E9: 309 Advanced Deep Learning 11-11-2020

Housekeeping

- - ✓ Deadlines
 - * Presentation on Nov19 and Nov20
 - * Your date allocation has been finalized
 - * Presentation and report template will be sent out this week.
 - * Report 1 page + references and tools
 - * Slides 4 slides for individual project and 6 slides for 2-member.

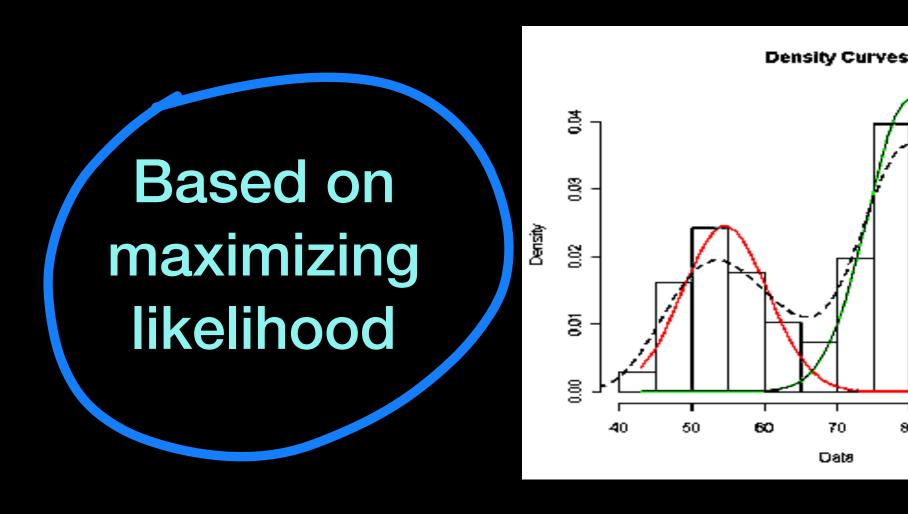
Recap of previous class

Representation learning/data-visualization

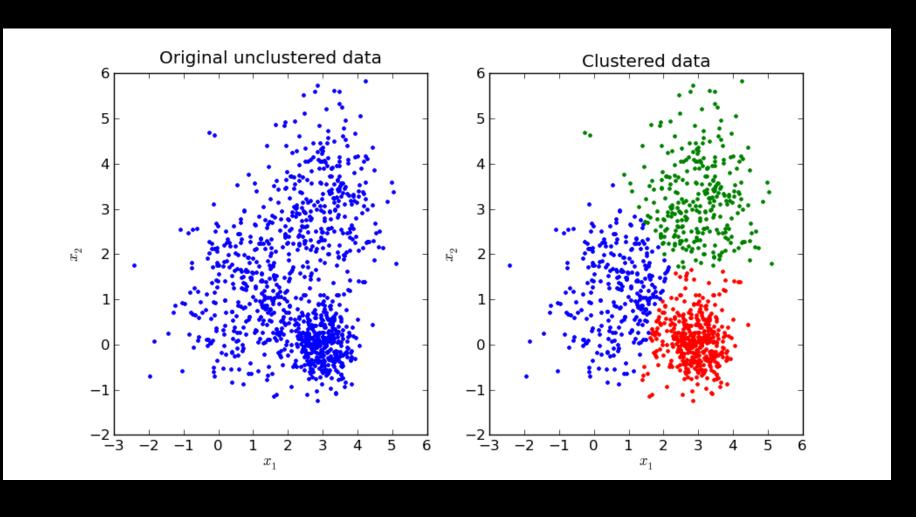
- Elearning a lower dimensional representation
 - Unsupervised dimensionality reductions
 - Based on neighboorhood preservation
 - t-SNE embeddings
 - ✓ visualization of neural network layers.

