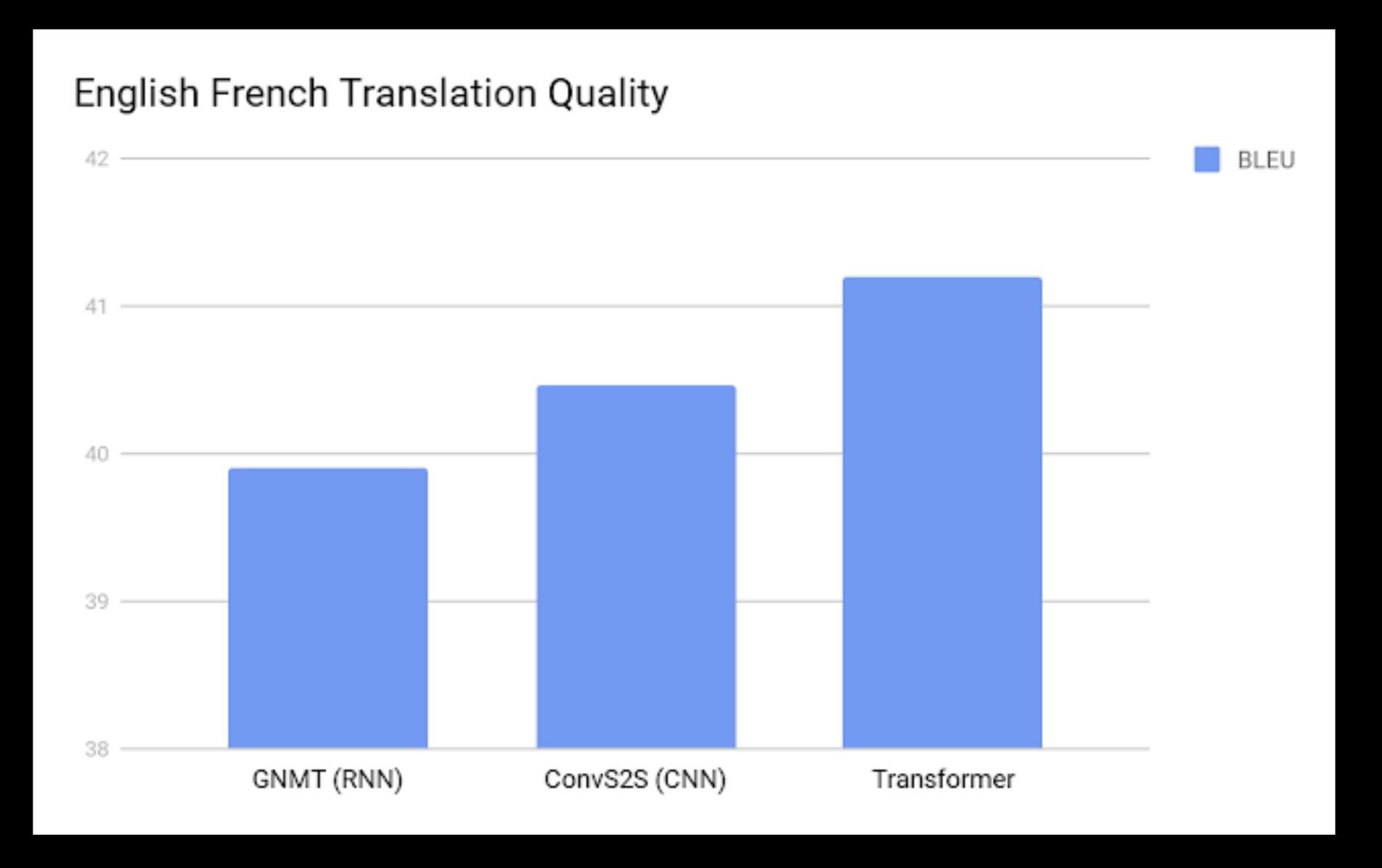
Transformers

- Encoder Decoder architecture based models.
- Wuses only feed forward architectures with self-attention.
 - Multi-head self attention.
- All the encoder layers and the decoder layers have the same set of operations.

