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ABSTRACT

The end-to-end (E2E) approach to automatic speech recognition
(ASR) is a simplified and an elegant approach where a single deep
neural network model directly converts the acoustic feature sequence
to the text sequence. The current approach to end-to-end ASR uses
the neural network model (trained with sequence loss) along with an
external character/word based language model (LM) in a decoding
pass to output the text sequence. In this work, we propose a new
objective function for end-to-end ASR training where the LM score
is explicitly introduced in the attention model loss function with-
out any additional training parameters. In this manner, the neural
network is made LM aware and this simplifies the model training
process. We also propose to incorporate an attention based sequence
summary feature in the ASR model which allows the system to be
speaker aware. With several E2E ASR experiments on TED-LIUM,
WSJ and Librispeech datasets, we show that the proposed speaker
and LM aware training improves the ASR performance significantly
over the state-of-art E2E approaches. We achieve the best published
results reported for WSJ dataset.

Index Terms— End-to-end speech recognition, Language mod-
eling, Speaker adaptation.

1. INTRODUCTION

The conventional modular approach to automatic speech recognition
(ASR) consists of several modules such as acoustic model, lexical
model and language model. The end-to-end (E2E) ASR models have
been shown to overcome limitations of the conventional approach
using a single deep recurrent neural network model which could di-
rectly be trained on words [1, 2, 3], sub-words [4, 5, 6] or character
targets thereby eliminating the need for the hand-crafted pronunci-
ation dictionary. The earliest approach to E2E ASR used the con-
nectionist temporal classification (CTC) [7, 8] cost to optimize the
recurrent neural network model (RNN). The CTC based modeling
allows the network to be trained for speech recognition task with-
out the need of any prior alignment between the speech and text se-
quence but makes the strong conditional independence assumptions
between the frame level posterior probability estimates.

The attention based models proposed recently [9, 10, 11] does
not make any conditional independence assumption and they attempt
to learn an implicit language model using an encoder-decoder at-
tention framework. This model however suffers from the problem
of irregular alignments due to ill constrained attention mechanism
and also suffers from premature end-of-sentence issues. In order
to combine the advantages of the two models (CTC and attention),
Watanabe et al. proposed a hybrid CTC-Attention model [12]. The
hybrid model presents a combination of both the CTC and attention
approaches with a shared encoder. The output of the E2E models in
the form of posterior probabilities are processed using a beam-search

decoding process. This model has been shown to outperform both
CTC and attention based models and has provided the state-of-art
E2E results for many ASR tasks [13].

The E2E ASR models, being sequence-to-sequence (Seq2Seq),
are limited by requirement of parallel training data comprising of
both speech and transcripts. The use of an external language model
(LM) can effectively leverage large text data and is extensively used
[11, 14, 15, 16, 17] to improve the E2E ASR performance by inte-
grating it either during training or in the decoding phase. Multi-level
LM integration [18] involving both the character-based RNN-LM
and word-based RNN-LM have also been shown to be effective in
improving the end-to-end ASR performance. In many cases, the in-
tegration of LM in the E2E ASR involves training additional param-
eters [15].

In this paper, we propose a novel LM-aware objective function
for training the hybrid CTC-Attention ASR model. We motivate the
approach using a mathematical formulation where the modified loss
function allows the ASR model to explicitly model only the acous-
tics while the implicit character level LM is provided by an external
LM. The proposed approach yields significant improvements over
the hybrid CTC-Attention E2E model.

Speaker adaptation for E2E ASR [19] based on sequence sum-
mary network [20] appends an auxiliary feature which is learned
during the training keeping the E2E ASR pipeline simple. In our
work, we also propose an improvement over the sequence summary
network by replacing the average by an attention layer. We show that
the attention network is essentially capturing the speaker information
and hence we refer to this approach as the speaker-aware training.

The rest of the paper is organized as follows. The prior work
on LM integration and auxiliary feature adaptation for E2E ASR is
highlighted in Section 2. The proposed LM-aware objective func-
tion for hybrid CTC-Attention ASR model training is outlined in
Section 3. The proposed speaker-aware training is described in Sec-
tion 4 The ASR experiments and results are reported in Section 5.
The paper concludes with a summary in Section 6.