Unsupervised learning

- Bouloping models that do not need labels
 - May model the generation of data.
 - May allow generation of new data samples
- Broad strategies for unsupervised learning



Based on clustering



Boltzmann machine [Dup Leanning Book]

Binary data

Energy based distribution of the data

$$p(\mathbf{x}) = \frac{exp(-E(\mathbf{x}))}{Z}$$

$$E(\mathbf{x}) = -\mathbf{x}^T \mathbf{U} \mathbf{x} - \mathbf{b}^T \mathbf{x}$$

$$\mathbf{x} \in \mathcal{B}^{D imes 1}$$

- $E(\mathbf{x}) = -\mathbf{x}^T \mathbf{U} \mathbf{x} \mathbf{b}^T \mathbf{x}$ $\mathbf{z} \mathbf{s} \mathbf{constant}$ The model parameters consists are learned by maximizing the likelihood.
- The data can be partitioned as visible and hidden units as well

$$\mathbf{x} = [\mathbf{v}^T \ \mathbf{h}^T]^T$$

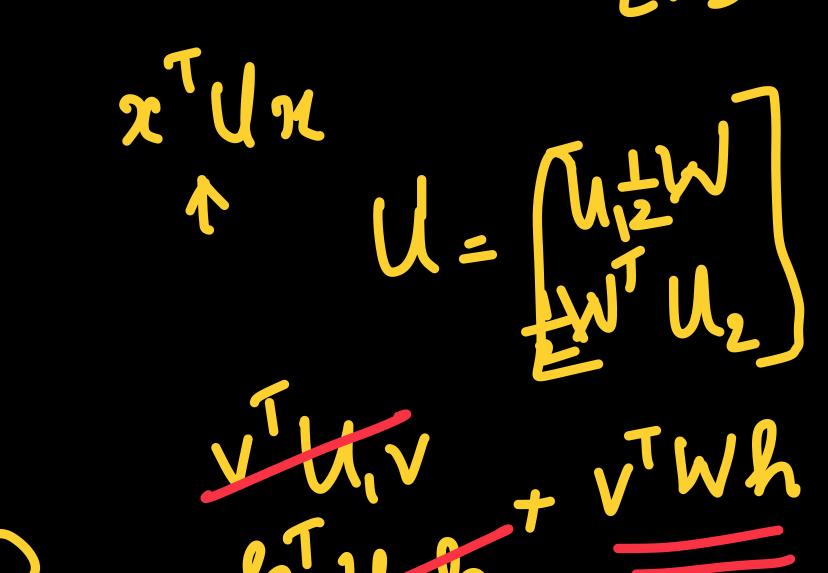
Restricted Boltzmann machine

Removing the self-connections between visible and hidden units.

