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ABSTRACT

The task of language independent acoustic unit modeling in unla-
beled raw speech (zero-resource setting) has gained significant inter-
est over the recent years. The main challenge here is the extraction of
acoustic representations that elicit good similarity between the same
words or linguistic tokens spoken by different speakers and to derive
these representations in a language independent manner. In this pa-
per, we explore the use of Hidden Markov Model (HMM) based pos-
teriograms for unsupervised acoustic unit modeling. The states of
the HMM (which represent the language independent acoustic units)
are initialized using a Gaussian mixture model (GMM) - Universal
Background Model (UBM). The trained HMM is subsequently used
to generate a temporally contiguous state alignment which are then
modeled in a hybrid deep neural network (DNN) model. For the
purpose of testing, we use the frame level HMM state posteriors ob-
tained from the DNN as features for the ZeroSpeech challenge task.
The minimal pair ABX error rate is measured for both the within
and across speaker pairs. With several experiments on multiple lan-
guages in the ZeroSpeech corpus, we show that the proposed HMM
based posterior features provides significant improvements over the
baseline system using MFCC features (average relative improve-
ments of 25% for within speaker pairs and 40% for across speaker
pairs). Furthermore, the experiments where the target language is
not seen training illustrate the proposed modeling approach is capa-
ble of learning global language independent representations.

Index Terms— Unsupervised learning, Hidden Markov Model
(HMM) posteriograms, Multilingual Modeling, Zero resource
speech.

1. INTRODUCTION

Language acquisition and learning is one of the most complex tasks
perfected by humans from a very young age. While a major por-
tion of this learning is supervised and top-down, several studies sug-
gest that this learning is also facilitated by unsupervised learning
from adult directed speech (for example [1, 2]). On the other hand,
the automatic speech recognition technology primarily implements
learning mechanisms that rely on large, lexically transcribed corpora
and pronunciation dictionaries that relate the underlying signal to a
phoneme inventory for subword modeling [3]. In the recent past,
there has been renewed interest in the development of low resource
multi-lingual speech recognition system [4, 5] where supervised au-
dio data from several languages are used to derive shared represen-
tations.

This work was supported by Defense Research and Development Orga-
nization (DRDO), Government of India under the grant DRDO0689.

In a zero resource setting, there are no labeled audio resources
and the task is to develop speech representations which allow the
discovery of word units [6]. The main challenge is to construct a rep-
resentation of speech sounds which can support word identification
robustly for both within and across talkers. The measure used is the
ABX discriminability between phonemic minimal pairs (e.g. “beg”
and “bag”). Recently, several approaches have been proposed for
this task using various feature representations [7] and neural network
models [8, 9, 10]. In addition, some approaches were evaluated on
data distributed under the Babel program to address the problem of
automatic speech recognition (ASR) and keyword spotting (KWS)
under a zero acoustic resource scenario [11]. The difference mainly
would be - Most of the Babel approaches would use supervised data
in some language to generate a bottleneck representation which is
used in low resource KWS or ASR. However in our case, we do not
assume the presence of any supervised data. The zero resource sce-
nario can further be complicated when the representations need to be
learned in an language independent fashion. The ZeroSpeech 2017
corpus provides a corpus for the development of language indepen-
dent unsupervised sub-word units [12]. While the corpus contains
training data for all languages, this paper is also focused on the chal-
lenging scenario where there is no training data available from the
target language of interest (a true zero resource setting).

The use of Hidden Markov Modeling (HMM) for unsupervised
learning has been explored in [13] where the problem is formulated
as an optimization over both parameter and transcription space. A
similar approach has also been previously attempted for speaker de-
pendent speech clustering [14]. The application of Gaussian posteri-
ograms for keyword spotting using a segmental dynamic time warp-
ing (DTW) distance metric has been investigated in [15]. With sev-
eral examples of a given keyword, the authors use DTW distances to
compare the Gaussian posteriorgrams between keyword samples and
test utterances. In a recent work, the HMMs have been used along
with binarized autoencoder features for zero resource keyword spot-
ting task [16]. However, many of these methods do not address the
problem of modeling language independent sub-word units.