2. RELATED PRIOR WORK

Early work on integrating LM, also known as shallow fusion [14],
combines the log-probability score of Seq2Seq model and LM in
a linear way during beam search decoding with a fixed LM fusion
weight. A deep fusion approach [11] attempts to fuse hidden states
of pre-trained external RNN-LM and pre-trained ASR with the help
of gating mechanism and trains the fused model further on the ASR
training data. A recent method, called cold fusion [15], overcomes
the limitation of deep fusion by using a pre-trained external LM dur-
ing ASR training. The authors also suggest that the learning of an
implicit LM is demanding on the decoder network in the attention
model and also makes it difficult to fuse an external LM of different
domain. Toshniwal et al. [16] compares different LM fusion ap-



proaches for E2E ASR and shows that the simple approach of shal-
low fusion performs the best on several E2E ASR tasks. Hori et
al. [18] uses multiple LM during shallow fusion where the character
LM is used to score until the word boundary comes followed by a re-
scoring with the word LM. Hori et al. [17] further omits the need of
the character LM and uses only the word LM to provide look-ahead
probability at the character level and achieves the state-of-art results
for several english E2E ASR tasks.

Motivated by a prior work on LM integration in neural ma-
chine translation (NMT) [21], we propose a new LM-aware train-
ing approach for E2E ASR model. The proposed LM-aware training
simplifies the role of the decoder in the attention model as the lan-
guage modeling objective is performed by an external LM. We show
that our proposed approach increases the efficiency of the atten-
tion based encoder-decoder model and achieves faster convergence.
During testing, the proposed approach achieves up to 9% in rela-
tive WER improvement over the state-of-art hybrid CTC-Attention
model combined with the look-ahead word LM during decoding.
[17].

For speaker adaptation in the conventional hidden Markov
model - deep neural network (DNN) based ASR, several methods
have been investigated like feature transformation based approaches
[22, 23, 24] and i-vector feature augmentation methods [25, 26].
For E2E ASR, Delcroix et al. [19] recently proposed to use the
sequence summary network [20]. The sequence summary network
uses a feed-forward neural network and its output is averaged to a
single vector. However, for tasks like speaker verification, it has
been shown that sequence summary based on attention improves
over simple statistical average [27], [28].

In our work, we propose to use a sequence summary network
with an attention layer in the E2E ASR model. We refer to this
approach as speaker-aware E2E model. In our ASR experiments,
the speaker-aware training shows relative improvements of up to 5%
over the simple average approach [19] and up to 10% over the the
state-of-art hybrid CTC-Attention model .

3. LM AWARE E2E MODEL

We describe the E2E model using hybrid CTC-Attention framework
in Section 3.1 and the existing LM fusion approaches in Section 3.2.
This is followed by description of the proposed LM aware training
in Section 3.3.

3.1. Hybrid CTC-Attention Architecture

For a given word sequence W and corresponding speech feature se-
quence X, the aim of automatic speech recogniton (ASR) is to esti-
mate the posterior distribution P (W|X).

3.1.1. Attention Model

Let C be a sequence of characters/wordpieces of length L corre-
sponding to a word sequence W. The attention model directly esti-
mates P (C|X) as follows:

P (C|X) , Patt(C|X) =

L∏
l=1

P (cl|c1, ..., cl−1,X) (1)

To obtain P (cl|c1, ..., cl−1,X), we have an encoder network, an at-
tention mechanism and a decoder network.
Encoder network consists of stacked Bi-LSTM layers which con-
verts an input speech feature sequence X to a high-level feature se-

quence {ht}
T
S
t=1. We can describe encoder network as follows:

ht = Encoder(X) , BLSTMt(X) ∀t ∈
{
1, 2, 3, ...

T

S

}
,

where, T is the length of the input speech feature sequence and S is
the sub-sampling factor used in the encoder network.
Attention Mechanism is location-aware [9] and generates a context
vector rl which is a function of the decoder hidden state qdec

l−1 and

the high-level feature sequence {ht}
T
S
t=1 as follows:

rl = Attention({ht}
T
S
t=1, q

dec
l−1) ∀l ∈ {1, 2, 3, ...L}

Decoder network consists of stacked one or more uni-directional
LSTM layers and is a function of the previous output cl−1 during
prediction or previous ground truth character c∗l−1 during training,
context vector rl and the hidden state qdec

l−1 as follows:

P (cl|c1, ., cl−1,X) , SM(Wdqdec
l + bd), (2)

qdec
l = LSTMatt

l (rl, qdec
l−1, cl−1) ∀l ∈ {1, 2, 3, ...L} , (3)

where, SM represents the softmax operator and Wd, bd represents
the learnable linear layer parameters. The decoder LSTM uses pre-
vious character as an embedding vector learned during training.

