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Housekeeping

® Midterm project III

v Evaluation after final exam (1lst week of Feb) \/

®Iinal Exam (as per IISc schedule)

v Jan 23rd afternoon! \/

® Extra class (Friday 15, nov, 430pm)




Bayesian Deep Learning

® Goal -

® Show that the use of dropout (and its variants) in NNs can be interpreted
as a Bayesian approximation of a well known probabilistic model.

B Goal -

® Develop tools for representing model uncertainty of existing dropout NNs
— extracting information that has been thrown away so tar. This mitigates
the problem of representing model uncertainty in deep learning without
sacrificing either computational complexity or test accuracy.
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Definition of Gaussian process (_ Qandsm \papcw)
Dsoute & Stodionan

® A Gaussian Process 1s a collection of random variables, any finite n(dmber of
which have (consistent) joint Gaussian distributions.

® A Gaussian process 1s fully specified by its mean function m(x) and
covarlance function k(x, x ).

f~N(m, k)

b

® This 1s a natural generalization of the Gaussian distribution whose mean and
covarlance 1s a vector and matrix, respectively. The Gaussian distribution is
over vectors, whereas the Gaussian process 1s over functions.




Introduction to Gaussian processes

L1 f(x1)
. T2 o f(x2)
TN f(xn)
x ~ N(p,X) f ~N(m(x),k(x,x"))

® Mean will be function of x and variance will also be functions of two data points.




Gaussian process - Example

Fig. 1. Function values from three functions drawn at random from a GP as specified
in Eq. (2). The dots are the values generated from Eq. (4), the two other curves have
(less correctly) been drawn by connecting sampled points. The function values suggest
a smooth underlying function; this is in fact a property of GPs with the squared
exponential covariance function. The shaded grey area represent the 95% confidence
intervals




Gaussian processes for Bayesian inference

® GP will be used as a prior for Bayesian inference.

® The prior does not depend on the training data, but specifies some
properties of the functions.

® One of the primary goals computing the posterior is that it can be used to
make predictions for unseen test cases.

8 Let f be the known function values of the training cases, and let {+« be a set of
function values corresponding to the test set inputs, X-x.
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Gaussian processes for Bayesian inference

® Now the quantity of interest is the posterior distribution (for function values)

flf ~ N (p, + 2,2 (f—p), T — 2, 27'5,)

PACEY

® Thus,

f D ~ QP(TTLD, ]CD>
mp(z) =m(z) +2(X,2)' =7 (f — m)
kp(z,2') = k(z,2') — 2(X,z2)" 7'2(X, )




Gaussian Processes

®where 2(X, x) 1s a vector of covariances between every training case and Xx.
These are the central equations for Gaussian process predictions.

®Let’'s examine these equations for the posterior mean and covariance.
Notice that the posterior variance kD(x, x) 1s equal to the prior variance k(x,
X) minus a positive term, which depends on the training inputs;

® thus the posterior variance is always smaller than the prior variance, since
the data has given us some additional information




Allowing for noise in the model

® Need to address one final issue: noise in the training outputs.

® It 1s common to many applications of regression that there is noise in the
observationsob.

® The most common assumption is that of additive 1.1.d. Gaussian noise in the

®In Gaussian process, the effect is that every i(x) has a extra covariance with
itself only (since the noise is assumed independent), with a magnitude

—

equal to the noise variance:

“




Allowing for noise in the model

nulwf of DNN
y( e, e~N(0,07)

w D
f~GPa

), yNQP(m k+025”)
\/‘\/‘\/

® Notice, that the indexes to the Kronecker’s delta 1s the 1d.ent1fy of the cases,
1, and not the inputs x1; you may have several cases with identical inputs,
but the noise on these cases 1s assumed to be independent.




Allowing for noise in the model

Fig. 2. Three functions drawn at random from the posterior, given 20 training data
pomts the GP as specified in Eq. (3) and a noise level of o, = 0.7. The shaded area

“
gives the 95% confidence region. Compare with Flgmhat the uncertainty

goes down close to the observations
e




Dropout and its Bayesian Interpretation

W




Broad goal

® Interpretation of dropout as a Bayesian model

v/ offers an explanation to some of its properties, such as its ability to avoid
over-fitting

v our Insights allow us to treat NNs with dropout as fully Bayesian models,
and obtain uncertainty estimates over their features.” .

