

Housekeeping

- Midterm project II presentations
 - Done during Dec. 29,31st (4-6pm)
 - Same format as previous evaluation
- * Midterm project III
 - Abstract submission deadline (Jan 10th)
 - Evaluation after final exam (1st week of Fe
- Final Exam (as per IISc schedule)
 - (Saturday)

(All neports and slides by 11am 29th tomorrow)

Teams folder

first name _ last name_

proj2_(nepot/slåles)
(pdf/ppt)

Jan 23xd afternoon!

Topics Discussed thus far

Adversarial attacks

- W Understanding adversarial attacks
 - Allows explainability
 - Build defenses to these attacks

Explainability with distillation

Knowledge distillation

Knowledge distillation

- Teacher models are complex large neural networks
 - Student models are typically lighter models.
- W Useful in semi-supervised learning
 - ■Student model has to approximate outputs from a teacher model. ✓

Knowledge distillation for explainability

■Use a simpler explainable model for student model to approximate the deeper model

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro University of Washington Seattle, WA 98105, USA marcotcr@cs.uw.edu Sameer Singh University of Washington Seattle, WA 98105, USA sameer@cs.uw.edu Carlos Guestrin
University of Washington
Seattle, WA 98105, USA
guestrin@cs.uw.edu

LIME

Knowledge distillation for explainability

- Use a simpler explainable model for student model to approximate the deeper model.
- Use locality preservation as a criterion for sampling
 - ✓ Method Local Interpretable Model Agnostic Representations
 - Explainability for each sample under consideration

local approx of a complex model with a simpler one.

Local Interpretable Model Agnostic Representation

- A possible interpretable representation for text classification is a binary vector indicating the presence or absence of a word, even though the classifier may use more complex (and incomprehensible) features such as word embeddings.
- Likewise for image classification, an interpretable representation may be a binary vector indicating the "presence" or "absence" of a contiguous patch of similar pixels (a super-pixel), while the classifier may represent the image as a tensor with three color channels per pixel
- Let $\mathbf{x} \in \mathcal{R}^D$ denote the original data $\mathbf{x}' \in \mathcal{R}^{D'}$ be the interpretable representation interpretable version

Local Interpretable Model Agnostic Representation

- $lacktriang{lacktrianglet}{lacktrianglet}$ For linear classifiers $g\in G$ the complexity could denote the number of non-zero weights.
- Deep model mapping Let $f(\mathbf{x})$ denote original classifier $\mathcal{R}^D o \mathcal{R}$ Dindicate the posterior probability of a particular class
- denote a kernel of proximity measure of sampling denotes samples drawn in the vicinity of the data point

Local Interpretable Model Agnostic Representation

$$\mathcal{L}(f,g,\pi_{\mathbf{x}}) = \sum_{\mathbf{z},\mathbf{z}'} \pi_{\mathbf{x}}(\mathbf{z}) (f(\mathbf{z}) - g(\mathbf{z}'))^2$$
 with $\pi_{\mathbf{x}}(\mathbf{z}) = e^{-D(\mathbf{x},\mathbf{z})^2}$ and $g = \mathbf{w}_g^T \mathbf{z}'$ $\Omega(g) = ||\mathbf{w}_g||_0$ and $\Omega(g) = ||\mathbf{w}_g||_0$ which is solve the sparse optimization problem.

D-distance

With
$$\pi_{\mathbf{x}}(\mathbf{z}) = e^{-D(\mathbf{x},\mathbf{z})^2}$$

$$g = \mathbf{w}_g^T \mathbf{z}'$$

promimiby

$$\Omega(g) = ||\mathbf{w}_g||_0$$

Tanlor

$$\underbrace{argmin_{g \in G} \ \mathcal{L}(f, g, \pi_{\mathbf{x}}) + \Omega(g)}$$

Using LASSO style algorithm

Knowledge distillation for explainability

oniginal
cussifier

LIME model - text example

Building sparse linear regression for each output class

LIME model - Image example

Building sparse linear regression for each output class

(a) Original Image

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

(d) Explaining *Labrador*

Identifying classification errors

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

Future Research Directions

Future Research Directions

New Approach

Create a suite of machine learning techniques that produce more explainable models, while maintaining a high level of learning performance

Future Research Directions

Generating Image Captions

A group of people shopping at an outdoor market

There are many vegetables at the fruit stand

translate features of the CNN into words and captions.

A CNN is trained to recognize objects in

A language generating RNN is trained to

Example Explanations

images

This is a Kentucky warbler because this is a yellow bird with a black cheek patch and a black crown.

This is a pied billed grebe because this is a brown bird with a long neck and a large beak.

Limitations

- Limited (indirect at best) explanation of internal logic
- Limited utility for understanding classification errors

Generating Visual Explanations

Researchers at UC Berkeley have recently extended this idea to generate explanations of bird classifications. The system learns to:

- Classify bird species with 85% accuracy
- Associate image descriptions (discriminative features of the image) with class definitions (image-independent discriminative features of the class)

Hendricks, L.A, Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., and Darrell, T. (2016). Generating Visual Explanations, arXiv:1603.08507v1 [cs.CV] 28 Mar 2016

Topics thus far ...

- Visual and Time Series Modeling: Semantic Models, Recurrent neural models and LSTM models, Encoder-decoder models, Attention models.
- Representation Learning, Causality And Explainability: t-SNE visualization, Hierarchical Representation,
 , gradient and perturbation analysis, Topics in Explainable learning, Structural causal models.
- Unsupervised Learning: Restricted Boltzmann Machines, Variational Autoencoders, Generative Adversarial Networks.
- New Architectures: Capsule networks,
 Transformer Networks.
- · Applications: Applications in in NLP, Speech, Image/Video domains in all modules.

Problem with current deep learning networks

- Convolutional neural networks with filtering and max pooling layers
 - Generate indicators of object parts
 - check the presence of object parts and confirm the object identity.
 - Often fails to understand the spatial relationship between object parts.

Capsule networks

- ** Traditional networks
 - Weigh the inputs and generate a scalar output
- Key idea in capsule networks (neurons to capsules)
 - ✓ Move inidividual neuron outputs from scalar to vector
 - Encode the probability of presence of an attribute along the magnitude of the vector output
 - ✓ Encode the pose (translation + rotation) in the angle of the vector output

Neurons versus Capsules

Capsule vs. Traditional Neuron			
Input from low-level capsule/neuron		$\operatorname{vector}(\mathbf{u}_i)$	$\operatorname{scalar}(x_i)$
	Affine Transform	$\widehat{\mathbf{u}}_{j i} = \mathbf{W}_{ij}\mathbf{u}_i$	_
Operation	Weighting	$\mathbf{s}_{j} = \sum_{i} c_{ij} \widehat{\mathbf{u}}_{j i}$	$a_j = \sum_i w_i x_i + b$
	Sum		
	Nonlinear Activation	$\mathbf{v}_{j} = rac{\ \mathbf{s}_{j}\ ^{2}}{1+\ \mathbf{s}_{j}\ ^{2}} rac{\mathbf{s}_{j}}{\ \mathbf{s}_{j}\ }$	$h_j = f(a_j)$
Output		$vector(\mathbf{v_j})$	$\operatorname{scalar}(h_j)$