3.1.2. Probabilistic Interpretation of Attention Model

We interpret the probability distribution learned by the attention
model. Left-hand side expression of Equation (2) can be simplified
as follows:

P (cl|c1, ., cl−1,X) =
P (c1, ., cl−1, cl|X)

P (c1, ., cl−1|X)

= P (cl|c1, ., cl−1)
P (X|c1, ., cl−1, cl)

P (X|c1, ., cl−1)
, (4)

where, P (cl|c1, ., cl−1) represents the implicit LM learning aspect
and P (X|c1,.,cl−1,cl)

P (X|c1,.,cl−1)
represents how more likely the source speech

feature sequence becomes when a particular token cl is revealed.
Right-hand side expression of Equation (2) could be simplified as
follows:

SM(Wdqdec
l + bd) ∝ exp(Wdqdec

l + bd) (5)
From Equations (4) and (5),

exp(Wdqdec
l + bd) ∝ P (cl|c1, ., cl−1){

→ implicit LM

P (X|c1, ., cl−1, cl)

P (X|c1, ., cl−1)
(6)

From Equation (6), it is observed that the attention model also learns
an implicit LM during the ASR training [10].

3.1.3. CTC Model

The connectionist temporal classification (CTC) is an objective func-
tion that allows the RNN/LSTM network to be trained for a sequence
transcription task without the need of any prior alignment between
the input and target sequences. The output layer emits probability for
each of the character/wordpiece and an extra unit (referred to as the
blank) which corresponds to a null emission. More details about the
formulation of CTC likelihood Pctc(C|X) in the context of hybrid
CTC-Attention architecture is given in Watanabe et. al [12].

3.1.4. Multiobjective Learning

The attention and CTC models share the encoder network and
the hybrid model tries to maximize the linear combination of log-



likelihood of both the models as follows:
Ljoint = λ log(Pctc(C|X)) + (1− λ) log(Patt(C|X)),

where, λ is a hyperparameter.

3.1.5. One Pass Joint Decoding

The hybrid model uses the beam search decoding and for each partial
hypothesis, a score is calculated as a linear combination of scores
from attention and CTC models as follows:

αrmp = γαctc(p,X) + (1− γ)αatt(p,X), (7)

αctc(p,X) , log(Pctc(p|X)), αatt(p,X) , log(Patt(p|X)),

where, p represents the partial hypothesis and γ is the CTC weight
during decoding.

3.2. LM Fusion Approaches

3.2.1. Shallow Fusion

In shallow fusion [14], the LM is fused only during inference time
to guide beam-search. Equation (7) which calculates the score of
partial hypothesis is modified as follows:
αp = γαctc(p,X) + (1− γ)αatt(p,X) + β log(PLM(p)), (8)

where β is the LM fusion weight. The shallow fusion has been
shown to outperform other fusion approaches [16] on several bench-
marks.

3.2.2. Shallow Fusion with Look Ahead Word LM

Decoding with the word LM is limited by the presence of out-of-
vocabulary words but can effectively model long sequences of char-
acters. Hori et. al [17] proposes look-ahead word-based RNN-LM
which enables to predict probability of the next character using a
look-ahead mechanism over the word probabilities. Equation (7)
which calculates the score of partial hypothesis is modified as fol-
lows:
αp = γαctc(p,X) + (1− γ)αatt(p,X) + β log(P la

LM(p)), (9)
where, log(P la

LM(p)) represents the look-ahead external word-based
RNN-LM score. Detailed formulation of look-ahead mechanism is
given in [17].