$$p([\mathbf{v} \ \mathbf{h}]) = \frac{exp(-E([\mathbf{v} \ \mathbf{h}]))}{Z}$$

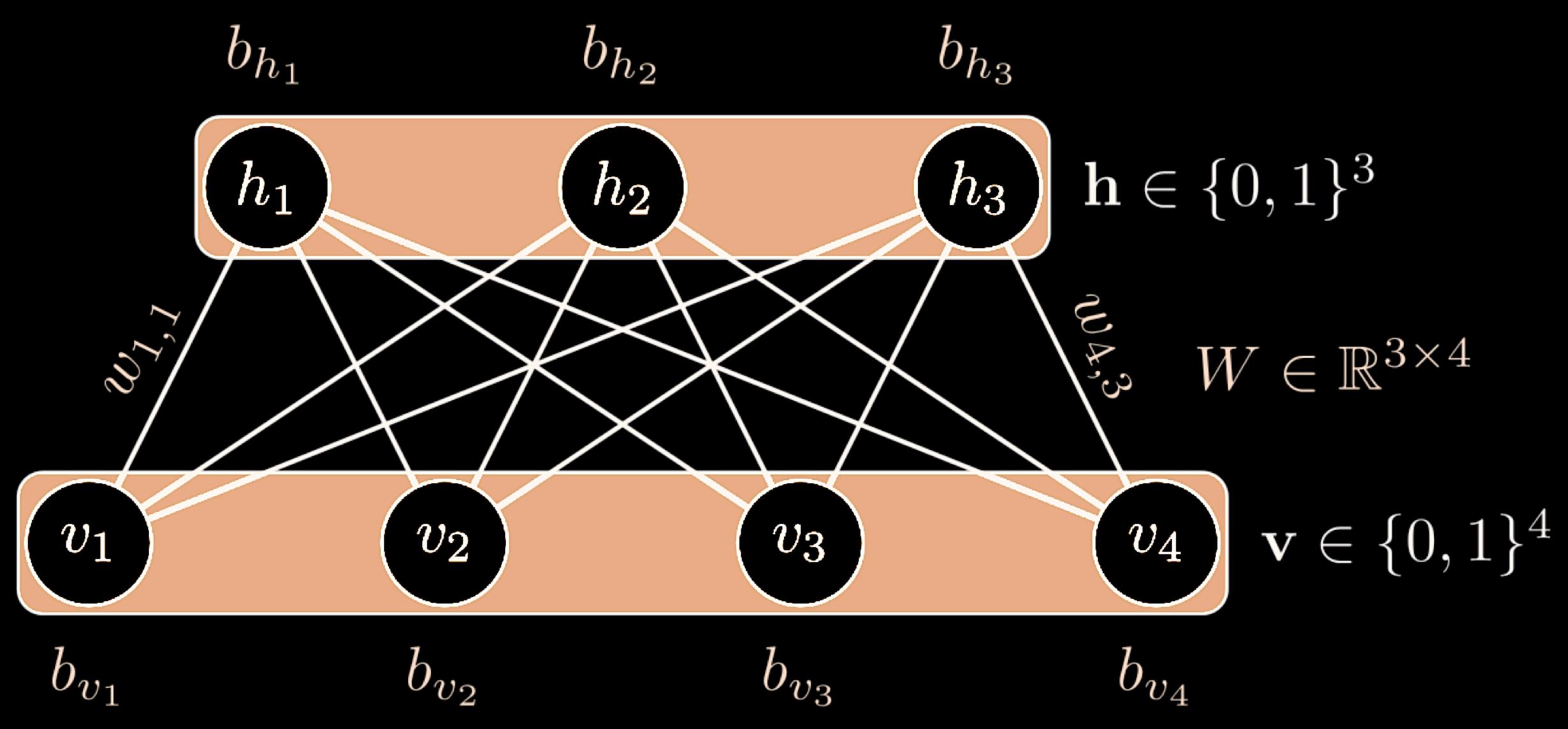
$$E([\mathbf{v} \ \mathbf{h}]) = -\mathbf{v}^T \mathbf{W} \mathbf{h} - b^T \mathbf{v} - \mathbf{c}^T \mathbf{h}$$