Reading Assignment - "Attention is All You Need" https://arxiv.org/pdf/1706.03762.pdf



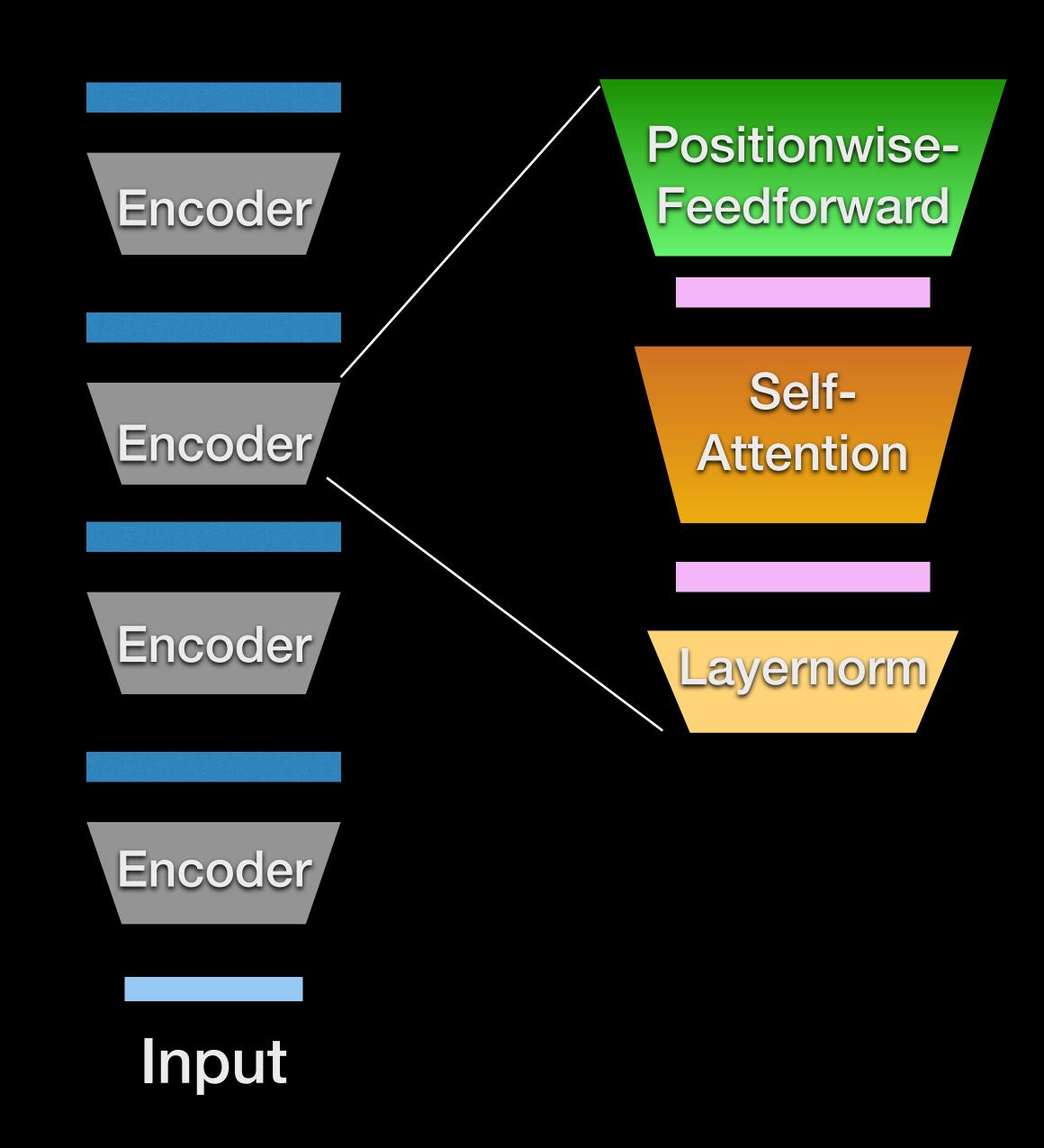
Transformers - the state of art in NMT



Transformers - the state of art in NMT

Transformers

- *Encoder layers
 - Consist of layer norm
 - Self attention (multi-head)
 - Positionwise feedforward
 - May also consist of skip connections.



