

E9: 309 ADL 23-12-2020

<http://leap.ee.iisc.ac.in/sriram/teaching/ADL2020/>

Housekeeping

★ Midterm project II presentations ↫

→ Done during Dec. 29,30th

→ Same format as previous evaluation

★ Midterm project III ↫

→ Abstract submission deadline (Jan 10th) ✈

✓ Evaluation after final exam (1st week of Feb) ↫

★ Final Exam (as per IISc schedule) ↫

✓ Jan ~~2~~nd afternoon!

(Jan 23rd final exam)

Topics Discussed thus far

Explainable/Interpretable
Deep Learning

Visualizing deep layer
activations using tSNE

Interepoch evolution of
activations

Transferability

Topics Discussed thus far

Explainable/Interpretable
Deep Learning

Visualizing deep layer
activations using tSNE

Backpropagation based
approach - Deconv net

Interepoch evolution of
activations

Establishing hierachal
representation learning

Transferability

*visualizations
in input*

Topics Discussed thus far

Explainable/Interpretable Deep Learning

Visualizing deep layer activations using tSNE

Interepoch evolution of activations

Transferability

Establishing hierachal representation learning

Using Global average pooling and interpolation

Using gradients from last layer

Attention

CAM

Grad-CAM

saliency

Topics Discussed thus far

Explainable/Interpretable Deep Learning

Visualizing deep layer activations using tSNE

Interepoch evolution of activations

Transferability

Establishing hierachal representation learning

Attention

Backpropagation based approach - Deconv net

Using Global average pooling and interpolation

Using gradients from last layer

Causal Inference

CAM

Grad-CAM

Causal inference

✳ Causal inference

→ Deriving the causal connection between conditions that cause an effect.

✳ Three levels of causation

→ **association** Seeing and observing the environment.

Is the incidence of lung cancer higher among smokers?

→ **intervention** Doing and intervening in the environment.

How do we reduce lung cancer? What is the effect if we ban cigarettes?

→ **counterfactuals** Imagining, retrospection, understanding the

environment. What if I had not smoked for the last two years?



Pruning based approach to analyzing/compressing

Published as a conference paper at ICLR 2017

PRUNING CONVOLUTIONAL NEURAL NETWORKS FOR RESOURCE EFFICIENT INFERENCE

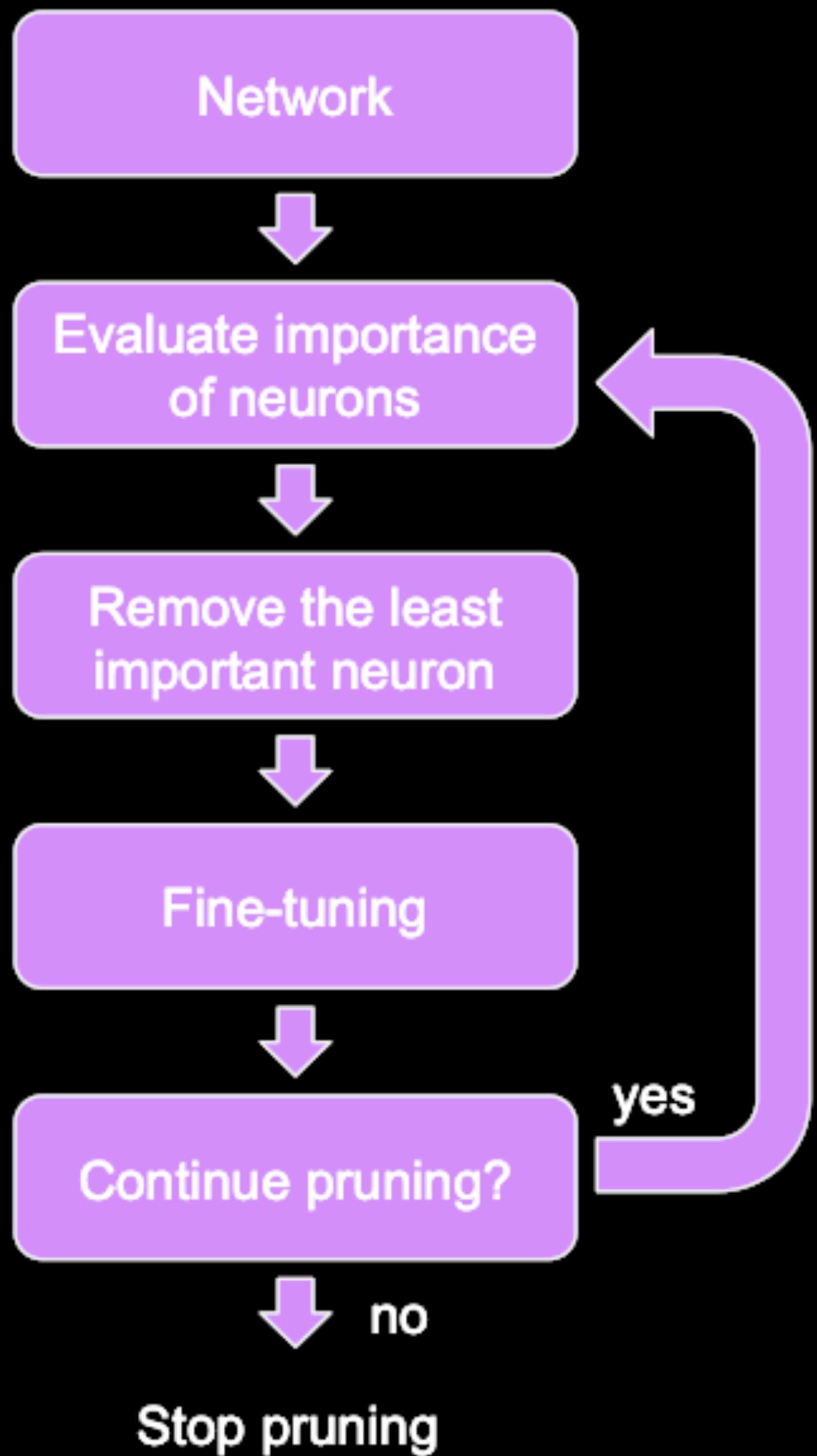
Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, Jan Kautz