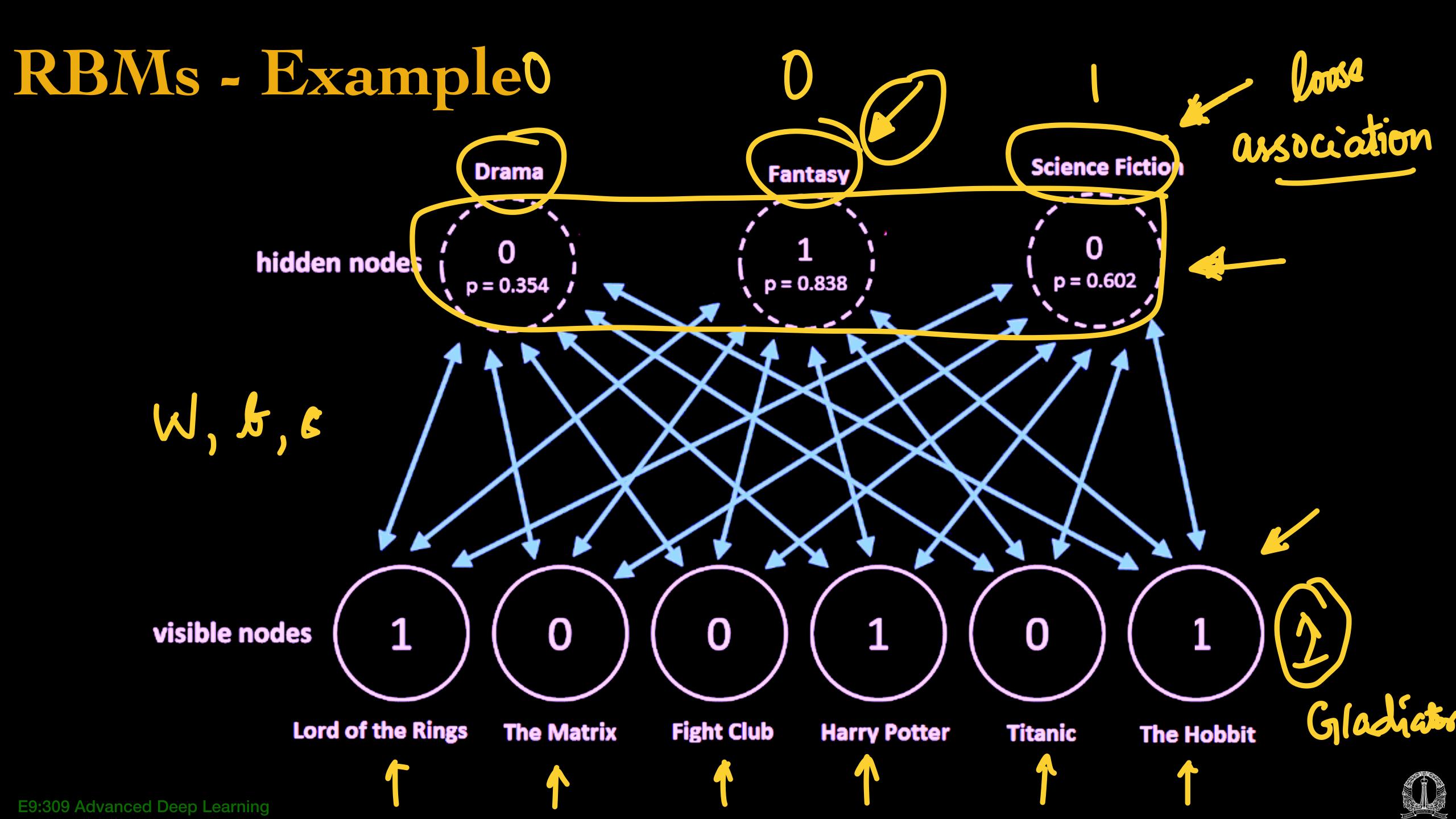
$$Z = \sum_{\mathbf{v}} \sum_{\mathbf{h}} exp(-E([\mathbf{v} \ \mathbf{h}]))$$



- The normalizing constant Z is called partition function.
 - The partition function is intractable to compute explicitly.

RBM - Example





Conditional independence

Conditional probability of hidden given visible

$$= \frac{p(\mathbf{v}, \mathbf{h})!}{p(\mathbf{v})}$$

$$= \frac{1 \exp(\mathbf{v}^T \mathbf{W} \mathbf{h} + (\mathbf{b}^T \mathbf{v}) + \mathbf{c}^T \mathbf{h})}{p(\mathbf{v})}$$

$$= \frac{1}{Z'} \exp(\mathbf{v}^T \mathbf{W} \mathbf{h} + \mathbf{c}^T \mathbf{h})$$

visible - observation

$$p(h/v) = \frac{1}{Z_{1}^{2}} \exp\{\sqrt{w_{1}h_{1} + c_{1}h_{1}}\} \times \frac{1}{Z_{2}^{2}} \exp\{\frac{\sqrt{w_{1}h_{1} + c_{1}h_{1}}}{2} \times \frac{3}{2} \times \dots \}$$