Let $\mathbf{x}(1)...\mathbf{x}(T)$ denote the input and let $\mathbf{e}^l(1)...\mathbf{e}^l(T)$ denote encoder outputs at layer l.

$$\overline{\mathbf{E}}^{l-1} = Layernorm([\mathbf{e}^{l-1}(1)...\mathbf{e}^{l-1}(T)]^T) \in \mathcal{R}^{T \times D}$$

Definition of layer norm

$$Layernorm(\mathbf{e}^{l}(t)) = \frac{\alpha^{l}}{\sigma_{\mathbf{e}^{l}(t)}} \odot (\mathbf{e}^{l}(t) - \mu_{\mathbf{e}^{l}(t)}) + \beta^{l}$$

Rey and Value

$$\mathbf{Q}_h^l = \overline{\mathbf{E}}^{l-1} \mathbf{W}_h^{l,Q} + \mathbf{1} (\mathbf{b}_h^{l,Q})^T \in \mathcal{R}^{T \times d}$$

$$\mathbf{K}_h^l = \overline{\mathbf{E}}^{l-1} \mathbf{W}_h^{l,K} + \mathbf{1} (\mathbf{b}_h^{l,K})^T \in \mathcal{R}^{T \times d}$$

$$\mathbf{V}_h^l = \overline{\mathbf{E}}^{l-1} \mathbf{W}_h^{l,V} + \mathbf{1} (\mathbf{b}_h^{l,V})^T \in \mathcal{R}^{T \times d}$$

$$\mathbf{W}_h^{l,Q}, \mathbf{W}_h^{l,K}, \mathbf{W}_h^{l,V} \in \mathcal{R}^{D \times d} \quad \mathbf{b}_h^{l,Q}, \mathbf{b}_h^{l,K}, \mathbf{b}_h^{l,V} \in \mathcal{R}^{d \times 1}$$

$$h$$
 , h ,

**** Multi-head attention**

$$\hat{\mathbf{A}}_h^l = \mathbf{Q}_h^l (\mathbf{K}_h^l)^T \in \mathcal{R}^{T \times T}$$

$$\hat{\mathbf{A}}_h^l = softmax(\frac{\hat{\mathbf{A}}_h^l}{\sqrt{d}})$$

$$\mathbf{C}_h^l = \mathbf{A}_h^l \mathbf{V}_h^l \in \mathcal{R}^{T \times D}$$

Context vector from self-attention

$$\mathbf{C}^l = [\mathbf{C}_1^1 ... \mathbf{C}_H^l] \in \mathcal{R}^{T \times D}$$

