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E9:309 Advanced Deep Learning

Housekeeping
✴Midterm project II presentations


➡Done during Dec. 29,30th 


➡ Same format as previous evaluation


✴Midterm project III 


➡Abstract submission deadline (Jan 10th)


✓ Evaluation after final exam (1st week of Feb)


✴ Final Exam (as per IISc schedule)


✓ Jan 22nd afternoon!
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Causal inference 
✴Causal inference


➡Deriving the causal connection between conditions that cause an effect.


✴Three levels of causation


➡ association Seeing and observing the environment. 
Is the incidence of lung cancer higher among smokers? 


➡ intervention Doing and intervening in the environment. 
How do we reduce lung cancer? What is the effect if we ban cigarettes? 


➡ counterfactuals Imagining, restrospection, understanding the 
environment. What if I had not smoked for the last two years? 
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Pruning based approach to analyzing/compressing

✴Removing connections of a learned neural 
network


➡Analyzing the effect of this intervention on 
the output of the model.


✓ Example of intervention based causal 
model analysis.


✴Pruning is interleaved with fine-tuning 



E9:309 Advanced Deep Learning

Pruning based analysis of neural networks 

✴Taylor series expansion based


✴Criterion for pruning feature maps 
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Approximating gradients
✴ Let input neurons be defined as  (for a given input)


✴ let reference input be defined as 


✴ Let                             denote the output of the model (at some dimension) for 
the given input and the reference.

<latexit sha1_base64="bj1c7ZZyR7MU1TCOVsnbCIegsZs="></latexit>

{x1, x2, ...xD} (1)
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Approximating gradients 
✴Use finite differences for gradients 


✓ Called as multipliers 


✓ Chain rule of partial deviatives can also be extended to multipliers.


✓ Can be used instead of actual gradients to compute the importance of a 
feature/hidden layer output.

<latexit sha1_base64="so9GwIEoscvTLhHu1msWAvi762U="></latexit>
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Illustration of finite gradients for ReLU
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Adversarial attacks and model defenses

✴Examples that fool the model 


➡Using a trained image classifier published by a third party, a user inputs 
one image to get the prediction of class label. Adversarial images are 
original clean images with small perturbations, often barely recognizable 
by humans. However, such perturbations misguide the image classifier
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Types of Adversarial attacks 
✴ False positive attacks generate a negative sample which is misclassified as 

a positive one (Type I Error). In a malware detection task, a benign software 
being classified as malware is a false positive. In an image classification 
task, a false positive can be an adversarial image unrecognizable to human, 
while deep neural networks predict it to a class with a high confidence 
score.


✴  False negative attacks generate a positive sample which is misclassified as 
a negative one (Type II Error). In a malware detection task, a false negative 
can be the condition that a malware (usually considered as positive) cannot 
be identified by the trained model. False negative attack is also called 
machine learning evasion. This error is shown in most adversarial images, 
where human can recognize the image, but the neural networks cannot 
identify it.  
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Types of Adversarial attacks 

✴White box versus Black box 


✴Targeted  versus Non-targeted


✴One-time versus many time 
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Simple adversarial attack
✴ Fast Gradient Sign Method


✴Move in the direction of the gradient ascent 


✴Other similar rules - gradient value based adverasarial learning  

<latexit sha1_base64="/x4s3CQKC4u2mlIOQdXvaEcueJk="></latexit>

xi = xi + ✏sign(
@E(xi, l)

@xi
) (1)
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Simple adversarial attack
✴ Fast Gradient Sign Method 
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Adversarial examples in text 

✴Using similar methods to gradient 
based update.


✴Adding sentences confuses models 
which will typically not confuse 
humans
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Adversarial attacks 
✴Understanding adversarial attacks


✓ Allows explainability 


✓ Build defenses to these attacks
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Explainability with distillation 



E9:309 Advanced Deep Learning

Knowledge distillation 



E9:309 Advanced Deep Learning

Knowledge distillation 
✴Teacher models are complex large neural networks


➡ Student models are typically lighter models.


✴Useful in semi-supervised learning 


➡ Student model has to approximate outputs from a teacher model.


✓ Also needs to learn from small amounts of labelled data.
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Knowledge distillation for explainability
✴Use a simpler explainable model for student model to approximate the 

deeper model.


✴Use locality preservation as a criterion for sampling 


✓ Method - Local Interpretable Model Agnostic Representations 


✓ Explainability for each sample under consideration
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Knowledge distillation for explainability
✴ Let            denote the original neural network    


✴ Let         denote the interpretable version of input 


✴ Let             denote samples drawn around input and its interpretable version.


✴The function g can be sparse linear regression 

<latexit sha1_base64="HVx4So/kYHJyLOZsJtRKE/VXvc8="></latexit>

f(x) (1)
<latexit sha1_base64="sIxUx9TToRwQl3v+7uukdO4yn/U="></latexit>

x0 (1)
<latexit sha1_base64="EzKPMW99DA5d1UH5PtMSIZXNEXk="></latexit>

z, z0 (1)
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LIME model - text example
✴Building sparse linear regression for each output class
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LIME model - Image example
✴Building sparse linear regression for each output class