In this paper, we propose a novel method for unsupervised sub-
word unit modeling with a HMM paradigm using unlabeled multi-
lingual data. The speech recordings from multiple languages are
initially used to learn a Gaussian mixture model (GMM) - universal
background model (UBM) (similar to speaker/language recognition
framework [17]). The GMM provides an initial state clustering for
the HMM with the states grown out of the GMM mixture compo-
nents. The HMM is then trained to learn the distribution of unsuper-
vised language independent units. The HMM-UBM model gener-
ates frame level alignments which can further be used in a deep neu-
ral network (DNN) framework (similar to hybrid speech recognition
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Fig. 1. Block Schematic of the proposed unsupervised HMM-DNN modeling where the GMM clustering is used to initialize the HMM.

approach [18] except that the proposed approach uses unsupervised
language independent subword units instead of phonetic units). The
DNN posterior features are then used for a spoken term detection
using the minimal pair ABX classification score for within speaker
and across speaker pairs.

We perform several experiments using the ZeroSpeech 2017
corpus where the speech data from English, French and Mandarin
are used for training and development while two surprise languages
(L1,L2) are provided in evaluation. We experiment with a full train-
ing (FT) setting where all the languages are used in training and
a leave-one-out-training (LOOT) where the target language is not
used in training the background models. In these experiments, the
proposed HMM-UBM based posterior features provide significant
improvements over the baseline MFCC based feature representa-
tions. We also illustrate that the proposed model performs equally
well in the FT and LOOT conditions indicating that the model is
capable of learning global representations that are language inde-
pendent.

The rest of the paper is organized as follows. Sec. 2 describes the
proposed model for unsupervised language independent sub-word
learning. In Sec. 3, we provide the experimental setup as well as
the results obtained using the baseline approach. A detailed analysis
of the proposed approach is given in Sec. 4 which is followed by a
summary of the paper in Sec. 5.

2. UNSUPERVISED HMM-DNN HYBRID MODEL
LEARNING

The proposed approach of unsupervised HMM-DNN modeling is il-
lustrated by the block schematic shown in Fig. 1. The model learning
consists of three parts, GMM-UBM, HMM-UBM and HMM-DNN
based hybrid modeling.

2.1. GMM-UBM

The input speech features are mel frequency cepstral coefficients
(MFCCs) and are extracted from the training data consisting of mul-
tiple languages and speakers. These features are used to train a Gaus-
sian mixture model (GMM). The GMM density function is given by,

N
p(x) = 3 anN(x, 1, E0)
n=1

where x corresponds to the MFCC features of dimension D, N is
the number of mixture components and A represents the Gaussian
density function. The variables {an, p,,, 2 } represent the model
parameters of the GMM. We use the standard expectation maximiza-
tion (EM) algorithm to train the GMM with a maximum likelihood
(ML) criterion.

One of the main drawbacks of the GMM is the independence as-
sumption of the speech frames. Due to this assumption, we find that
the cluster assignments for speech frames are not consistent in time
(the assignments are not smooth over successive speech frames). In
the subsequent HMM learning, the GMM mixture components are
used as the states and temporal consistency is introduced using the
HMM transition matrix that is biased to encourage the within state
transitions.

2.2. HMM-UBM

The HMM configuration consist of N states which are ergodic in
nature (any state can follow any other state which is different from
the strict left-to-right architecture used in speech recognition). The
HMM state observation densities are GMMs with C' mixture com-
ponents per state. The model parameters of the HMM are denoted
as A = {m, A, B}, where 7 are the initial state probabilities, A is



Table 1. Details of the ZeroSpeech Training and Testing Setup [12].

Training Test
Language Relatives Outsiders Total Total
#speakers | duration/speaker | #speakers | duration/speaker | duration | #words | #files | duration(min)
English 9 165-220min 60 10min 45h 370k | 30658 1634
French 10 110-195min 18 10min 24h 220k 23765 1061
Mandarin 4 20-25min 8 10min 2h30min 20k 25383 1522
L1 10 85-150min 20 10min 25h 213k 15243 687
L2 4 37-42min 10 20min 4h 31k 7201 354

Table 2. Baseline results using MFCC features and Topline results using supervised phoneme posteriors for the ZeroSpeech corpus measured

using minimal pair ABX error rate (%).