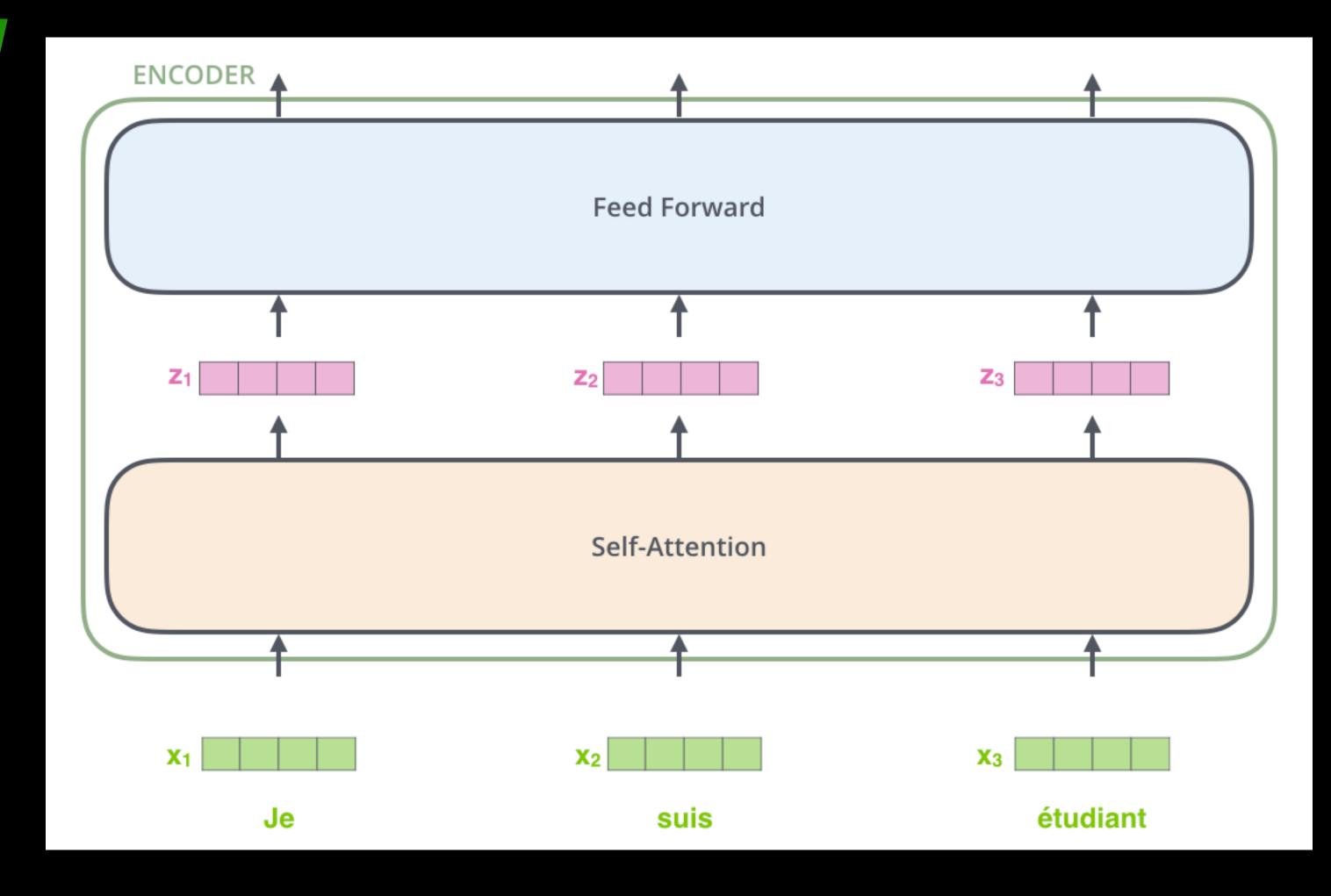
Position wise feedforward layer

$$\mathbf{E}_{ff}^{l} = ReLU(\mathbf{C}^{l}\mathbf{W}_{ff}^{l} + \mathbf{1}\mathbf{b}_{ff}^{T}) \in \mathcal{R}^{T \times d_{ff}}$$

Encoder layer output

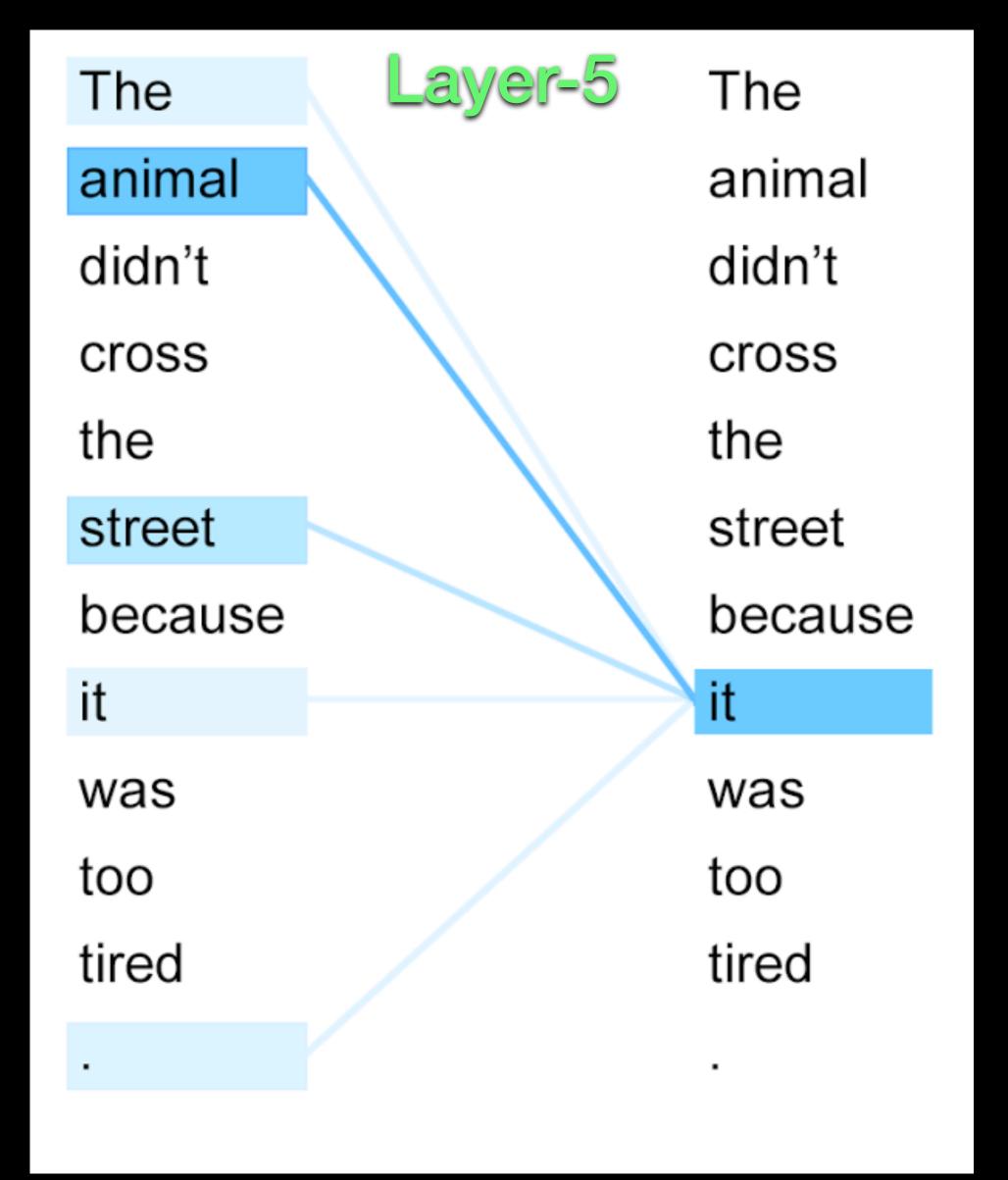
$$[\mathbf{e}^l(1)...\mathbf{e}^l(T)] = \mathbf{E}_{ff}^l \mathbf{W}_{of}^l + \mathbf{1}(\mathbf{b}_{of}^l)^T \in \mathcal{R}^{T \times D}$$