3.2.3. Cold Fusion

Cold Fusion [15] enables learning of contribution from the pre-
trained LM during ASR training with the help of the gating mech-
anism. The authors also suggests that the early training integration
of the pre-trained LM with the ASR training enables the decoder
to focus its capacity on ASR learning without worrying about the
language modelling aspect. Cold fusion works as follows:

hLM
l = DNN(sLM

l ) (10)

gl = σ(Wg[qdec
l ; hLM

l ] + bg)

qcold
l = [qdec

l ; glh
LM
l ]

Equation (2) is modified as follows:
P (cl|c1, ., cl−1,X) , SM(Wcqcold

l + bc),

where, sLM
l represents the soft-max output of RNN-LM, DNN can

be of any number of layers and gl represents the gating mechanism
for cold fusion. Wg, bg, Wc and bc are the linear layer parame-
ters learned during ASR training. The soft-max output sLM

l is used
because the distribution of RNN-LM hidden state qLM

l can vary sig-
nificantly across different datasets and LM.
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3.3. Proposed LM-aware Training

The proposed work is motivated from pre-norm method proposed in
NMT by Stahlberg et. al [21], which greatly simplifies the fusion
architecture by removing the need of any gating mechanism. Fig-
ure 1 illustrates the LM-aware training block diagram for attention
model. LM-aware training also uses a pre-trained external LM for
ASR training and only modifies the training of attention model.

3.3.1. Training

The attention model under LM-aware training estimates P (C|X) as
follows:

P (C|X) , PLMaware(C|X) =

L∏
l=1

P (cl|c1, ., cl−1,X)

Equation (2) is modified as:
P (cl|c1, ., cl−1,X) , SM(Wdqdec

l + bd + LMscore), (11)

LMscore = log(PLM(cl|c1, ., cl−1)),

where, log(PLM(cl|c1, ., cl−1)) is the log-probability score obtained
from the pre-trained RNN-LM. Multi-objective likelihood is modi-
fied as follows:

Ljoint = λ log(PLMaware(C|X)) + (1− λ) log(Pctc(C|X)),

It is observed that the number of learnable parameters in LM-aware
training does not increase unlike in the cold fusion method.
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Fig. 3. tSNE plot of the auxiliary features obtained from the attention
based network for the utterances of the TED-LIUM corpus.

3.3.2. Probabilistic Interpretation of LM-aware Training

We interpret the probability distribution being learned by the atten-
tion model under LM-aware training. The right-hand side expression
of Equation (11) could be simplified as follows:

SM(Wdqdec
l + bd + log(PLM(cl|c1, ., cl−1)))

∝ exp(Wdqdec
l + bd) exp(logPLM(cl|c1, ., cl−1))

∝ PLM(cl|c1, ., cl−1) exp(Wdqdec
l + bd) (12)

From Equations (4), (11) and (12),
PLM(cl|c1, ., cl−1){

→ Pretrained external LM

exp(Wdqdec
l + bd)

∝ P (cl|c1, ., cl−1){

→ Implicit LM

P (X|c1, ., cl−1, cl)

P (X|c1, ., cl−1)
(13)

Equation (13) could be further approximated as follows:

exp(Wdqdec
l + bd) ∝

P (X|c1, ., cl−1, cl)

P (X|c1, ., cl−1)
(14)

Comparing equations (6) and (14), we observe that, under LM-aware
training, the decoder network of attention model focuses its entire
capacity for conditioning on the source speech sequence and the im-
plicit LM is modeled with the help of the pre-trained external LM.

3.3.3. Decoding with Look Ahead Word LM

Shallow fusion in equation (9), which calculates the score of partial
hypothesis p of length N , is modified as follows:
αp = γαctc(p,X) + (1− γ)αLMaware(p,X) + β log(P la

LM(p)),
(15)

where, log(P la
LM(p)) represents the look-ahead external word-based

RNN-LM score and
αLMaware(p,X) , log(PLMaware(p|X)),

PLMaware(C|X) =

N∏
n=1

P (pn|p1, ., pn−1,X),

P (pn|p1, ., pn−1,X) , SM(Wdqdec
l + bd + ζLMscore),

LMscore = log(P c
LM(pn|p1, ., pn−1)),

where, log(P c
LM(pn|p1, ., pn−1)) represents the external character-

based RNN-LM score. ζ and β represents the tunable scaling factor
for character LM score and look-ahead word LM score respectively.
These parameters enable us to control the contribution from both the
LMs during the decoding stage.

4. SPEAKER AWARE TRAINING

We describe the existing sequence summary based auxiliary feature
adaptation in Section 4.1. This is followed by description of the
proposed attention based feature adaptation in Section 4.2.