English French Mandarin Av L1 L2 Av

Is | 10s | 120s| 1s | 10s | 120s| 1Is | 10s | 120s & Is | 10s | 120s| 1s | 10s | 120s &

Baseline within | 12.0 [ 12.1 | 12.1|12.5]12.6| 12.6 |11.5|11.5|11.5]12.0|/103| 9.3 | 94 [14.1|143|14.1|11.9
across | 23.4(23.4(23.4(25.2(25.5|252(21.3[21.3]21.3(23.3(/23.6(23.2|23.0[30.0[29.5[29.5]26.5

Topline within| 6.5 | 53 | 51 | 80 |68 | 68 | 95|42 |40 | 62|87 |71|70 |66 |46 | 34|62
across | 8.6 | 6.9 | 6.7 [10.6| 9.1 | 89 [12.0] 57 | 5.1 | 82 [[12.8[105|104 | 7.1 | 3.6 | 43 | 8.1

the state transition probability matrix of size N x N and B con-
tains the parameters of the state observation densities denoted by
{ag,, p,, 25} forn ={1,..., N}andc = {1,..,C}.

In growing the GMM into a full fledged HMM with unsuper-
vised state units, we found that the initialization plays a crucial role.
The GMM mean parameters p,, for state n are initialized with a per-
turbation of the Gaussian mean parameters representing the GMM-
UBM p,,. The covariance matrix is initialized as 3j, = X, for
¢ = 1,..,C. The weights of the GMM observation density are ini-
tially chosen equally a;, = % The increase in Gaussian mixture
components (for example, from 1 to 2, 2 to 4 etc) in each state of the
HMM is done sequentially by mixture splitting technique. This in-
volves copying the mixture component, dividing the weights of both
copies by 2, followed by perturbation of means by 0.2 standard de-
viations [19]. The transition probability matrix A is initialized in
such a way self transition probability for all the states is given a high
value (0.7) and the other transitions are distributed equally. This way
of initializing the HMM allows to grow the initial GMM-UBM into
a HMM and the assignment of higher transition probability for self
transitions encourages temporal smoothness by enabling the same
HMM state to generate successive frames of MFCC vectors.

Using the above mentioned initialization, the HMM is retrained
using the Baum-Welch algorithm [20] for several iterations to learn
all the model parameters A. After the HMM training, the best state
alignment for the speech frames is estimated and this is used in hy-
brid modeling (similar to hybrid modeling in standard ASR [18]).

2.3. DNN Model Learning

The DNN model is learned using the MFCC features with the state
alignments obtained from the HMM. For instance, in the model
"HMM-128-DNN 2 mix-GMM?” reported in Table 3 , the DNN is
trained on state alignments from HMM-128 2 mix-GMM. In all the
DNN models, the number of target nodes is 128 corresponding to
the number of HMM states. The target units in the DNN model
are unsupervised HMM states (unlike the force aligned HMM states
obtained using transcripts in an ASR system). The DNN modeling
of HMM -states improves the estimation of state posterior probabili-

ties (similar to the supervised Hybrid modeling in ASR) [18]. This
also improves the ABX performance as seen in Table 3. Given the
unsupervised nature of the targets, we found that the learning of
the DNN parameters suffers from convergence issues when all the
speech frames are used in the training. In order to address this issue,
we propose a frame selection method for the DNN model learning.

The main objective of the frame selection is to reject the speech
frames that do not align well with any of the unsupervised HMM
states. Thus, an estimate of the confidence of the frame alignment
with the HMM states is needed. For this purpose, we compute the
posterior probabilities of HMM states denoted as vy (x) = p(n|x)
using the trained HMM-UBM A. This can be efficiently estimated
using the forward-backward algorithm [20]. Then, a N dimensional
vector of state posterior probabilities is constructed for every frame
[v1(x), .., 7~ (x)] and the entropy of the posterior vector as well as
the maximum value of this vector are computed. A low entropy value
as well as a high value for the maximum state posterior probability
can indicate a high confidence in the HMM state alignment. We use
pre-set thresholds on the entropy as well as the maximum posterior
value and the speech frames which have a lower entropy and higher
maximum value (compared to the respective threshold values) are
selected for the DNN training. This way of frame selection allows
the DNN model to learn efficiently and we found that the frame se-
lection helps in avoiding convergence issues in the DNN training
using the unsupervised HMM state targets. In our setup, about 70 %
of the training data frames were selected for the DNN training using
the above mentioned criterion.