$$= \frac{nh}{T_{1}^{2}} p(\frac{h_{2}^{2}}{v})$$

$$= \frac{1}{Z_{2}^{2}} \exp\{\frac{\sqrt{w_{1}h_{1} + c_{1}h_{1}}}{2} \times \frac{3}{2} \times \dots \}$$

$$= \frac{1}{Z_{2}^{2}} \exp\{\sqrt{w_{1}h_{1} + c_{1}h_{1}}\} \times \frac{3}{2} \times \dots \}$$

$$= \frac{1}{Z_{2}^{2}} \exp\{\sqrt{w_{1}h_{1} + c_{1}h_{1}}\} \times \frac{3}{2} \times \dots \}$$

$$= \frac{1}{Z_{2}^{2}} \exp\{\sqrt{w_{1}h_{1} + c_{1}h_{1}}\} \times \frac{3}{2} \times \dots \}$$

$$= \frac{1}{Z_{2}^{2}} \exp\{\sqrt{w_{1}h_{1} + c_{1}h_{1}}\} \times \frac{3}{2} \times \dots \}$$

$$= \frac{1}{Z_{2}^{2}} \exp\{\sqrt{w_{1}h_{1} + c_{1}h_{1}}\} \times \frac{3}{2} \times \dots \}$$

$$= \frac{1}{Z_{2}^{2}} \exp\{\sqrt{w_{1}h_{1} + c_{1}h_{1}}\} \times \frac{3}{2} \times \dots \}$$

$$= \frac{1}{Z_{2}^{2}} \exp\{\sqrt{w_{1}h_{1} + c_{1}h_{1}}\} \times \frac{3}{2} \times \dots \}$$

$$= \frac{1}{Z_{2}^{2}} \exp\{\sqrt{w_{1}h_{1} + c_{1}h_{1}}\} \times \frac{3}{2} \times \dots \}$$

$$= \frac{1}{Z_{2}^{2}} \exp\{\sqrt{w_{1}h_{1} + c_{1}h_{1}}\} \times \frac{3}{2} \times \dots \}$$

$$= \frac{1}{Z_{2}^{2}} \exp\{\sqrt{w_{1}h_{1} + c_{1}h_{1}}\} \times \frac{3}{2} \times \dots \}$$

$$= \frac{1}{Z_{2}^{2}} \exp\{\sqrt{w_{1}h_{1} + c_{1}h_{1}}\} \times \frac{3}{2} \times \dots \times \frac{3}{$$

$$p(h_{j} = O(V) = \frac{1}{Z_{j}}$$

$$p(h_{j} = 1/V) + p(h_{j} = 0/V) = 1$$

$$\frac{1}{Z_{j}} \exp\{V^{T}W_{C_{j},j}J^{+}C_{j}J^{+} + \frac{1}{Z_{j}'} = 1.$$

$$Z_{j}' = 1 + \exp\{V^{T}W_{:,j}+C_{j}Z_{j}^{+}\}$$

$$P(V/h)$$

Sigmoidal activation

EConditional probability of hidden variable having a value of 1 given visible

$$p(h_{j} = 1|\mathbf{v})) = \frac{1}{Z_{j}'} exp(c_{j} + \mathbf{v}^{T}\mathbf{W}_{:,j})$$

$$= \frac{exp(c_{j} + \mathbf{v}^{T}\mathbf{W}_{:,j})}{1 + exp(c_{j} + \mathbf{v}^{T}\mathbf{W}_{:,j})}$$

$$= \sigma(\underbrace{e_{j} + \mathbf{v}^{T}\mathbf{W}_{:,j}})$$

$$= \sigma(\underbrace{e_{j} + \mathbf{v}^{T}\mathbf{W}_{:,j}})$$

$$= \sigma(\underbrace{e_{j} + \mathbf{v}^{T}\mathbf{W}_{:,j}})$$

$$= (\mathbf{z})$$

$$= (-\sigma(\mathbf{z}))$$
Note that these are probabilities.