4.1. Sequence Summary Network

Delcroix et. al [19] proposed to augment an auxiliary feature as a
bias term to the input speech feature just before the encoder in the
hybrid CTC-Attention model. The modified input feature sequence
is given as follows:

x
′
t = xt + Ps ∀t ∈ {1, 2, 3, ...T} , (16)

where, xt represents the speech feature for tth frame, T is the length
of the speech feature sequence, P is the projection matrix and s rep-
resents the utterance level auxiliary feature learned with the help of
the sequence summary network [20]. For each utterance, the se-
quence summary network averages over the DNN output of the cor-
responding speech feature sequence to compute its auxiliary feature
as follows:

yt = DNN(xt) ∀t ∈ {1, 2, 3, ...T} ,

s = 1

T

T∑
t=1

yt ∀t ∈ {1, 2, 3, ...T} (17)

4.2. Proposed Attention for Auxiliary Feature Adaptation

In Figure 2, we show the block schematic of attention based auxil-
iary feature adaptation (referred to as speaker aware training). Un-
like averaging, attention models [29] have been shown to learn a
task-specific representation for a given sequence for several Seq2Seq
tasks in NLP and in speaker recognition [27, 28]. In our work, we
propose to replace the average in the sequence summary network
given by Equation (17) by an additive attention layer as follows:

et = g> tanh(Wyt + b) ∀t ∈ {1, 2, 3, ...T}
where, et represents the attention score for DNN output of input
feature at time t and W, b, g represents the learnable attention pa-
rameters. The attention weights are given by,

ct =
exp(et)∑T

k=1 exp(ek)
,

where, ct represents the attention weight after normalization. Aux-
iliary feature s is now computed as follows:

s =
T∑

t=1

ctyt

For the TED-LIUM dataset (dataset details described in experiments
section), we plot the learned auxiliary feature s for 6 different speak-
ers in Figure 3. In this figure, we plot the first two dimensions of t-
distributed stochastic neighborhood embedding (tSNE) for the atten-
tion based embedding s. From the plot, we observe that our attention
network effectively learns to capture the speaker information where
similar speakers are clustered together in the embedding space. We



Table 1. Description about the datasets being used in our experi-
ments

Dataset Train Dev Test

WSJ [12] 81 h 1.1 h 0.7 h
(283 spk.) (10 spk.) (8 spk.)

TED-LIUM [30] 210 h 1.6 h 2.6 h
(5079 talks) (8 spk.) (10 spk.)

LIBRISPEECH clean [31] 463.7 h 5.4 h 5.4 h
(1172 spk.) (40 spk.) (40 spk.)

LIBRISPEECH other [31] 496.7 h 5.3 h 5.1 h
(1166 spk.) (33 spk.) (33 spk.)

hypothesize that using these embeddings would enable the end-to-
end model to be more robust to speaker variations in speech

5. RESULTS AND DISCUSSION

All our experiments are performed with the End-to-End Speech Pro-
cessing Toolkit (ESPNET) [13]. We have considered Hybrid CTC-
Attention model training combined with the look-ahead word LM
fusion as a baseline for our setup. The details about the datasets in
the training, development and test conditions are described in Table
1. For all the datasets, we have used the 80-dimensional mel scale
filterbank feature combined with 3 pitch features as our input fea-
ture. The external character LM network is a 2 layer LSTM network
with 650 units in each layer and the external word LM is a 1 layer
LSTM network with 1024 units. For cold fusion, the DNN used is
a single affine layer followed by a tanh non-linearity as originally
proposed [15]. The number of units in the DNN are same as the
number of units in decoder. The sequence summary network is a 2
layer DNN with 1024 units in each layer and followed by the aver-
age and a projection layer. For the proposed speaker aware training,
the attention based speaker adaptation replaces average using a 2048
dimensional additive attention layer.

5.1. TED-LIUM

The TED-LIUM [30] corpus (release 2) was made from audio talks
and their transcriptions available on the TED website. The encoder
used is a 6-layer VGG-BLSTMP network with 320 cells in each
layer and direction and 320 units in the projection layer. The atten-
tion used is location attention and the decoder network is a 1-layer
LSTM network with 300 cells. During training, CTC-weight λ is
fixed at 0.5 and during decoding, CTC-weight γ and beam-size are
fixed at 0.3 and 20 respectively. Both the external LMs are trained on
the external LM training text available in TED-LIUM corpus com-
bined with the transcripts of TED-LIUM training speech data.