NVIDIA

{pmolchanov, styree, tkarras, taila, jkautz}@nvidia.com

Pruning based approach to analyzing/compressing

- ★ Removing connections of a learned neural network
- ➡ Analyzing the effect of this intervention on the output of the model.
- ✓ Example of intervention based causal model analysis.
- ★ Pruning is interleaved with fine-tuning



Pruning based analysis of neural networks

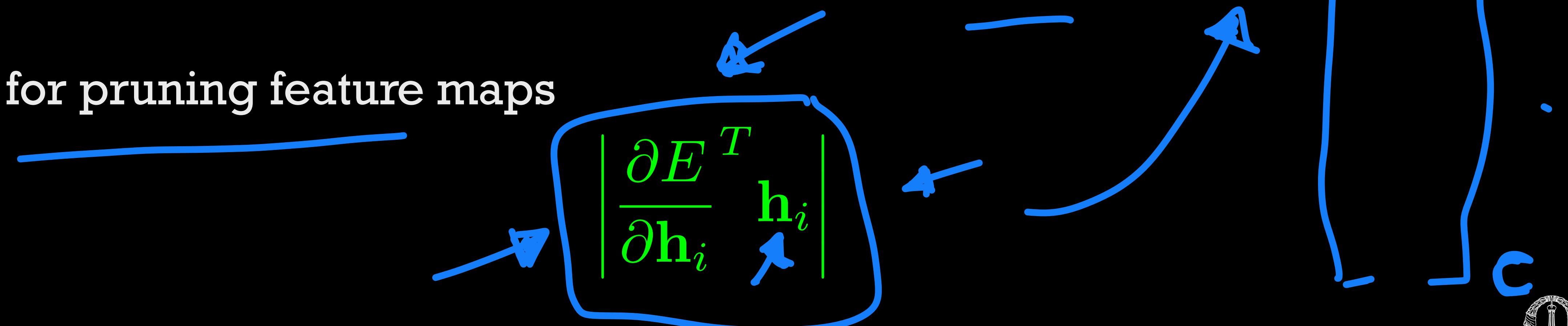
$$\mathbf{h} = \{\mathbf{z}_1^{(1)}, \mathbf{z}_2^{(1)}, \dots, \mathbf{z}_{C_L}^{(L)}\}$$

$$\zeta_1^+, \zeta_2^+, \dots, \zeta_L^+ \} = \mathbf{C}$$

★ Taylor series expansion based

$$E(\mathcal{D}|\mathbf{h}_i) \approx E(\mathcal{D}|\mathbf{h}_i = 0) + \frac{\partial E}{\partial \mathbf{h}_i} \mathbf{h}_i$$

★ Criterion for pruning feature maps



Criterion involved in identifying importance

- With non-linearities like ReLU (deriving gradients can have effects of saturation)

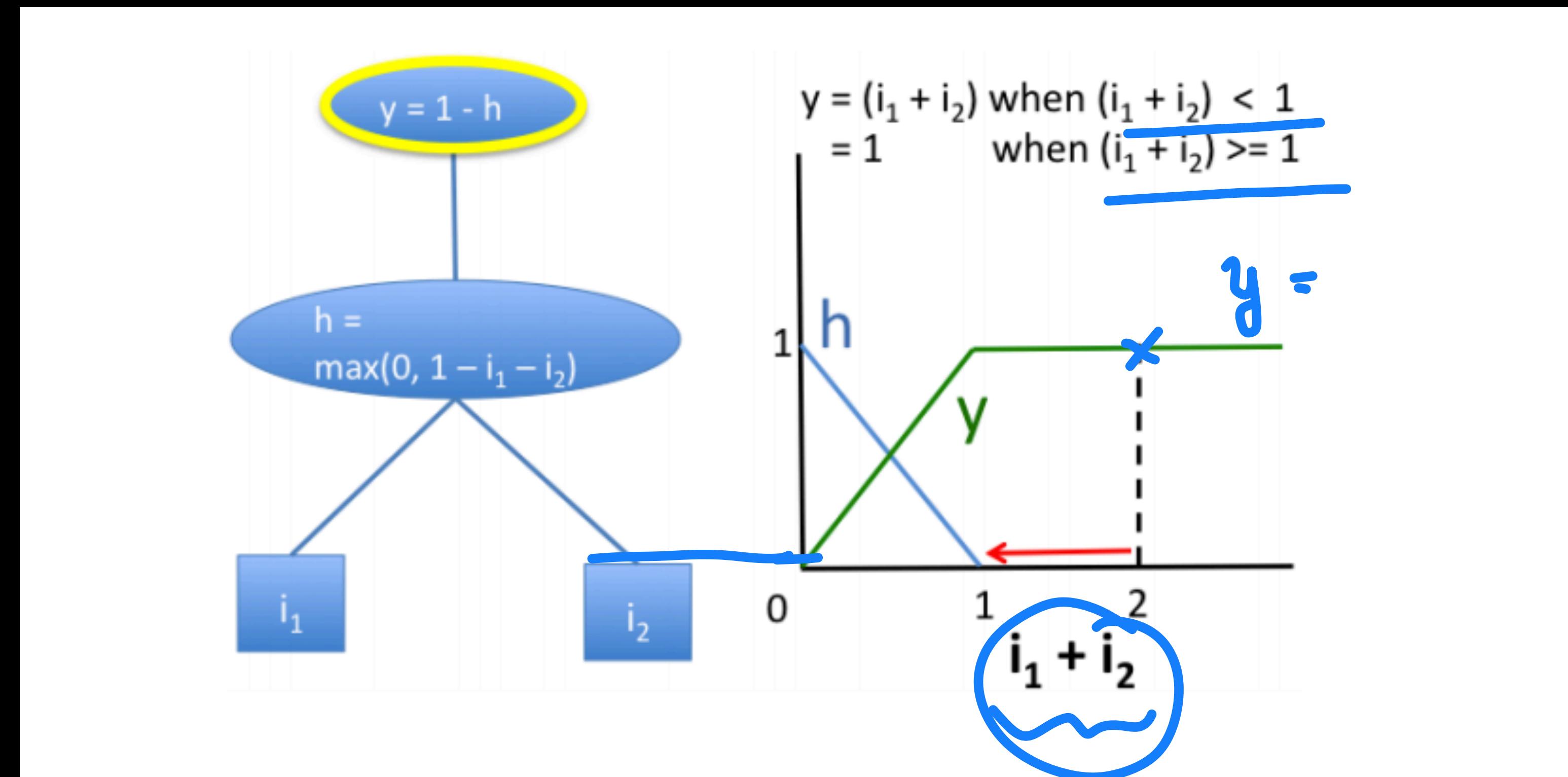


Figure 1. Perturbation-based approaches and gradient-based approaches fail to model saturation. Illustrated is a simple network exhibiting saturation in the signal from its inputs. At the point where $i_1 = 1$ and $i_2 = 1$, perturbing either i_1 or i_2 to 0 will not produce a change in the output. Note that the gradient of the output w.r.t the inputs is also zero when $i_1 + i_2 > 1$.

