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ABSTRACT In a realistic scenario, the eight channels are not repre-

. . sentative of the potential radio communication devicegluse
Language identification (LID) of speech data recorded OVel, the field. In order to investigate the effects of an unseen
noisy communication channels is a challenging problem es-

v when the LID svstem is tested on h data from communication channel (not seen in training) on the LID sys-
peciallywhen the LILy system IS lested on speech datafrom ja ., -,;q experiment with a leave-one-out strategy by holding
unseen communication channel (not seen in training). B thi

ider th 0 in which " " %]ut the training data from a particular channel of interést.
baper, We consider th€ scenario in which a smaft amount g, . ;o experiments, it was found that there is significarioper

adaptation data is available from a new communication Charfﬁance degradation on this unseen channel data compared to

nel. Various approaches are investigated for efficienizatil the seen channels (reported in Sec. 2.3). This can be agtibu

tion of the adaptation data in a supervised as well as UNSUPEE the unique characteristics induced by the radio communi-
vised setting. In a supervised adaptation framework, WWShocation channels

that support vector machines (SVMs) with higher order poly- .

nomial kernels (HO-SVM) trained using lower dimensional To ?ur_ k_nowleg%e, tthe p(rjc_)tplem_of alcc;_ustlm m|smatgh be-
representations of the the Gaussian mixture model superve een ralnclingtalcn fes Clonthl lons Its Le ak|ve Y ugexpdcijmle
tors (GSVs) provide significant performance improvement anguage identriication. In the past, background modet syn-

over the baseline SVM-GSV system. In these LID experi-hGSis. [2] and feature mappi_ng [3] have been proposed for
ments, we obtaiB0% reduction in error-rate witld hours of adapting a speaker recognition system to a new telephone

adaptation data for a new channel. For unsupervised adaE_and—set. However, the effects of radio communication €han

tation, we develop an iterative procedure for re-labeling t wili ahre rno dr};f“nreﬁ;/ft:mri %ar}tlrmgit?n: Icaﬁsr?naf?nl:s:gc tattl}afac
development data using a co-training framework. In these extin chare dinerentiro € traditionalchannet mismatet S
periments, we obtain considerable improvements (relative 9-

provements ol3 %) over a self-training framework with the 1" order to simplify the problem of channel mismatch,
HO-SVM models. we consider the scenario of having a small amount of de-

velopment data from an unseen communication channel. We
Index Terms— Language Identification, Noisy Commu- jnyestigate various approaches for the efficient utilzatof
nication Channel, Supervised and Unsupervised Adaptationthe development data in supervised and unsupervised frame-
works. The baseline LID system is based on support vector
1. INTRODUCTION machine-Gaussian mixture model super-vector (SVM-GSV)
system [4] using shifted delta cepstrum (SDC) features with

Although state-of-the-art LID systems perform reasonably? delta computation window of 7-1-3-7 [3].
well in clean speech environments, the task of language iden In the supervised setting, we investigate the application
tification in noisy environments continues to be challeggin of SVMs with higher-order (HO) polynomial kernels [6]
One of the goals of the DARPA Robust Automatic Tran-based on a low-dimensional principal component analysis
scription of Speech (RATS) program [1], is the language(PCA) representation of the GSVs. HO-SVMs transform the
identification of speech signals received over commuroeati low-dimensional PCA vectors onto high dimensional feature
channels that are extremely noisy and highly distorted. Irspaces and try to separate the language classes in this high
this database, a clean source signal is transmitted ovit eigdimensional space by modeling the dependencies across dif-
different radio channels where the variation across chianneferent input dimensions. We use the supervised adaptation
results in a range of degradation modes. Each channel ilata from the new channel for learning the HO-SVM models.
duces its own acoustic signature based on its modulatiohhis approach provides significant improvements over the
type, carrier channel bandwidth and device operating point baseline system (abos®% reduction in equal error-rate with
6 hours of adaptation data for the new channel).
This work was supported in part by Contract No. D11PC20192

DOI/NBC under the RATS program. The views expressed areetbbshe For unsupervised adaptation, we investigate the applica-

author and do not reflect the official policy or position of thepartment of tiOl.’] 'Of the co—traiqing algorithm deslcribed in [7, 8]. C'O'
Defense or the U.S. Government. training is a machine learning algorithm that uses multiple
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Fig. 1. Block Schematic of the SYM-GSV LID System.

weak classifiers and incrementally uses the unlabeled datgFé

The assumption in co-training is that the classifiers can co-
train each other, as one can label samples that are diffmult f

ble 1. Performance (EER %) of LID system in matched
and mismatched conditions.

