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http://leap.ee.iisc.ac.in/sriram/teaching/ADL2020/

Housekeeping

® lst mini-project
v Deadlines
* Presentation on Novl9 and Nov20
* Your date allocation has been finalized
* Presentation and report template will be sent out this week.
*x Report 1 page + references and tools

* Slides 4 slides for individual project and 6 slides for 2-member.




Recap of previous class




Representation learning/data-visualization

® Learning a lower dimensional representation

® Unsupervised dimensionality reductions
v/ Based on neighboorhood preservation

®t-SNE embeddings

v/ visualization of neural network layers.




Unsupervised learning

® Developing models that do not need labels
May model the generation of data.
® May allow generation of new data samples

® Broad strategies for unsupervised learning

Clustered data

Density Curves

Based on
maximizing
likelihood

Based on
clustering
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® Energy based distribution of the data ﬁ

Boltzmann machine
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® The data can be partitioned as visible and hidden units as well
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Restricted Boltzmann machine

V
® Removing the self-connections between visible and hidden units. L ‘:Q.,
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Z=) ) exp(—E([vh]))
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® The normalizing constant Z is calleqparfifion funcfion.)

® The partition function is intractable to compute explicitly.

p(a) s mok expintly compuled.




RBM - Example




RBMs - Example0
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Conditional independence

® Conditional probability of hidden given visible

p(h|v)) = p(;(;};)i g i Tyet v, 4 nhx\

1 exp(v Wh +{b" v)+ c' h)










Sigmoidal activation

® Conditional probability of hidden variable having a value of 1 given visible
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® Note that these are proba es. — /




v Learnt by maximizing the log-likelihood | 0Qg (p(X; @))
—
v Non-convex optimization. -/é“” éﬂ +
® Gradient ascent based optimization / —
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RBM - Training yACAE Z' p C"‘/ 6)
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RBM - Training
D mgz(e) - E

®Intractable to compute the exact gradient

® Using approximations to expectations C (o mpu}gbb ha,Q»Q\(j Xl’MPQ()

v/ Based on sampling methods.
ety stuiminket~ Mot

* Monte-carlo Markov Chain (MCMC) based approximation

* Resorting to Gibbs sampling.