Criterion involved in identifying importance

- With non-linearities like ReLU (deriving gradients can have effects of saturation)

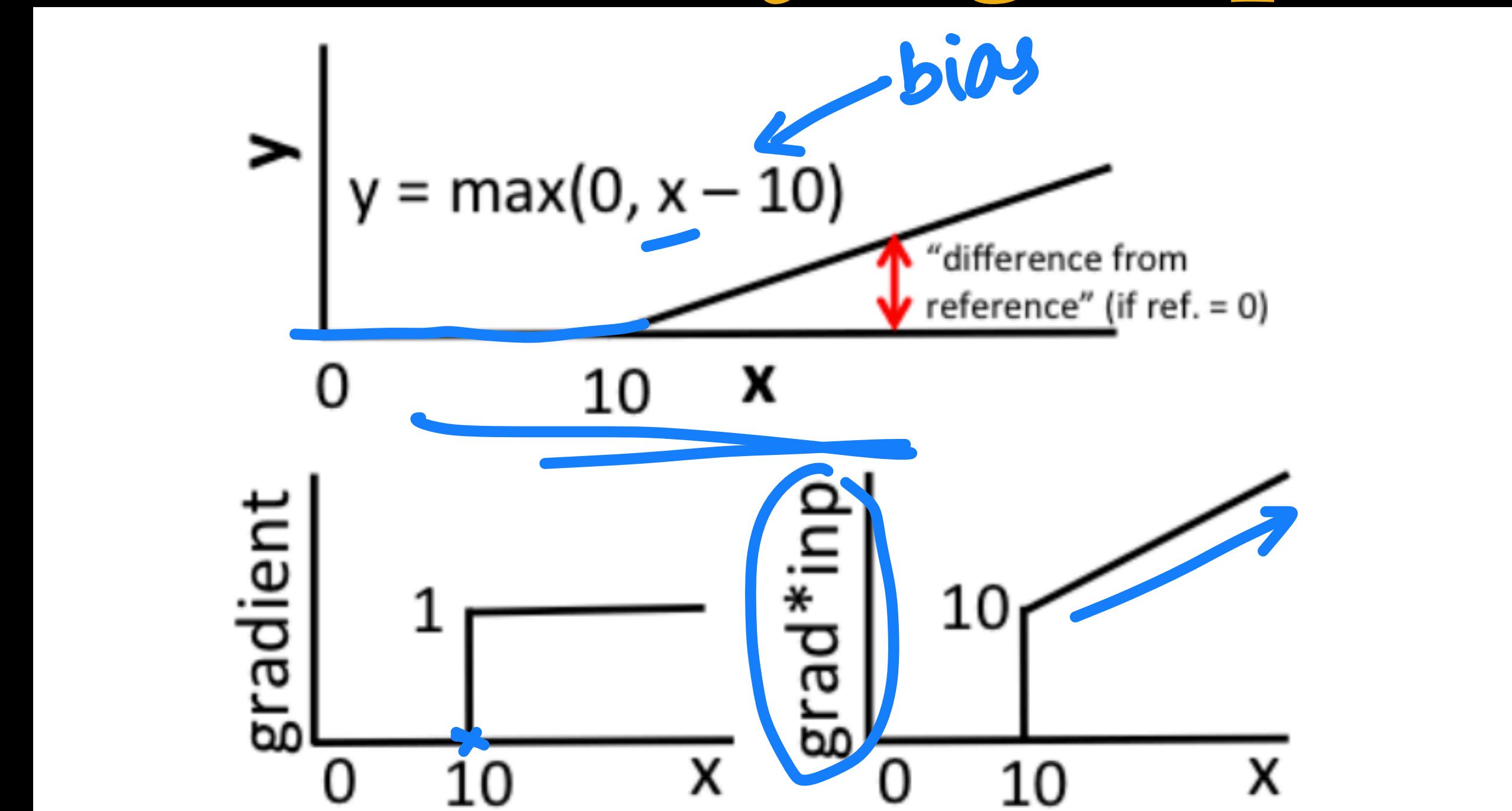


Figure 2. Discontinuous gradients can produce misleading importance scores. Response of a single rectified linear unit with a bias of -10 . Both gradient and gradient \times input have a discontinuity at $x = 10$; at $x = 10 + \epsilon$, gradient \times input assigns a contribution of $10 + \epsilon$ to x and -10 to the bias term (ϵ is a small positive number). When $x < 10$, contributions on x and the bias term are both 0. By contrast, the difference-from-reference (red arrow, top figure) gives a continuous increase in the contribution score.

Approximating gradients

- ✳ Using finite differences w.r.t. reference.

Learning Important Features Through Propagating Activation Differences

Avanti Shrikumar¹ Peyton Greenside¹ Anshul Kundaje¹

Approximating gradients

- Let input neurons be defined as (for a given input)

$$\{x_1, x_2, \dots x_D\}$$

images like MNIST

- let reference input be defined as

$$\{x_1^0, x_2^0, \dots x_D^0\}$$

References background
of 0's for all
pixels.