the other. The most confidently classified examples from one Matched Train on All
classifier are added to the original pool of labeled data and Channel D 3.5
used to the train the other classifier. The process can agntin Channel H 4.1
for several iterations. Co-training has been successagly Avg. of all channels | 3.6
plied to a wide-variety of classification problems (for exam Mis-matched-Leave D Out
ple, email classification [9], sentence recognition [1@) et Unseen Channel D | 15.1
In this paper, we use the training data from the seen chan- Avg. of seen channels 3.5
nels as the supervised data for training the classifiers. We Mis-matched Leave H Out
investigate the use of HO-SVM and multi-layer perceptron Unseen ChannelH | 12.4
(MLP) based classifiers in the co-training framework to-esti Avg. of seen channels 3.2

mate the labels for the unsupervised development data from

anew channel. In these unsupervised adaptation expesmeny, giscriminate the target language from the rest. Forrigsti

with 30 hours of adaptation data, the co-training approachy,e gy from the test sample is evaluated using each SVM to
provides 13% reduction in error-rate over a self-raining generate scores and the language identity claim is verified b
framework with the HO-SVM models. comparing the score against a pre-set threshold. The perfor

The rest of the paper is organized as follows. In Sec. 2mance of the LID system is measured in terms of equal error
we describe the baseline SVM-GSV LID system and reporate (EER).

the performance of the LID system on the seen and unseen
channels. Adaptation experiments in a supervised framewor
are described in Sec. 3. Unsupervised adaptation using tife?- Database

iterative co-training procedure is described in Sec. 4.. 5eC The development and test data for the LID experiments use
concludes with a summary of the adaptation experiments. iha | DC releases of phase-1 RATS LID development[1]. This
consists of speech recordings from previous NIST-LRE clean
recordings as well as other RATS clean recordings passed
through eight (A-H) noisy communication channels. The five
target languages are Arabic, Farsi, Dari, Pashto and Urdu. |
addition to this, the database consists of several other im-
The block schematic of the baseline LID system is showrposter languages. In our experiments, the UBM is trained
in Fig. 1. The speech signal is processed by Wiener filterusing73, 143 recordings witt270 hours of data from each of
ing [11]. The Wiener filter output is used for feature extrac-the eight noisy communication channels and the test set con-
tion which calculates the shifted delta cepstrum [5] using aists of14, 328 recordings. These recordings containl@f
computation window of 7-1-3-7. The$& dimensional fea- seconds of speech.

tures are used to train a Gaussian mixture model-Universal

background model (GMM-UBM) withl024 mixture com- 5 3 Rasults

ponents. Then, for a given speech recording, maximum-a-

posteriori (MAP) adaptation is performed using the UBM andThe baseline experiments use the entire development data
the adapted mixture component means are concatenatedftom all the channels (referred to as the Matched case). We
form a long super-vector (SV). The SVs are used to train lanalso experiment with the situation where the speech data fro
guage specific support vector machines (SVM) which learne channel is omitted from the training (Mismatched case).

2. BASELINE LID SYSTEM

2.1. System Description



Table 2. Performance (EER %) of the LID system in matched and midmeatconditions using hours of supervised devel-
opment data for the baseline SVM-GSV system and the PCA-S}8m with HO kernels.

Cond. Avg. Perf. Seen| Unseen-D| Avg. Perf. Seen Unseen-H
Matched 3.6 35 3.6 4.1
Mis-matched 3.5 151 3.2 12.4
SVM adaptation 3.4 8.4 3.2 8.6
PCA-SVM-linear 3.4 9.6 3.1 13.4
PCA-HO-SVM-2nd-order 1.6 6.5 1.4 6.6
PCA-HO-SVM-3rd-order 14 6.3 14 5.7
PCA-HO-SVM-4th-order 14 5.9 11 5.2
PCA-HO-SVM-5th-order 1.3 5.9 0.6 4.7

In this case, the results are split on the seen and the unseen The dimensionality reduced SVs are used in SVM learn-
channels (the channel which was left out of training). Ining with higher order (HO) polynomial kernels [6]. The HO
this paper, we use channdlsand H for mismatched exper- polynomial kernel can be written as,
iments (which were the channels with the most significant
degradation in unseen conditions.). k(X %) = (1 4+ xTx;)? (1)
The performance of the baseline SVM-GSV system for L
matched and mismatched conditions is reported in Table 1Vh€rex:.x; denote the PCA vectors used for SVM training
The baseline system achieves an EER.6% for the matched andd denotes the order of the polynom_lal. We refer to this
condition. As seen here, the performance is significantly de2S the HO-SVM system. For our experiments, we use PCA
graded if speech data from the communication channel of indimensionality o800 and experimentwitd = 1, .., 5, where
terest is not seen in training. These can be attributed to th& = 1 represents a linear kernel.