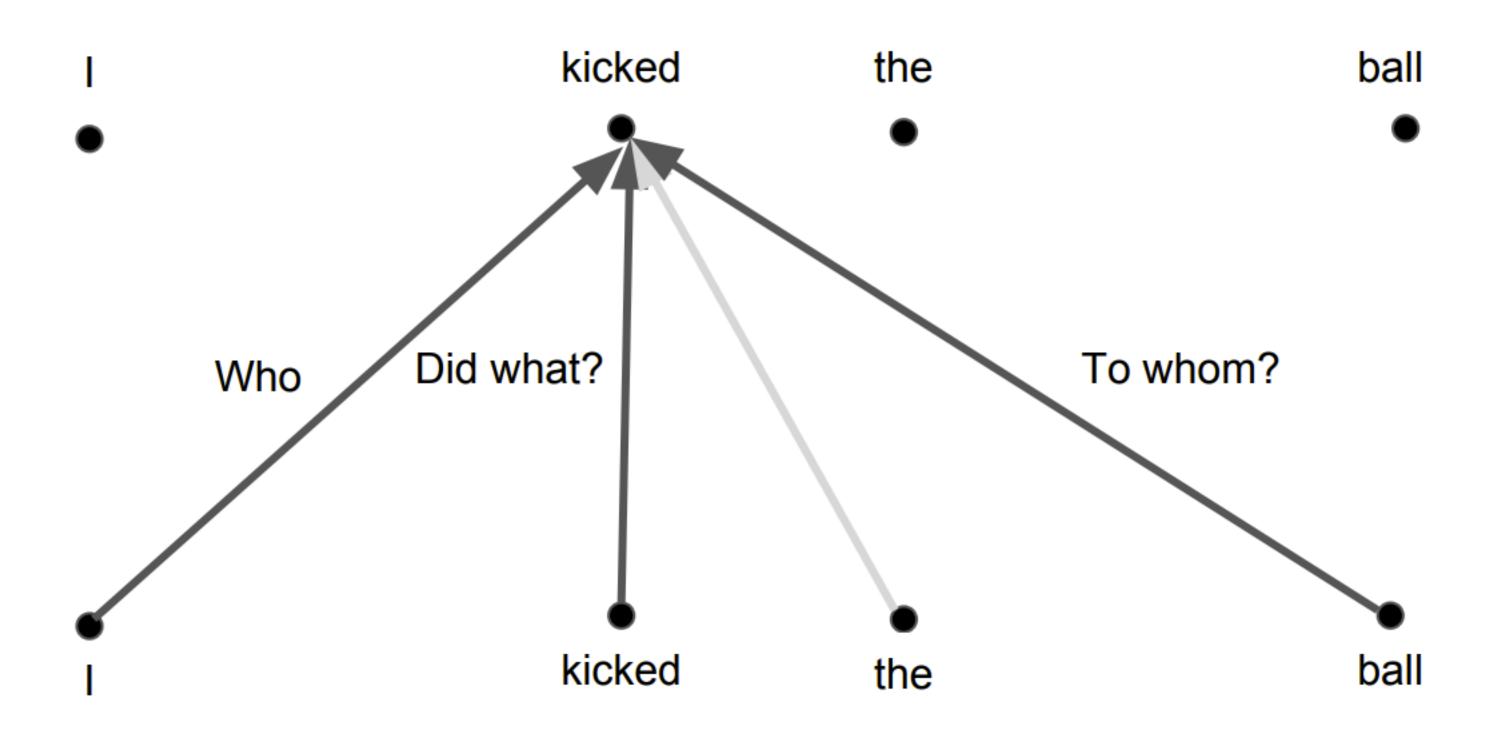
Positionwise-Encoder Feedforward Encoder Self-Attention Encoder Encoder _ayernorm