- Let $\underline{y}_c, \underline{y}_c^0$ denote the output of the model (at some dimension) for the given input and the reference. input

Approximating gradients

- ★ Use finite differences for gradients

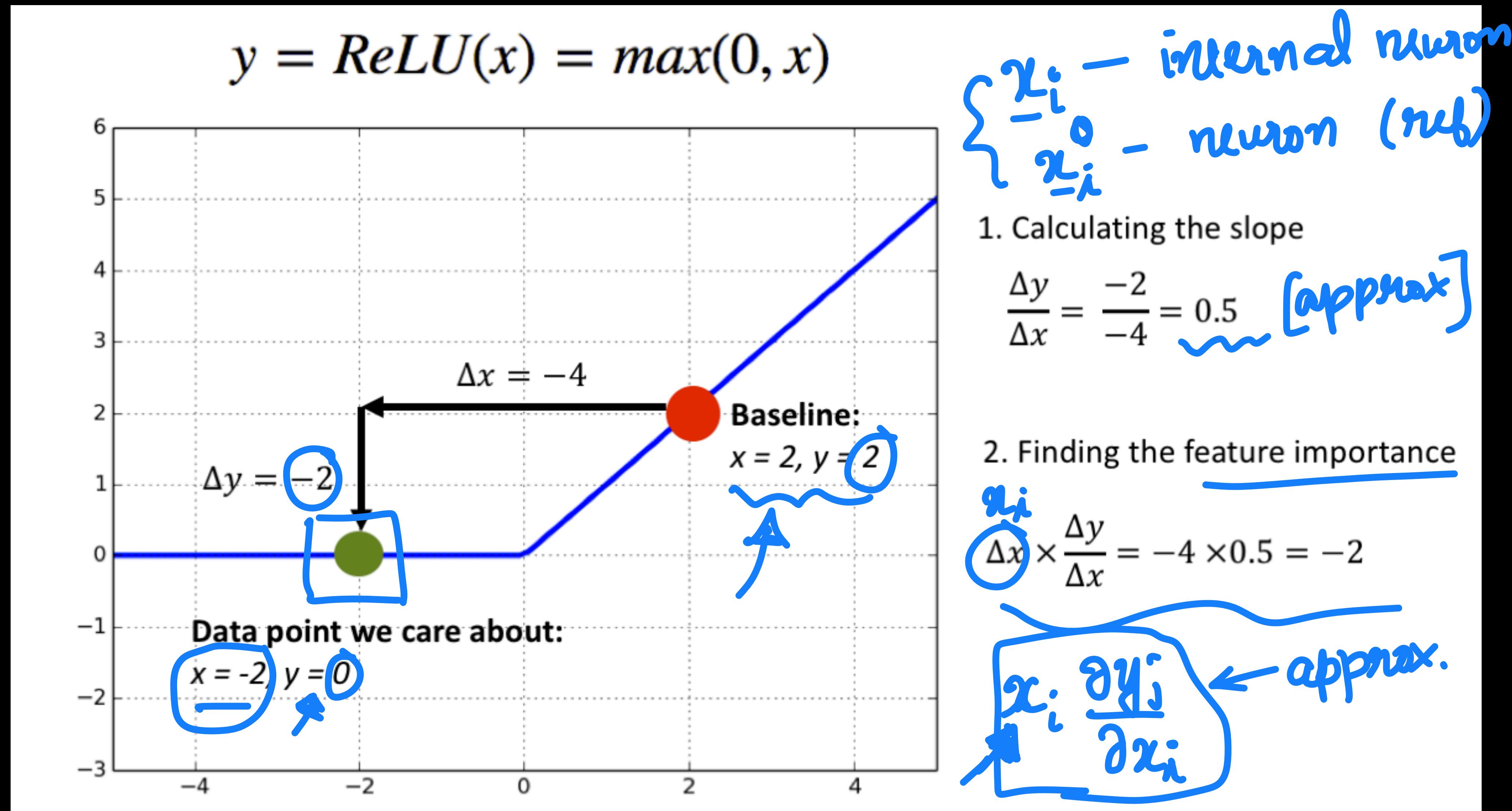
$$\overbrace{m_{\Delta y_c, \Delta x_j}} = \frac{\Delta y_c}{\Delta x_j}$$

- ✓ Called as multipliers
- ✓ Chain rule of partial deviates can also be extended to multipliers.
- ✓ Can be used instead of actual gradients to compute the importance of a feature/hidden layer output.

$$\Delta y_c = \overbrace{y_c - \overbrace{y_c^0}}$$
$$\Delta x_j = \overbrace{x_j - \overbrace{x_j^0}}$$

Interesting math

Illustration of finite gradients for ReLU



Adversarial Examples and Explainability

Adversarial examples and learning

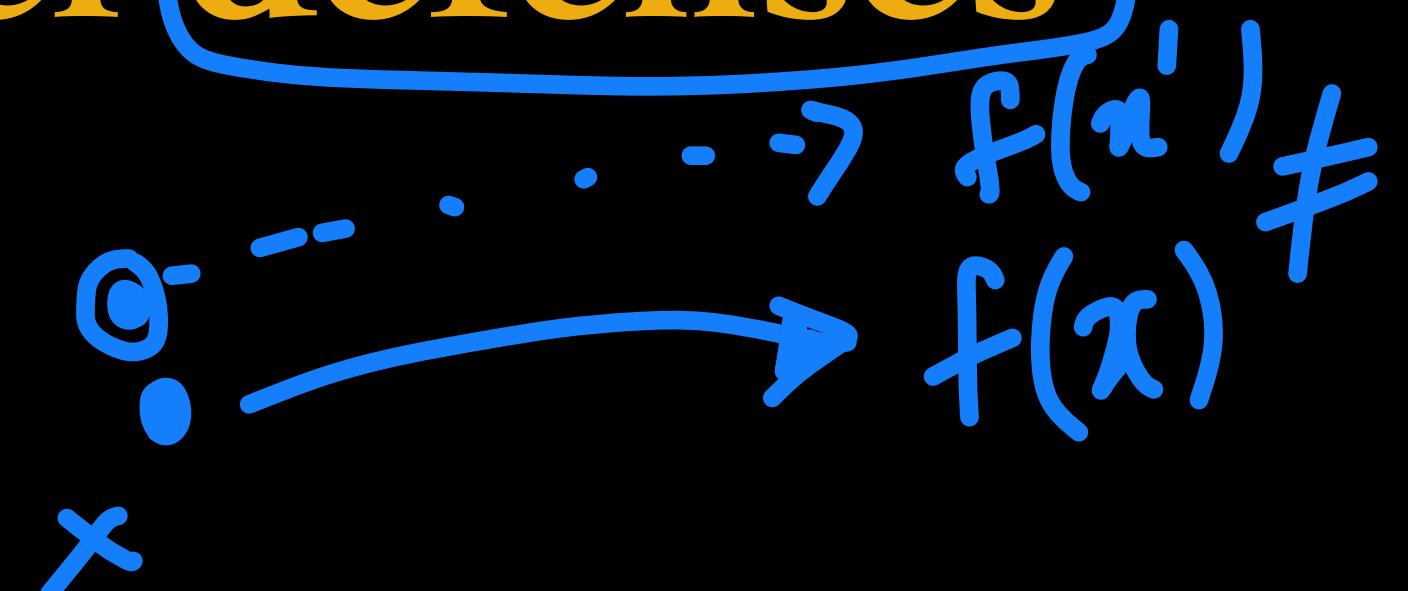
Adversarial Examples: Attacks and Defenses for Deep Learning