We train a 3 layer feed forward DNN with a rectified linear unit
(ReLU) activation. A cross entropy cost function is used and soft-
max output layer non-linearity is applied. The model is learned using
stochastic gradient descent. We use the Theano package [21] for the
DNN model training. For testing, the trained DNN model is used
to generate posteriors of HMM states given the input MFCC fea-
ture vector. The posterior features are input to the DTW based min-
imal pair ABX scoring using a Kullbeck-Leibler (KL) divergence
distance metric [12].



Table 3. Performance in terms of minimal pair ABX error rate (%) for different model configurations in the FT setup.

System English French Mandarin Ave.

Is 10s | 120s 1s 10s | 120s Is 10s | 120s
within | 9.0 8.2 8.1 127 | 11.6 | 11.6 | 13.7 | 124 | 122 | 111
GMM-128 across | 133 | 124 | 124 | 179 | 16.7 | 16.6 | 149 | 139 | 139 | 147
GMM-256 within | 8.2 7.3 7.1 119 | 109 | 10.8 | 124 | 11.5 | 114 | 102
across | 12.8 | 11.8 | 11.7 | 17.2 | 157 | 156 | 14.0 | 13.1 | 13.1 | 139
HMM-128 within | 9.1 8.0 80 | 125 | 114 | 114 | 142 | 12.8 | 127 | 11.1
1 mix-GMM across | 132 | 124 | 123 | 17.1 | 158 | 157 | 15.6 | 143 | 143 | 145
HMM-128 within | 8.9 8.1 80 | 124 | 114 | 112 | 140 | 12.6 | 124 | 11.0
2 mix-GMM across | 129 | 12.1 | 12.0 | 16.7 | 156 | 155 | 153 | 143 | 142 | 143
HMM-128 within | 8.7 8.0 79 | 11.7 | 109 | 11.1 | 139 | 12.6 | 125 | 10.8
4 mix-GMM across | 12.7 | 11.8 | 11.8 | 16.5 | 153 | 154 | 152 | 14.1 | 141 | 141
HMM-128 within | 8.6 7.8 7.8 11.7 | 109 | 109 | 134 | 127 | 12.7 | 10.7
8 mix--GMM across | 12.5 | 11.7 | 11.7 | 163 | 149 | 149 | 150 | 14.1 | 140 | 13.9
HMM-128-DNN | within | 7.9 7.0 69 | 106 | 9.2 92 | 109 | 9.6 9.5 9.0
2 mix-GMM across | 132 | 119 | 11.8 | 17.3 | 157 | 154 | 13.1 | 123 | 124 | 13.7
HMM-128-DNN | within | 7.9 7.0 7.0 | 106 | 9.2 92 | 10.7 | 95 9.3 8.9
4 mix-GMM across | 13.3 | 12.1 | 119 | 173 | 159 | 156 | 13.1 | 123 | 123 | 13.7
HMM-128-DNN | within | 7.9 7.0 7.0 | 106 | 9.2 93 | 105 | 94 9.3 8.9
8 mix-GMM across | 133 | 12.0 | 119 | 17.3 | 159 | 156 | 13.0 | 12.1 | 12.2 | 13.7

3. BASELINE EXPERIMENTAL SETUP

3.1. Data

The development data of ZeroSpeech corpus [12] comprises of three
languages (English, French and Mandarin) as shown in Table 1. In
order to simulate natural language learning conditions in infants, the
training data is split into Relatives and Outsiders, where Relatives
are small number of speakers with more speech data and Outsiders
consist of more number of speakers with less duration per speaker.
The development test set includes speech recordings of different du-
rations (1s, 10s and 2min) from a large number of speakers that are
different from the training speakers. The effect of duration may fac-
tor in some adaptation and normalization techniques that use the
whole recording duration (for example, the topline results). The
evaluation data includes two surprise languages (L1 and L2).