The	Layer-5	The
animal		animal
didn't		didn't
cross		cross
the		the
street		street
because		because
it		it
was		was
too		too
tired		tired

Layer-6				
The		The		
animal		animal		
didn't		didn't		
cross		cross		
the		the		
street		street		
because		because		
it		it		
was		was		
too		too		
wide		wide		
•				





Input	Thinking	Machines	
Embedding	X ₁	X ₂	
Queries	q ₁	q ₂	WQ
Keys	k ₁	k ₂	WK
Values	V ₁	V ₂	W۷

Input

Embedding

Queries

Keys

Values

Score

Thinking

q₁

k₁

V₁

 $q_1 \cdot k_1 = 112$

Machines

X₂

q₂

K₂

V₂

 $q_1 \cdot k_2 = 96$

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ($\sqrt{d_k}$)

Softmax

Thinking

q₁

(1

V₁

 $q_1 \cdot k_1 = 112$

14

0.88

Machines

X₂

q₂

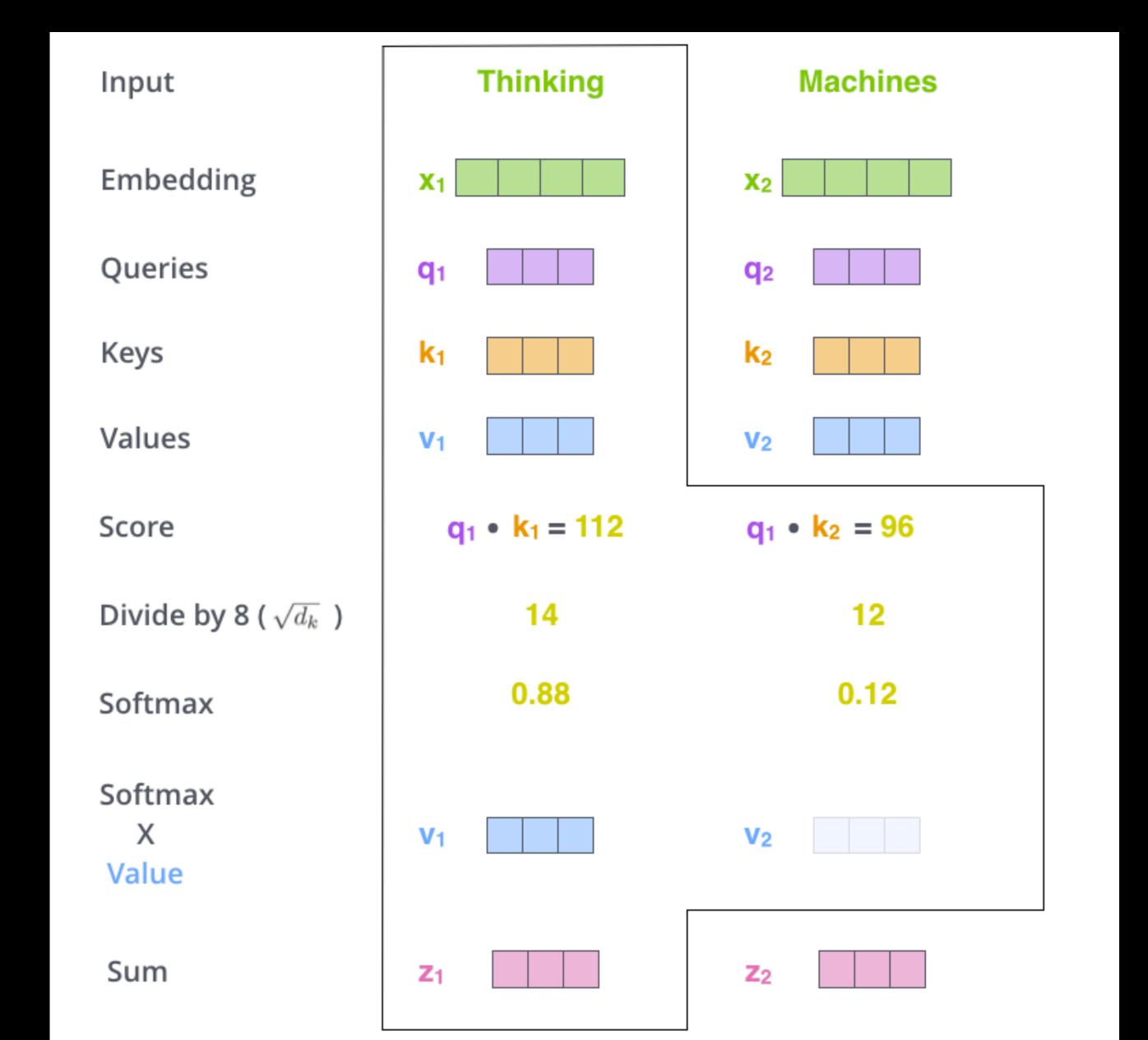
k₂

V₂

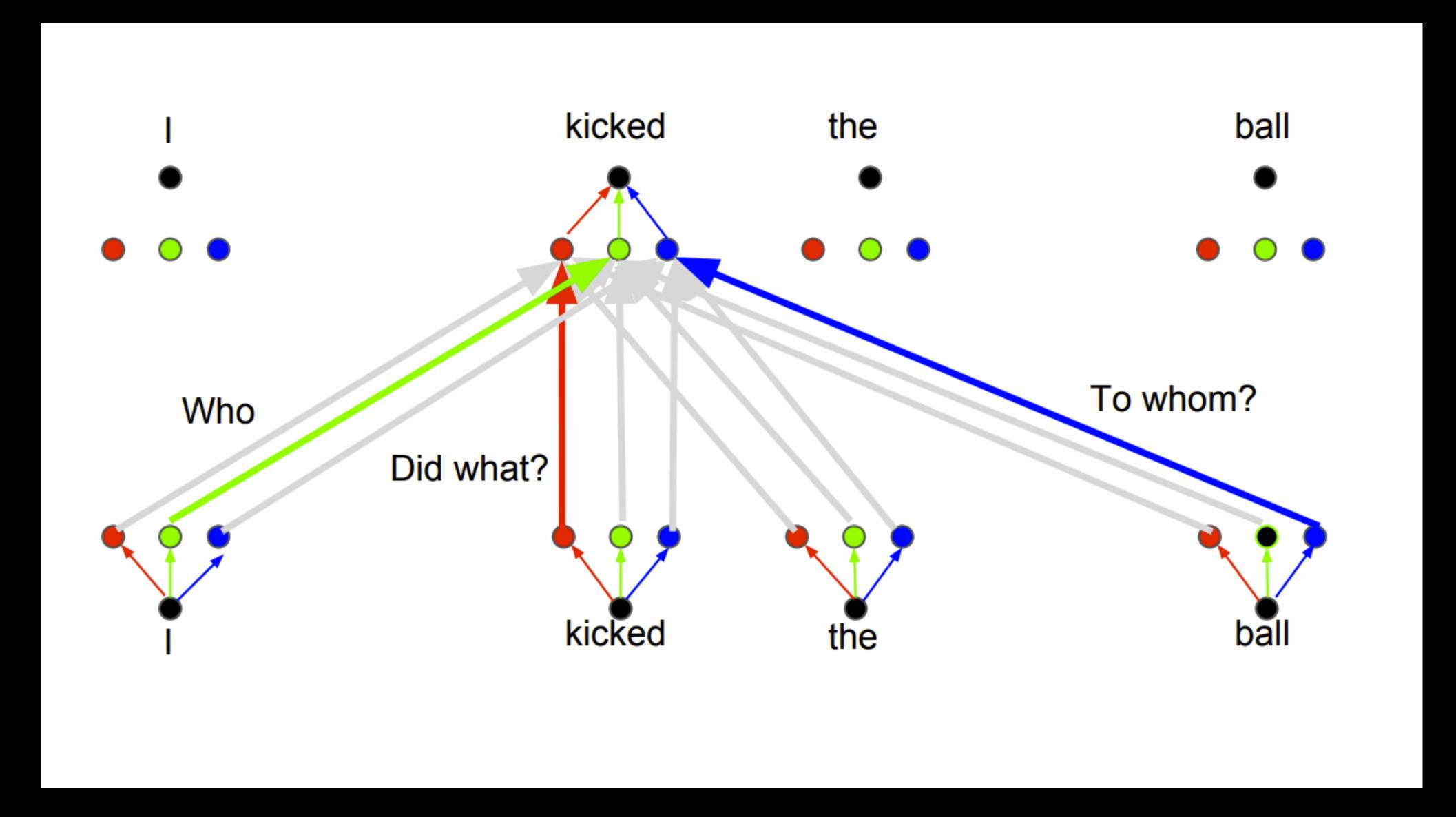
 $q_1 \cdot k_2 = 96$

12

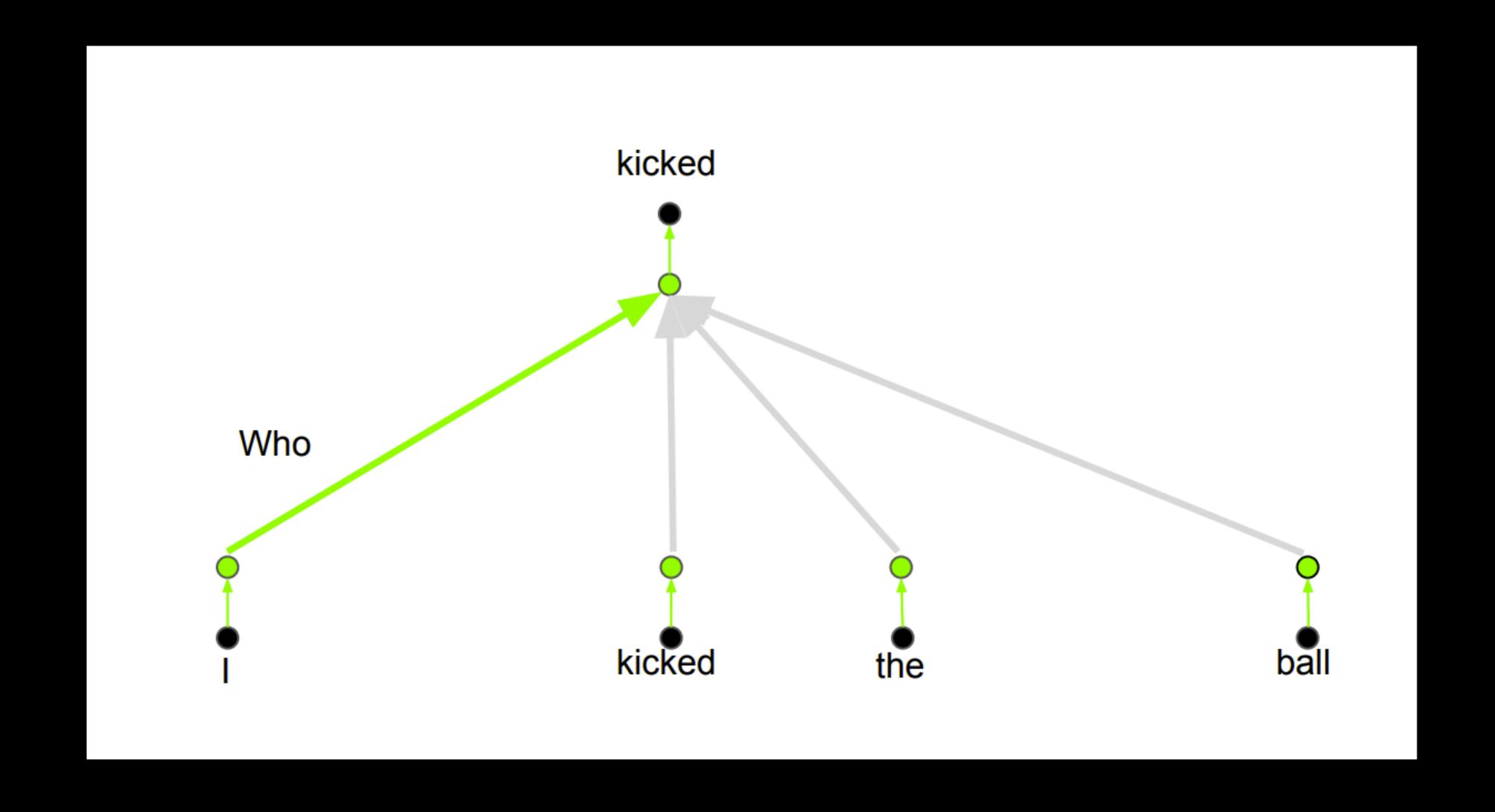
0.12



Self-attention multi-head



Self-attention multi-head - role of attention heads



Self-attention multi-head - role of attention heads