Xiaoyong Yuan, Pan He, Qile Zhu, Xiaolin Li*

National Science Foundation Center for Big Learning, University of Florida

{chbrian, pan.he, valder}@ufl.edu, andyli@ece.ufl.edu

Adversarial attacks and model defenses



Examples that fool the model

- Using a trained image classifier published by a third party, a user inputs one image to get the prediction of class label. Adversarial images are original clean images with small perturbations, often barely recognizable by humans. However, such perturbations misguide the image classifier

$$\begin{aligned} \min_{x'} \quad & \|x' - x\| \\ \text{s.t.} \quad & f(x') = l' \\ & f(x) = l \\ & l \neq l' \end{aligned}$$

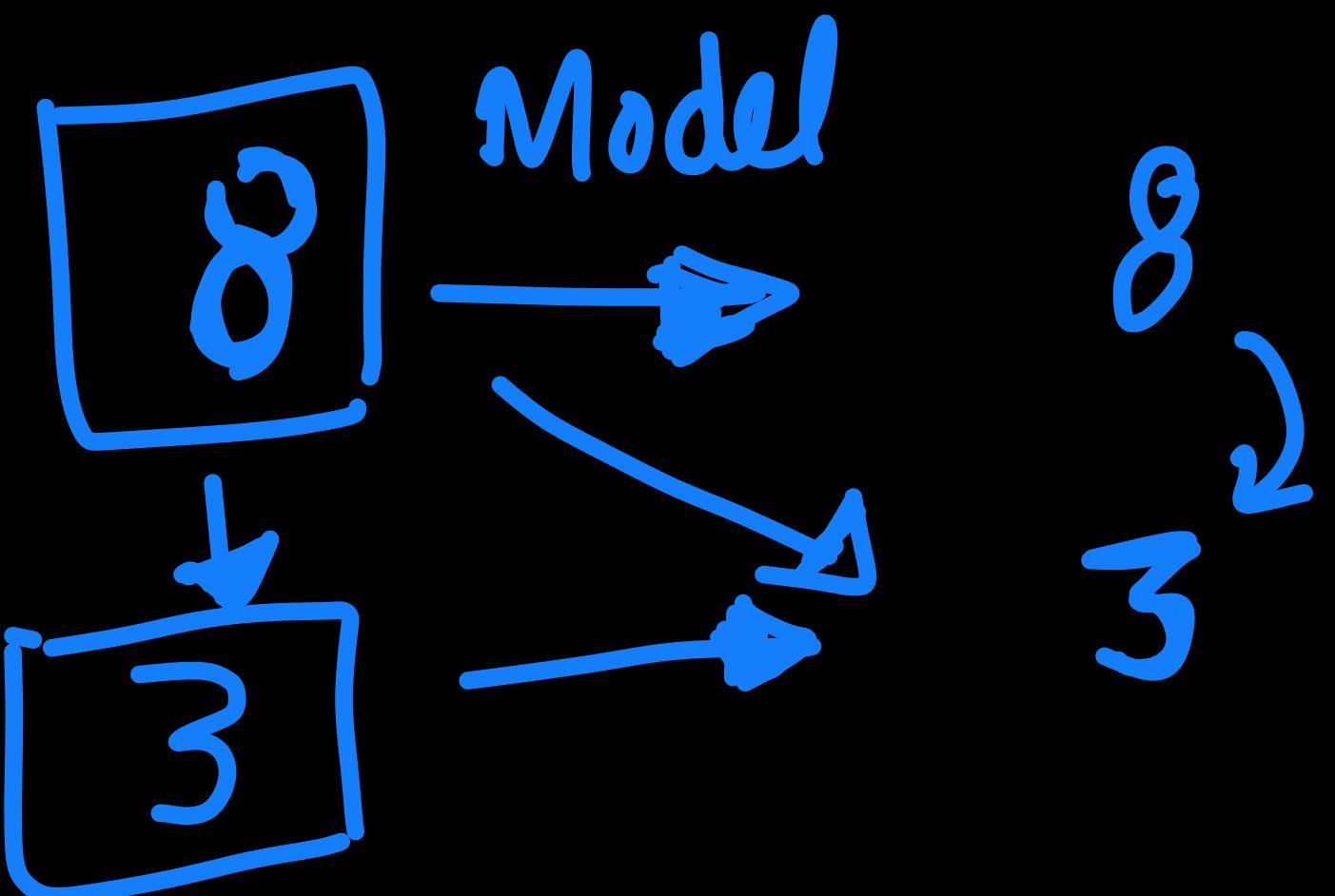
f: classifier

Types of Adversarial attacks

- ✿ **False positive attacks** generate a negative sample which is misclassified as a positive one (Type I Error). In a malware detection task, a benign software being classified as malware is a false positive. In an image classification task, a false positive can be an adversarial image unrecognizable to human, while deep neural networks predict it to a class with a high confidence score.
- ✿ **False negative attacks** generate a positive sample which is misclassified as a negative one (Type II Error). In a malware detection task, a false negative can be the condition that a malware (usually considered as positive) cannot be identified by the trained model. False negative attack is also called machine learning evasion. This error is shown in most adversarial images, where human can recognize the image, but the neural networks cannot identify it.

