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Housekeeping

®Filling the google form 1n the webpage

® Contents will be made available to the folks in the creditors mailing lists.

v/ Announcements regarding evaluations and projects will be shared only
with creditors as well as video links.

* Teams channel interaction and TA session for creditors only.

® Online registration portal from academics.lisc.ac.in

v Your research/faculty advisor may need to approve also before the
deadline (Oct. 20th?)



http://academics.iisc.ac.in

Recap of previous class




Some notations

* - Input data. Hidden
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* - neural network targets.
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- model outputs.

- hidden model representations or embeddings.

- collection of learnable parameters in the model.

* - error function used in the model training.




Some notations

* - labeled training data
* - 1teration index.

- discrete time 1ndex.

* - layer index

- learning rate (hyper-parameter)

* - mini-batch size and 1s the number of mini-batches.




Module - I Visual and Time Series Modeling




First order recurrence - hidden layer

® Making the hidden layer a function of the previous outputs from the hidden
layer along with the input




Error backpropagation

® Error functions are computed at every time-instant

® Total error




Error back propagation

v Output activations

@0 _v®).

v Hidden activations at last instant @\\

v Hidden activations for previous instances
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o (t) =

Wlz(t)+ U R (t—1)+ b
h'(t) = tanh(a’(t))

a’(t) = W?h'(t) + b7

§(t) = S(a(t))




Error back propagation

al(t) = Wiz(t) HU'R (t — D)+ b?
: : : : : h'(t) =anh(allD)
v Hidden activations for previous instances 2(0) — W

(t) + b7
g(t) = S(a’(t))
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v Here, the term diag(1 — h(t + 1).?) comes from the derivative of tanh

v and the notation@denotes element wise operation of squaring. D




Error back propagation

v/ The derivatives of the output weights.

v Transferring derivatives to the first layer
———
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Sal (1) = diag(1 — h(t).%)
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Error back propagation

S — ).

V"hl(t) = tanh(al(t))
a’(t) = W?h'(t) + b7
§(t) = S(a®(t))

v The derivatives of the first layer weights.




Error Backpropagation gg_,‘(,t) - {cx'(e-.-. 1) ... 75'( t=1) Y

® Keynequation in the backward direction

Ne model incorporates a recurrence in the forward direction.
\

v/ Gradients incorporate a recurrence in the backward direction.
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Back propagation through time




Long-term dependency issues
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Long-term dependency issues

v(Gradients tend to vanishjor explode

sigmoid function derivative of sigmoid

e tan ()

— tanh(z)

derivative 1s zero at tails




Long short term memory (LSTM) idea
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Modeling questions

® How can we make adaptable gates with neural networks
® How can we make gates dependent on the data itself.
v/ Gates can be implemented as neural layers with sigmoidal outputs ?

* Sigmoids can approximate 0-1 functions

the gate output with inputs, hidden layer outputs or outputs




Long-short term memory - idea

@ >

sigmoid pointwise pointwise vector
multiplication addition concatenation

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21



Long short term memory - idea

®Forget gate

Q previous cell state

a forget gate output

L

https://towardsdatascience.com’flustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21




Long short term memory - idea

® Input gate

Q previous cell state
G forget gate output

° input gate output

Q candidate

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21




Long-short term memory - idea

B Cell state

@ previous cell state
c forget gate output

G input gate output
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https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21




Long-short term memory - idea

® Output gate

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Q previous cell state
G forget gate output

‘ input gate output

Q candidate
° new cell state

° output gate output

G hidden state




Long short-term memory - idea

output

self-loop
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input input gate orget gate output gate




Long-short term memory and GRUs

LSTM GRU

forget gate

l

iInput gate output gate update gate
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pointwise pointwise vector
multiplication addition concatenation
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