® Mathematically,

® we will show that a deep neural network (NN) with arbitrary depth and

non-linearities, with dropout applied before every weight layer, is

mathematical : O an approximation to the probabilistic deep

Gausslan process model

e —




Dropouts

Dropout as a Bayesian Approximation:
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Representing Model Uncertainty in Deep Learning
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Dropout in NN

® Reviewing the dropout NN model quickly for the case of a single hidden

layer NN. This 1s done for ease of notation, and the generalisation to

multiple layers is straightforward.
w

®Denote by W1,W2 the weight matrices connecting the first layer to the
hidden layer and connecting the hidden layer to the output layer
respectively. These linearly transform the layers’ inputs before applying
some element-wise non-linearity o(:). Denote by b the biases by which we
shift the input of the non-linearity. We assume the model to output D
dimensional vectors while its input i1s Q dimensional vectors, with K hidden
units. Thus W1 is a QO X Kmatrix, W2 1s a K X D matrix, and bisa K

dimensional vector. A standard NN model would

v ¢ “
Y — O'(le -+ b)WQ
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Dropout Z,| ¢

® Dropout is applied by sampling two binary vectors z1, z2 of dimensions Q
and K respectively. The elements ofws_are d1str1buted according to
a Bernoulli distribution with some parameter

pze{ovl} 2:172

-~

214 ~ Bernoulli(p;)

2o ~ Bernoulli(ps)

® CGiven an mput X, (1 — pl) proportion of the elements of the input are set to

zero L,o "w- ﬂﬂk)

® The output with dropout can be expressed as

— g(x(Z1W1) =+ b)(Z2W2>

Y
(o) P A




I.oss function

® Loss in regression networks (MSE)

8 Loss in classification networks

5 cap(ina) £ ot

7 > . ecxp(Gna)

® With L2 regularization, the total loss is

4
gdrapaut =




Gaussian process

¢ ~ GP(0, K(X, X))
Y|f ~ N (£, 11 V)

TR 0
® To model the data we have to choose a covariance function K(X1, X2) for the
Gaussian distribution. This function defines the (scalar) similarity between

every pair of inpw, X] ).

® Given a finite dataset of siz this function induces an N X N covariance
matrix which we will denote'K := K(X, X).
- 




. . X.,Y - 4yoining data w
Variational Inference ' Mlﬂ/_] <p(w)

L——’ JOJ Kly)
® The output probability distribution on some unseen tes ') NK
CIXY) = [ o5 @ Y

x*, X,Y) WG| X,Y)dw

lcondmon the model on a finite set of random var1ab1es w X,Y —9 w

v/ like the welghts of the model.
g bQ.t DP ,‘)08"\3

® The distribution p(w | X, Y) cannot usually be evaluated analytically. Instead
we define an approximating variational distribution g(w)







Forming a suitable approximation for the weight matrices

&
W2 =\%! dzag (Z1)

gdzagﬁ)

distribution parameterized using pl and pZ
—_—

® In this scenario, maximizing the evidence lower bound gives

. 1% 2 p2 2
LGP%_ Yn — Yn : Ml " 4 M2 \/
Lop &= Y|y = $ull? = IV @ 1 0|

n—
® Very similar to the error function optimized in DNN training 1

gdropaut — L+ >\1Hw1||2 - )\QHWZHQ T )\3| b °
— /




Suamany of provioss Aleds

Baywian ey —> Apmox
W — moximize Hhe VLB
pestenry (W[ x,Y ) CELBO)
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Obtaining the model uncertainity

® Train the model using dropout and L2 regularization J % X Y )
)

*
® Under the assumed q distribution , , yA -‘L) P (9 ’ n

e

v Estimate the ﬁrst order and second statistics of the output given the
input ML e —

G

v/ Approximately equal to

e First order and second statistic of the output with different dropouts for

the given the input 1 . B 4ordom ddows of
e The first order moment is 43q(y|x) N é ZS}'(X WH W%
\V oV aV, g=1







Application to uncertaininty modeling in MNIST
———

® Train the MNIST model

® With dropout and regularization

® Obtain the output on a new test sample -

e

® Using different realizations of dropout on the test data
_—

® Find the first and second moment of the output for each class

v/ Denoted as uncertainty in the model.




Uncertainty in MNIST

(a) Softmax input scatter




Uncertainty in the model output

(b) Softmax output scatter




Summary of ADL course ...

® Visual and Time Series Modeling: Semantic Models, Recurrent neural models and
LSTM models, Encoder-decoder models, Attention models.

® Unsupervised Learning: Restricted Boltzmann Machines, Variational
Autoencoders, Generative Adversarial Networks.

® Representation Learning, Causality And Explainability: t-SNE visualization,
Hierarchical Representation, semantic embeddings, gradient and perturbation
analysis, Topics in Explainable learning, Structural causal models. Uncertainty
modeling in deep learning.

® New Architectures: Capsule networks, End-to-end models, Transformer Netwozrks.
GTaph TWIW o7i
® Applications: Applications in in NLP, Speech, Image/Video domains in all
modules.
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