The features used in all the models are the mel-frequency cep-
stral coefficients (MFCCs) extracted using 25 ms windows which
are shifted every 10 ms. The 13 dimensional coefficients are ap-
pended with deltas and acceleration coefficients to provide 39 di-
mensional features. We perform a speech activity detection using
an adaptive energy based thresholding [22]. The speech regions are
then normalized at the utterance level using cepstral mean and vari-
ance normalization (CMVN). A global CMVN is also applied across
the recordings in the training data before model learning.

3.2. Evaluation

The performance of the proposed features are evaluated using mini-
mal pair ABX discriminability scoring [6]. Here, A, B and X repre-
sent similar sounding phone triplets where linguistically either A=X
or B=X and A! =B. The triplet B is same as A except for the cen-
ter phoneme in the triplet (for example, A="b-a-g”, B="b-e-g”,
X="b-a-g”). The pairwise distance between (A,X) and (B,X) are
measured and any pair for which the distance between linguistically
same triplet is more than the distance between linguistically differ-
ent triplet is counted as error. The error rate (measured as percentage

of erroneous pairs in the test data) is used as an evaluation metric.
The distance measure is based on the DTW method with frame-wise
distance computation using cosine distance (for real valued features
like MFCC vectors) or Kullbeck-Leibler (KL) distance (for posterior
features). The evaluation is done on 2 conditions, when all of ABX
belongs to the same speaker, which is termed as within speaker and
when X is from a different speaker which is termed as across speaker
condition. The triplets AB always come from the same speaker.

The baseline results makes use of 13 dimensional MFCC fea-
tures along with delta and acceleration and the topline system is a
supervised phone recognition engine implemented in Kaldi toolkit
[23]. These results are tabulated in Table 2.

4. PROPOSED SYSTEM RESULTS AND ANALYSIS

The performance of the proposed models are measured in two con-
ditions, full-training (where all the five languages consisting of three
development languages and two surprise languages are used in train-
ing) denoted as FT and leave-one-out-training where the target lan-
guage is not used in model training denoted as LOOT. For LOOT
conditions, only two development languages are used in the train-
ing of the models and the target language is the unseen development
language.

4.1. Full Training (FT)

The results for the different modeling methods described in Sec. 2
is given in Table 3. The GMM-128 system consists of N = 128
component GMM and the posteriograms from the GMM are used
in the ABX scoring using the KL distance measure. As seen here,
the GMM model provides significant improvements over the base-
line features particularly for the across speaker conditions (average
relative improvements of 37 % in the across speaker conditions).
The HMM-UBM which is initialized using the GMM also pro-
vides state level posterior features which can be used in the ABX
scoring. This system provides moderate gains over the GMM sys-
tem. We experiment with different number of mixture components



Table 4. Performance in terms of minimal pair ABX error rate (%) in LOOT condition for different development languages.

English French Mandarin

LOOT Language s | 10s | 120s | 1Is | 10s | 120s | 1s | 10s | 120s
English within 7.8 6.9 6.9 10.2 8.6 8.6 10.1 9.0 9.0
across | 13.1 11.8 11.7 16.6 15.2 14.9 12.4 11.7 11.7

French within 7.6 6.8 6.8 10.4 9.0 9.1 10.4 9.4 9.3
across 13.2 12.0 11.8 | 17.1 157 | 154 12.8 12.2 12.1

Mandarin within 7.8 6.9 6.9 10.5 9.1 9.0 10.4 94 9.2
across 13.3 12.0 11.8 17.3 15.7 15.4 13.0 | 12.3 12.3

Freq. (kHz)

Clust. Ind.

(e)

Clust. Ind.

Frame

(b)
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Fig. 2. ”’Plots illustrating the representations for word “b-iy-ax” from two speakers (S1,52) in the development data. (a) Mel spectrogram for
S1, (b) Mel spectogram for S2, (c) HMM-DNN posteriogram using FT for S1, (d) HMM-DNN posteriogram using FT for S2, (¢) HMM-DNN
posteriogram using LOOT for S1, (f) HMM-DNN posteriogram using LOOT for S2.