Types of Adversarial attacks

- ★ White box versus Black box
 - ↑ easier
 - for more consequential
- ★ Targeted versus Non-targeted
 - ↑ make it all to one class
 - change of label
- ★ One-time versus many time
 - do you one-shot at fooling the system



Simple adversarial attack

- Fast Gradient Sign Method

$$\mathbf{x}_i = \mathbf{x}_i + \epsilon \text{sign}\left(\frac{\partial E(\mathbf{x}_i, l)}{\partial \mathbf{x}_i}\right)$$

$$\mathbf{x}_i \leftarrow \mathbf{x}_i - \epsilon$$

non-targeted
adversarial

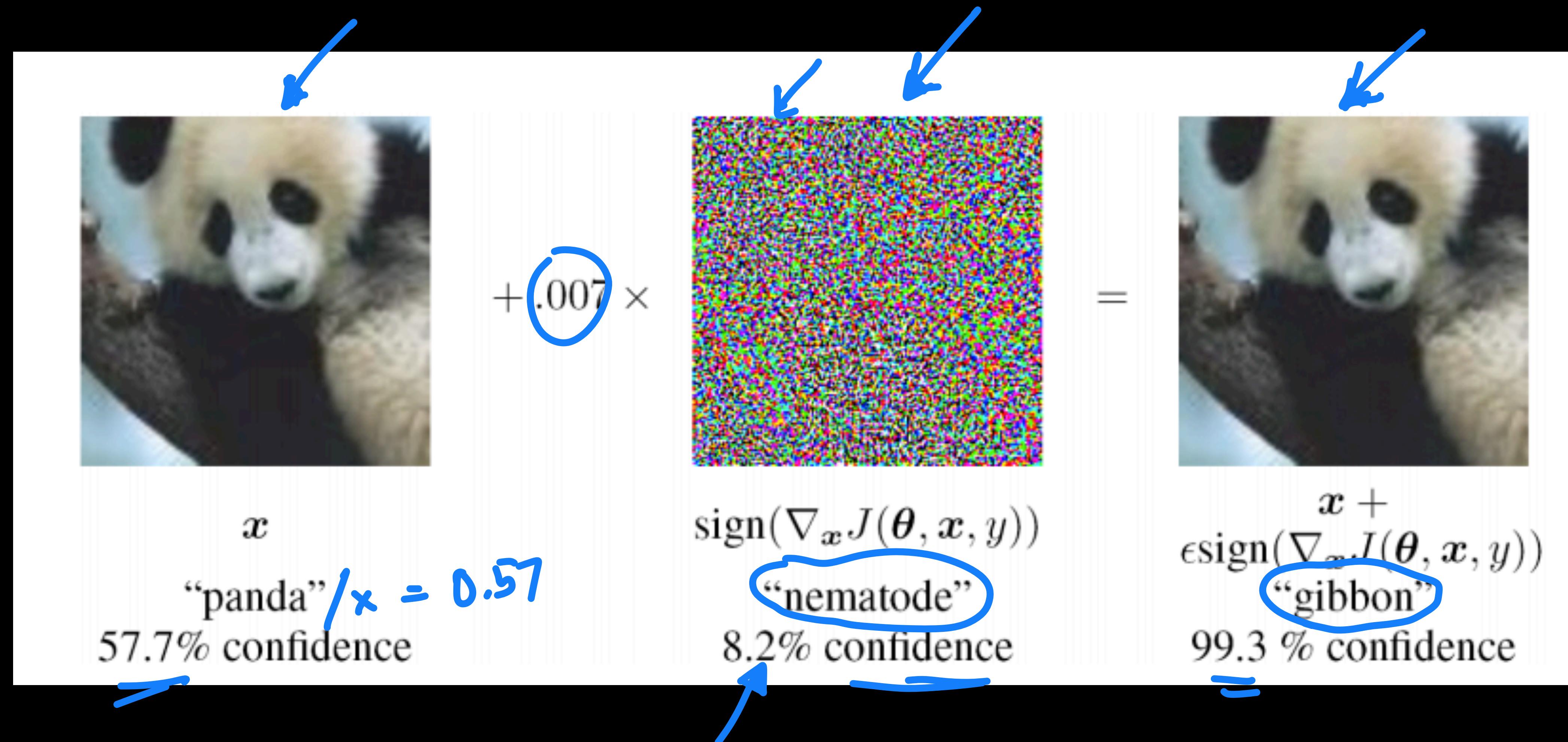
- Move in the direction of the gradient ascent on inputs

- Other similar rules - gradient value based adversarial learning

$$\mathbf{x}_i = \mathbf{x}_i + \epsilon \left(\frac{\partial E(\mathbf{x}_i, l)}{\partial \mathbf{x}_i} \right)$$

Simple adversarial attack

Fast Gradient Sign Method



Adversarial examples

Adversarial Examples for Evaluating Reading Comprehension Systems

Robin Jia

Computer Science Department
Stanford University

robinjia@cs.stanford.edu

Percy Liang

Computer Science Department
Stanford University

pliang@cs.stanford.edu

Adversarial examples in text

- ★ Using similar methods to gradient based update.
- ★ Adding sentences confuses models which will typically not confuse humans

\neq Locally very smooth

Article: **Nikola Tesla**
Paragraph: "In January 1880, two of Tesla's uncles put together enough money to help him leave Gospić for **Prague** where he was to study. Unfortunately, he arrived too late to enroll at Charles-Ferdinand University; he never studied Greek, a required subject; and he was illiterate in Czech, another required subject. Tesla did, however, attend lectures at the university, although, as an auditor, he did not receive grades for the courses."
Question: "What city did Tesla move to in 1880?"
Answer: **Prague**
Model Predicts: **Prague**

AddAny
Randomly initialize d words:
spring attention income getting reached
↓
Greedily change one word
*spring attention income **other** reached*
↓
Repeat many times
Adversary Adds: **tesla move move other george**
Model Predicts: **george**