Figure 4 shows the learning curve of the character accuracy for
the training set as a function of the number of epochs. The total
number of epochs for training convergence is significantly less with
LM-aware training than the hybrid CTC-attention training. From the
learning curve behaviour, we can re-emphasize the claim that with
LM-aware training, the attention model decoder is not burdened with
implicit LM learning and this leads to faster convergence. The cold
fusion also shows fast convergence. However, this comes with the
cost of more number of training parameters and leveraging the gat-
ing mechanism for early LM integration. The performance of var-
ious E2E approaches (in terms of Word Error Rate (WER) %) is
reported in Table 2. As seen in the table, there is a relative WER im-
provement with LM-aware training and speaker-aware training re-
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Fig. 4. Learning curve comparison of LM-aware training with base-
line and cold fusion for TED-LIUM dataset

Table 2. WER(%) Performance comparison for different approaches
with TED-LIUM dataset

Method WER ζ β
Test Dev

Without LM in decoding
Hybrid CTC-Attention 22 22.4 - -

Cold fusion (Character LM) 19.7 20.5 - -
Sequence summary features 20.8 21.6 - -

Prop. LM-aware (Character LM) 19.8 20.9 0.9 -
Prop. Speaker-aware 20.6 21.6 - -

Prop. Speaker and LM-aware 19.6 20.8 - -
With LM-based decoding (Look-ahead word LM)
Hybrid CTC-Attention 15.1 15.6 - 0.7

Cold fusion (Character LM) 14.4 15.5 - 0.6
Sequence summary features 14.6 15.4 - 0.7

Prop. LM-aware (Character LM) 14.0 15.3 0.6 0.7
Prop. Speaker-aware 14.1 15.4 - 0.6

Prop. Speaker and LM-aware 13.7 15.3 0.6 0.8

spectively for test data over the state-of-art hybrid CTC-Attention
model when combined without and with the look-ahead word LM.
We obtain average relative improvements on test data of about 10 %
and 6 % over the hybrid CTC-Attention model without the LM for
the LM-aware and speaker-aware training respectively. For decoding
with word LM, the proposed approaches of LM-aware and speaker
aware training yield relative improvements of about 7 % over the
hybrid CTC-Attention model. Using the combination of the LM-
aware and speaker-aware training, we also achieve about 10% rela-
tive WER improvement over the baseline. It is also worth noting that
the LM-aware approach improves over the cold fusion method (with
word LM based decoding) because the scaling contribution factor
of both the LMs are tuned during decoding. Also, speaker-aware
training improves over the sequence summary approach.

5.2. WSJ

We use the Wall Street Journal (WSJ1) [32] and WSJ0 [33] for train-
ing our model, ”dev93” for hyperparameter tuning and ”eval92” for



Table 3. WER(%) Performance comparison for different approaches
with WSJ dataset

Method WER ζ β
Eval Dev

Without LM in decoding
Hybrid CTC-Attention 15.5 20.3 - -

Cold fusion (Character LM) 11.3 15.6 - -
Sequence summary features 15.0 19.8 - -

Prop. LM-aware (Character LM) 8.2 12.0 1.0 -
Prop. Speaker-aware 14.9 19.5 - -
With LM-based decoding (Look-ahead word LM)

Hybrid CTC-Attention 4.4 7.4 - 1.0
Cold fusion (Character LM) 4.1 7.1 - 0.9
Sequence summary features 4.0 7.1 - 1.0

Prop. LM-aware (Character LM) 4.1 6.4 0.3 0.8
Prop. Speaker-aware 4.0 6.5 - 1.0

evaluation. The encoder used is a 4-layer BLSTMP network with
320 cells in each layer and direction and 320 units in the projection
layer. The attention used is location attention and the decoder net-
work is a 1-layer LSTM network with 300 cells. During training,
CTC-weight λ is fixed at 0.2 and during decoding, CTC-weight γ
and beam-size are fixed at 0.3 and 30 respectively. Both the external
character and word LMs are trained on the external LM training text
available with WSJ1 combined with the transcripts of WSJ training
speech data.