RBM - Training

Model parameters

$$\Theta = \{ \mathbf{W}, \mathbf{b}, \mathbf{c} \}$$

 $\mathbf{x} = [\mathbf{v}^T \ \mathbf{h}^T]^T$

9 - 9 + 1 3 logp(x)

- ✓ Learnt by maximizing the log-likelihood $log(p(\mathbf{x}; \Theta))$
- ✓ Non-convex optimization.
- **Gradient** ascent based optimization

$$\frac{\partial log(p(\mathbf{x};\Theta))}{\partial \Theta} = \frac{\partial log(\tilde{p}(\mathbf{x};\Theta))}{\partial \Theta} - \frac{\partial log(Z(\Theta))}{\partial \Theta}$$

$$\frac{\partial log(Z(\Theta))}{\partial \Theta} = \frac{1}{Z} \frac{\partial Z(\Theta)}{\partial \Theta}$$

$$Z(\Theta) = \sum \tilde{p}(\mathbf{x};\Theta)$$

$$p(x; \theta) = \begin{cases} \gamma(x; \theta) \\ \gamma(x; \theta) \end{cases} \quad \chi = \begin{cases} v \\ h \end{cases}$$

$$normalized \quad un normalized$$

$$Z(\theta) = \begin{cases} \gamma(x; \theta) \\ \gamma(x; \theta) \end{cases}$$

$$Z(\theta) = \begin{cases} \gamma(x; \theta) \\ \gamma(x; \theta) \end{cases}$$

RBM - Training

$$Z(\theta) = \sum_{k} \frac{N}{p(x; \theta)}$$

For exponential families

$$\tilde{p}(\mathbf{x}; \Theta) > 0 \quad \forall \mathbf{x}$$

$$\frac{\partial log(Z(\Theta))}{\partial \Theta} = \frac{1}{Z} \sum_{\mathbf{x}} \frac{\partial \tilde{p}(\mathbf{x}; \Theta)}{\partial \Theta}$$

 $\partial\Theta$

$$\frac{\partial log(Z(\Theta))}{\partial \Theta} = \frac{1}{Z} \sum_{\mathbf{x}} \frac{\partial exp(log(\tilde{p}(\mathbf{x}; \Theta)))}{\partial \Theta}$$

$$= \underbrace{\sum_{\mathbf{x}} \sum_{\mathbf{x}} exp(log(\tilde{p}(\mathbf{x}; \Theta)))}_{\mathbf{x}} \underbrace{\partial(log(\tilde{p}(\mathbf{x}; \Theta)))}_{\partial \Theta}$$

$$\frac{\partial}{\partial \theta} \log z(\theta)$$

$$\frac{\partial}{\partial \theta} \log p(x;\theta) = \frac{\partial}{\partial \theta} \log p(x;\theta) = \frac{\partial}{\partial \theta} \log p(x;\theta)$$

$$\frac{\partial}{\partial \theta} \log p(x;\theta) = \frac{\partial}{\partial \theta} \log p(x;\theta)$$

$$\frac{\partial}{\partial \theta} \log p(x;\theta) = \frac{\partial}{\partial \theta} \log p(x;\theta)$$

$$\frac{\partial}{\partial \theta}$$

RBM - Training

$$\frac{\partial}{\partial \theta} \log Z(\theta) = E_{x \sim p(x; \theta)} \frac{\partial}{\partial \theta} \log \tilde{p}(x; \theta)$$

- Intractable to compute the exact gradient
 - Using approximations to expectations (Computationally simple)
 - Based on sampling methods.
 - * Monte-carlo Markov Chain (MCMC) based approximation
 - * Resorting to Gibbs sampling.

Next Lechnu

- -> Gübbs sampling
- U E R -> Gaussian RBM
 - -> Gaussian mixture model
 - Application
- -> Deep Belief Network

 $E[f(n)] \approx 1 \sum_{n=1}^{n} f(x_i)$ $\approx n \text{ sinv } p(n)$