Adversarial attacks

- ★ Understanding adversarial attacks

- ✓ Allows explainability

- ✓ Build defenses to these attacks

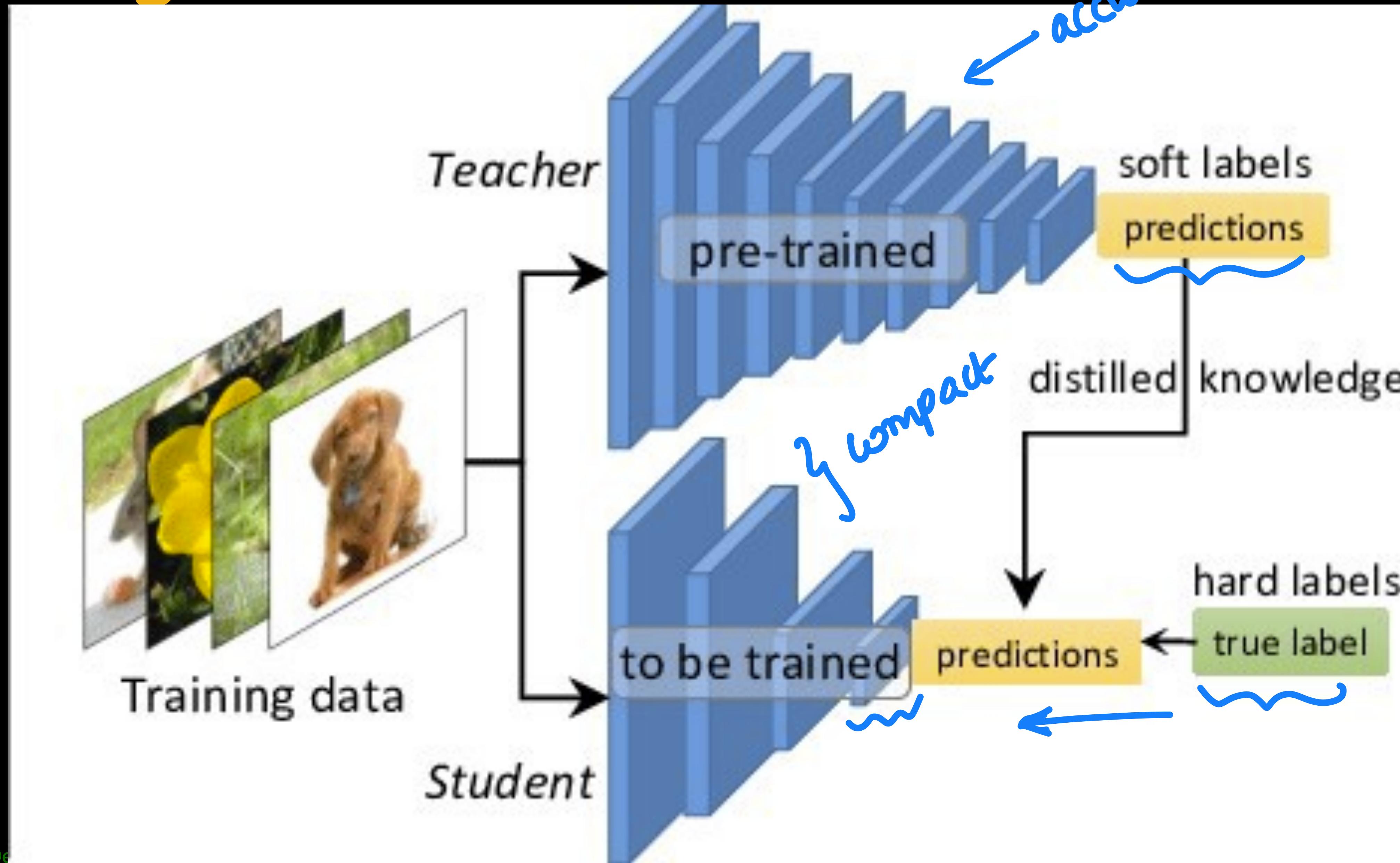
Adversarial example

Defense (data augmentation)

regularization
(locally smooth)

Explainability with distillation

Knowledge distillation



Knowledge distillation

★ Teacher models are complex large neural networks

→ Student models are typically lighter models.

★ Useful in semi-supervised learning

→ Student model has to approximate outputs from a teacher model.

✓ Also needs to learn from small amounts of labelled data.

Knowledge distillation for explainability

- ★ Use a **simpler explainable model** for student model to approximate the deeper model

“Why Should I Trust You?” Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro
University of Washington
Seattle, WA 98105, USA
marcotcr@cs.uw.edu

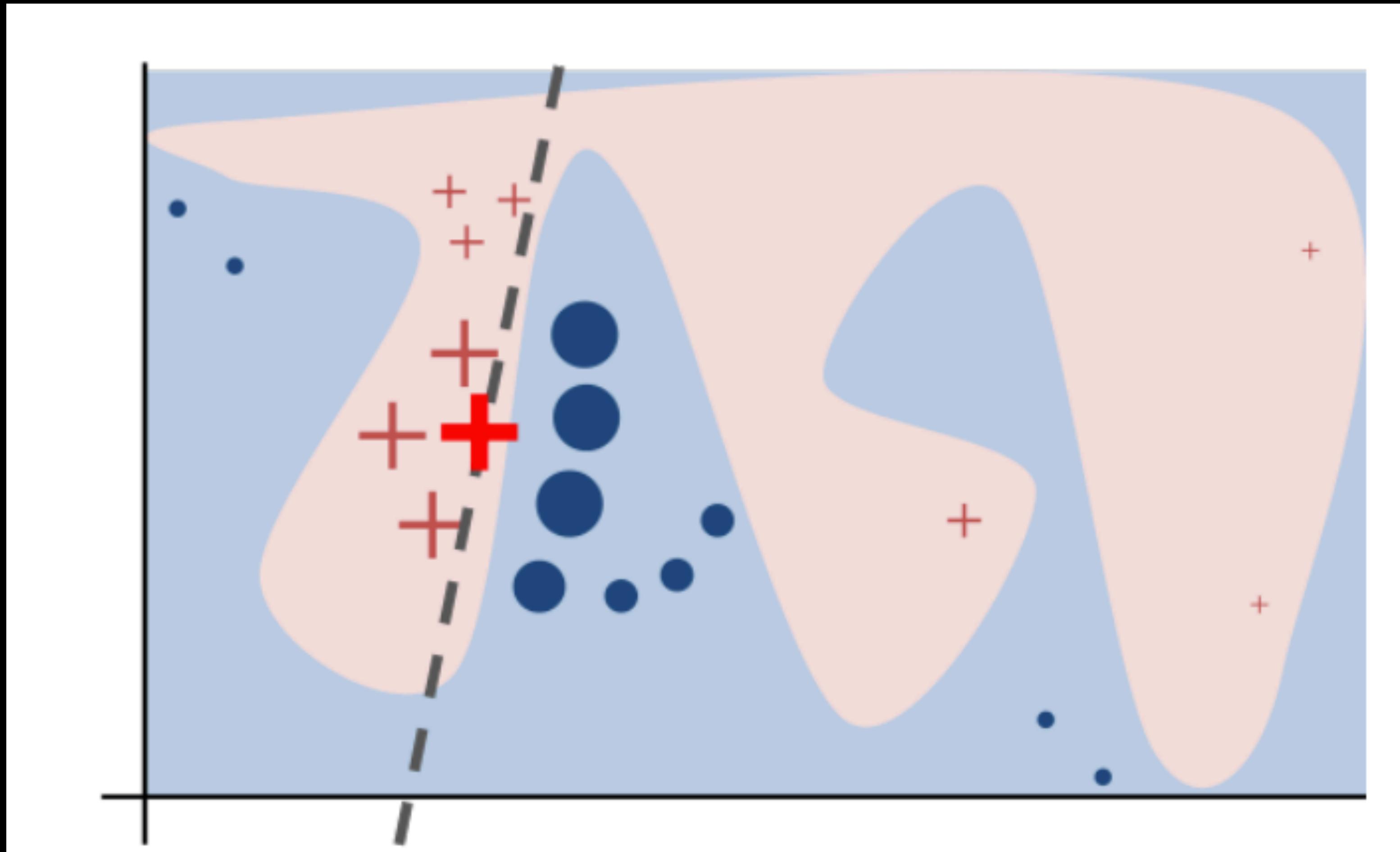
Sameer Singh
University of Washington
Seattle, WA 98105, USA
sameer@cs.uw.edu