The Word Error Rate (WER) results reported in Table 3 show
that we achieve 10% and 8% relative WER improvement with LM-
aware training and speaker-aware training respectively for Eval92
task over the state-of-art hybrid CTC-Attention model when com-
bined with the look-ahead word LM. To the best of our knowledge,
these results are the best reported WER for the WSJ dataset with
E2E ASR. We also see that the results shown in Table 3 are consis-
tent with those obtained for TED-LIUM dataset (Table 2).

5.3. LIBRISPEECH

In Librispeech experiments, we have used the vocabulary size of
1000 Byte Pair Encodings (BPE) to compare the ASR performance.
The encoder used is a 4-layer VGG-BLSTMP network with 1024
cells in each layer and direction and 1024 units in the projection
layer. The attention used is location attention and the decoder net-
work is a 1-layer LSTM network with 1024 cells. During training,
CTC-weight λ is fixed at 0.5 and during decoding, CTC-weight γ
and beam-size are fixed at 0.3 and 20 respectively. The external sub-
word based LM network is a 2 layer LSTM network with 1024 cells
in each layer and is trained on the external normalized LM train-
ing text released along with Librispeech corpus combined with the
transcripts of Librispeech training speech data. The word-LM in
Librispeech setup is complicated due to the use of sub-word units
(1000 BPE) as targets in the E2E model. Thus, in the Librispeech
experiments, we use the sub-word based LM twice, once during the
training of LM-aware model and additionally during the decoding to
guide the beam search. As seen in previous two datasets, we observe
about 6% and 5% relative WER improvement with the LM-aware
training and speaker-aware training respectively over the state-of-
art hybrid CTC-Attention model. These experiments show that the
proposed approaches are effective in improving the state-of-art E2E
systems.

Table 4. WER(%) Performance comparison for different approaches
on Librispeech clean and other dataset.

Method WER ζ β
Dev Test

Librispeech Clean - With sub-word LM based decoding
Hybrid CTC-Attention 4.2 4.2 - 0.9

Cold fusion (Sub-word LM) 4.2 4.1 - 0.8
Prop. LM-aware (Sub-word LM) 4.0 4.1 0.5 1.0

Prop. Speaker-aware 4.0 4.1 - -
Librispeech Other - With sub-word LM-based decoding

Hybrid CTC-Attention 12.5 12.7 - 0.9
Cold fusion (Sub-word LM) 12.2 12.6 - 0.8

Prop. LM-aware (Sub-word LM) 11.8 12.6 0.5 1.0
Prop. Speaker-aware 12.3 12.5 - -

5.4. Relationship between LM-aware Training and Cold Fusion

LM-aware training is much simpler method compared to the cold
fusion. In LM-aware training, an external LM is used during train-
ing to improve the decoder efficiency but learning the contribution
from this external LM happens during the decoding stage with just an
additional tunable parameter ζ. This avoids incorporating the addi-
tional training parameters and also makes the learning more efficient
for smaller datasets. We observe that for single pass LM-scoring, the
LM-aware training matches or exceeds the performance of the cold
fusion. Also, unlike cold fusion, the proposed approach provides us
with an unbiased way for tuning the contribution of character LM
and word LM jointly during decoding. As also shown in our results,
we observe that the LM-aware training(character LM) shows relative
improvements of up to 9% over the cold fusion (character LM) when
both of them were combined with the look ahead word LM in second
pass LM-scoring leading to the state-of-art results for WSJ dataset.
We also observe that both the LM-aware training and cold fusion
benefits from using the look-ahead word LM during decoding.

6. CONCLUSIONS

In this paper, we have proposed two novel approaches to incorpo-
rate speaker adaptation and language model awareness in the end-
to-end ASR training. The language model is incorporated directly
in the cost function of the attention encoder-decoder model with-
out any increase in the number of parameters. The speaker aware
training is performed by using an attention based projection layer
that captures the speaker information. With several speech recog-
nition experiments, we have shown that the proposed methods im-
prove over the state-of-art E2E ASR. We also show the effectiveness
of the LM-aware training approach in simplifying the model train-
ing process. We have also shown for TED-LIUM dataset that the
combined speaker and LM-aware training further improves the ASR
performance.
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