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Housekeeping

® Attendance
v/ We will use the recorded sessions for attendance

* [f you are unable to attend live sessions (due to network or other
1Issues, please indicate by emaill before or after class to the instructor
and copy the FAs).

® Mid-term exam

® lst week of Dec. (Modules I and II).




Housekeeping

® lst mini-project
v/ Deadlines
*x Abstract submission deadline (Nov 2nd, Monday)
* Using the google form given in the webpage
* Solo projects or 2-member projects
* Indicate roles of each member in 2-member project

* 200 word abstract of the work. If modifications are needed, we
will review and let you know 1n 2-3 days.




Housekeeping

® lst mini-project
v Deadlines

* Report and presentation slides (Nov 19th, 10 AM).

* l-page pdf with second page only for references and tools used (Template will be
provided).

* Report - Indicate prior work, technical details and your contribution. Strictly adhere to
the guidelines given in the template.

* Slides (max 4 slides) - 4 min presentation for solo project and 6 min. for two member
teams. 3 mins for your presentation and 1 min for Q&A.

* Two slots are avallable on 2 days (pick the suitable based on your other class
schedules).




Recap of previous class




State of aftfairs

® Encoder-decoder models.
v/ Issues with single encoder embedding for all outputs
® Introduction to attention
v/ Attention network and attention weights

-\_’.‘ \

® Visualizing attention weights.

® Self-attention and multi-head attention.,

Z




Visualizing attention

Encoder
nidden
state




Analysis of attention networks
® Attention weights (s, 1)

v/ Probability of linking (attending) to input at t for generating output at s

v Useful in analyzing the internal structure of the encoder-decoder model

environment
environments
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Multi-head attention

® Having more than one attention heads

l 000 H
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Self-attention

® Using attention layers witho
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Issues 1n RNNs/LSTMs

® Issues of long-term dependency

® LSTMs have partial solutions
® Back propagation through time

® Does not allow parallelism i1n forward pass or backward pass.

® Significant increase 1n training time as well as in forward propagation.

® Question - can we use attention mechanism itself to build temporal
dependencies without recurrence.




Transformers

® Encoder Decoder architecture
based models.

® Uses only feed forward
architectures with self-attention.

® Multi-head self attention.

® All the encoder layers and the
decoder layers have the same
set of operations.

Reading Assignment - “Attention is All You Need”

https://arxiv.org/pdf/1706.03762.pdf
Input




Transformers - the state of art in NMT

English French Translation Quality

GNMT (RNN) ConvS2S (CNN) Transformer

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmi



Transformers - the state of art in NMT

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmi




Transformers

® Encoder layers

‘ ™

® Consist of layer norm

® Self attention (multi-head)

® Positionwise feedforward

v May also consist of skip
connections.

Input




Transtormers - encoder

®Let x(1)...x(7") denote the input and let €' (1).. e’ (T") denote
encoder outputs at layer l.

El - Layernarm([el_l(1)...el_1(T)]T) c RIXD

® Definition of layer norm

al

Layernorm(e‘(t)) = o ® (e'(t) — Pel(1)) + B

[




Transformers - encoder

® Querry, Key and Value

s W, ¢ W5 WY e RPX bp@ byt byt e R

h = {1..H} heads = — 1 € R* %! all ones




Transtormers - encoder

® Multi-head attention

Al = QUKY)T € R7T

Al = softmax(

N
Ah

Vd

)

C, =A;V, ¢ RI*P

® Context vector from self-attention

C' =

Ci...CL;

c RTXD




Transformer - encoder

® Position wise feedforward layer

® Encoder layer output

:el(l)...el(T): — E! fW f_l_]-(b ) c RTXD




Transtormers - encoder

Feed Forward
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Self-attention revisited

The
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didn’t
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the
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Self-attention revisited

Self-Attention

Kicked

Who Did what? To whom?

kKicked




Self-attention revisited

Input

Embedding

Queries

Values




Self-attention revisited
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Self-attention multi-head

kKicked
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Did what?
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Self-attention multi-head - role of attention heads
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Self-attention multi-head - role of attention heads

Kicked
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Did what?