Carlos Guestrin
University of Washington
Seattle, WA 98105, USA
guestrin@cs.uw.edu

Knowledge distillation for explainability

- ✳ Use a simpler explainable model for student model to approximate the deeper model.
- ✳ Use locality preservation as a criterion for sampling
 - ✓ Method - Local Interpretable Model Agnostic Representations
 - ✓ Explainability for each sample under consideration

Knowledge distillation for explainability



Knowledge distillation for explainability

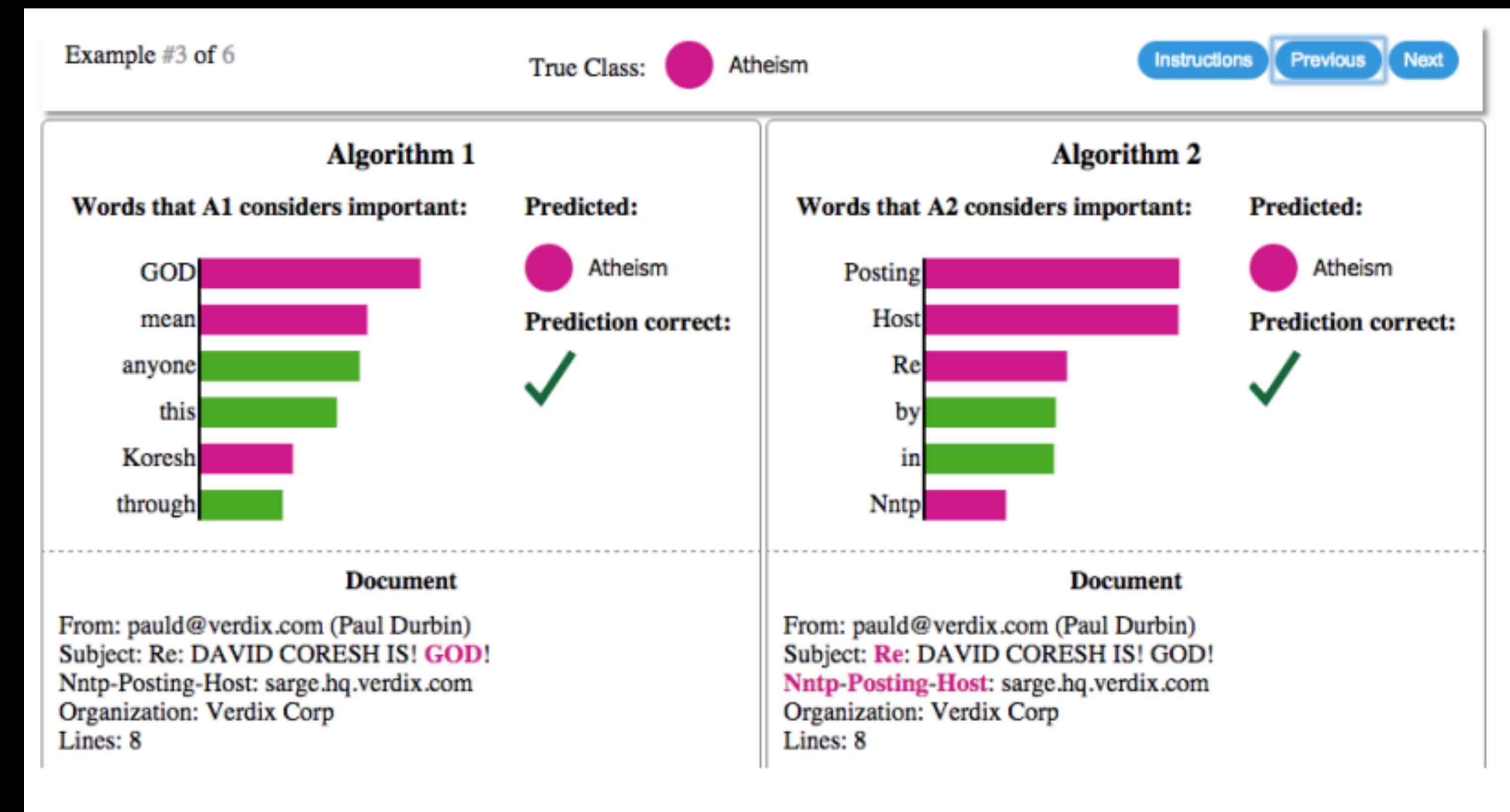
- ✳ Let $f(\mathbf{x})$ denote the original neural network
- ✳ Let \mathbf{x}' denote the interpretable version of input
- ✳ Let \mathbf{z}, \mathbf{z}' denote samples drawn around input and its interpretable version.

$$\mathcal{L}(f, g, \pi_x) = \sum_{z, z' \in \mathcal{Z}} \pi_x(z) (f(z) - g(z'))^2$$

- ✳ The function g can be sparse linear regression

LIME model - text example

- ★ Building sparse linear regression for each output class



LIME model - Image example

- ★ Building sparse linear regression for each output class