Table 5. Result of the HMM-DNN system in FT mode submitted to
the ZeroSpeech 2017 challenge on the surprise languages.

L1 2 .

Ts [ 10s [ 120s | 1s | 10s [ 120s | ‘W&
within | 7.6 | 64 | 62 |11.6] 109|107 | 8.9
across | 15.7 | 13.7 | 13.5 [ 175 ] 16.1 | 16.1 | 15.4

(C = 2,4,8) for the HMM state observation density. The addi-
tion of DNN based hybrid modeling further improves the perfor-
mance. In particular, significant improvements are observed in the
within speaker condition using the HMM-DNN framework. The
best overall result is obtained for the HMM-DNN configuration with
N = 128 and C' = 4 where we observe average relative improve-
ments (over the baseline) of about 25% for within speaker conditions
and 41% for the across speaker conditions.

4.2. Leave One Out Training (LOOT)

In this scenario, the models are trained using two out of the three
development languages (English, French and Mandarin) while the
third language is used as the target language for testing. This rep-
resents the most challenging “zero” resource setting when there is
no training data available in the language of interest. This frame-
work also allows us to investigate the language independent nature
of the speech representations generated by the proposed modeling
framework.

The results for the LOOT condition are reported in Table 4.
Since the LOOT setup requires the training of a new system for each
testing language, we only experiment with the HMM-DNN system.
The shaded results along the diagonal in Table 4 report the results
for the language not seen in training. For example, the first row of
the table reports the results when the HMM-DNN model is trained
using French and Mandarin data. In this case, English represents the
language not seen in training.



As seen in Table 4, the results along the diagonal are quite com-
parable to the FT results (using 5 training languages) reported in the
last row of Table 3. The other results presented in the non-diagonal
entries of Table 4 are indicative of the change in performance (if
any) due to a particular choice of the languages used in training.
This setup of LOOT shows that the proposed approach modeling
using HMM-DNN posteriograms provides robust representations of
language independent units for the underlying speech signal. While
the baseline MFCC features are also language independent, the pro-
posed approach yields significant improvements over the MFCC fea-
tures in the spoken term discovery of an unseen language (measured
using the minimal pair ABX error rate). It is also important to note
the proposed representations approach the supervised language rep-
resentations used in the topline results.

The significance of the results in Table 4 is further highlighted by
analyzing the posteriogram representations of the same word from
two different speakers. This is illustrated in Fig. 2 where we plot the
posteriogram representations (using 128 HMM-DNN target classes)
for the word “b-iy-ax” spoken by two speakers. Here, two sets of
posteriograms are compared - generated using FT setup as well as
the LOOT setup. A comparison with the baseline mel spectrogram is
also provided for reference. As seen here, the HMM-DNN provides
consistent representations for linguistically similar word pairs from
two different speakers irrespective of whether the target language is
present in the training or not.

In addition, the HMM-DNN representations from the FT mode
are also used in the two surprise languages provides in the Ze-
roSpeech 2017 corpus. These results are shown in Table 5. These
results show similar improvements observed in Table 3 for the de-
velopment languages. The performance of the HMM-DNN system
proposed in this paper is advanced using system combinations with
other deep learning methods and these results are reported in [24].

5. SUMMARY

We have proposed a novel approach to unsupervised language inde-
pendent acoustic modeling. The proposed model utilizes a GMM
based clustering which is followed by a HMM. The mapping of the
speech signal to HMM states, which represent unsupervised sub-
word units, can be learned from the input features directly using a
DNN model. We show that DNN based modeling of acoustic units
from raw speech data is quite capable of discovering linguistically
similar words from within and across speaker conditions when the
target language is seen in training.

Using a set of leave-one-out-training experiments, we also show
that the proposed approach is robust to the lack of any training data
from the target language. In particular, the LOOT condition provides
comparable results to the FT condition which highlights the useful-
ness of the HMM posteriograms in language independent acoustic
subword modeling.

The performance gap between the within speaker and across
speaker conditions indicate that there is further room for improve-
ment using speaker normalization and adaptation methods. In fu-
ture, we plan to investigate these research directions for improving
the robustness of the model to speaker variabilities.
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