channel specific acoustic characteristics induced by tiera  1n€ performance of the HO-SVM with PCA vectors for
communication system. the seen and unseen channels is also shown in Table 2. The

application of the HO-SVM results in significant improve-
ments for the unseen channel (relative improvements oftabou
3. SUPERVISED ADAPTATION 30 %). The performance improvements are also significant

for the seen channels using HO-SVMs [6]. This may be at-
We consider the scenario of having a small amount of detributed to the increased language separability in a higher
velopment data from an unseen channel. In this section, wéer kernel subspace as opposed to the original high dimen-
assume that the development data is labeled. The scenafiPnal SV space. These improvements are consistent for the
of unsupervised adaptation is discussed in the next sectioivo channels (D,H) considered here.

Further, we also assume that there are equal amounts of de- In Fig. 2, the performance of the LID system when the
velopment data for each language of interest. amount of adaptation data is varied for channel-D is shown.
For the pilot experiments, we assurhéour of develop- We report the performance using & and5t" order kernel
ment data from each language of interest artbur of data @S well as the baseline SVM-GSV system. The higher order
from each of the imposter languages yieldigours of la- kernels based on PCA projections of SVs provide consistent
beled data from the unseen channel. This corresporigd improvements over the baseline SVM-GSV system even with
of the total270 hours available from the channel. The base-1.5 hours of development data. The second-order kernel is
line experiment s the re-learning of the SVMs using the addibetter for the unseen channel case. However, the higher orde

tional development data along with the supervised data frori€rnels are beneficial for all supervised experiments. m-co

the other seen channels. This reduces the error-rate byt abd¥@rison with the baseline SVM-GSV system, we observe a

40% from the completely unseen setup as shown in Table 2.relative improvement 030% in unseen conditions using only
We investigate the use of compact representations for th@0Ut6 hours of the new channel data.

GSVs using principal component analysis (PCA). As before,

the GSVs are extracted using SDC features and the GMM- 4. UNSUPERVISED ADAPTATION

UBM. The high dimensional SV4(0k dim.) extracted from

the training data are used to learn a PCA projection matrixn this section, we discuss the scenario of having small quan

which transforms the SVs to a lower dimensional sub-spactties of development data without any language label infor

by preserving the directions of maximum variance. This ismation. The problem is more challenging than the supervised

similar to the recent i-vector approaches used in languagadaptation case. In these experiments webuseurs of de-

identification [12]. velopment data from each target language @hdurs of data
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Fig. 2. Performance as a function of the amount of adaptation data for channel-D for SYM-GSV system and the HO-SVM
systemwith 2nd and 5th order kernels.
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Fig. 3. First iteration of co-training using MLP and HO-SVM models.

from the set of non-target languages yieldighours of un-  errors from the two classifiers are less correlated whichld/ou
supervised adaptation data. Further, since the HO-SVMs peresult in the confident examples from one classifier boosting
form better than the baseline SVM-GSV system we use onlyhe learning of the other classifier.
_the HO-SVM sy_stem with se_cond ord_erandthird orderkernel | this paper, we describe the application of the co-
in the unsupervised adaptation experiments. We use the unlgaining for language identification where the two classifie
beled development data in PCA training. We use a weighteseq are the HO-SVM model with 2t order kernel and
PCA learning where the new channel data is weighted morg muylti-layer perceptron (MLP) model. Although different
compared to the data from the other seen channels. feature sets can be used for both classifiers to increase the
We investigate the applicability of co-training [8] for ¢hi  diversity, we use the same lower dimensional PCA represen-
semi-supervised adaptation problem using the superviségtion as input to both the classifiers. Similar to the SVM
data from the seen channels and the unsupervised data frd@®Ming, three layer MLPs are trained (with a configuration
the unseen channel. The co-training algorithm works byPf 800x100x2) to classify the target and non-target examples
learning two or more classifiers trained on the input labeledor €ach language using a sigmoidal hidden unit and soft-
data which are then used to label the unlabeled adaptatidR@x non-linearity at the output layer. After each iteratain
data separately. In our application, we use two classifierdé@rning, the output scores on the development data for each
MLP and SVM models, trained on the PCA vectors. For thdILP/SVM model are arranged in a decreasing order and the
unsupervised adaptation data, the confident labels geaerathighly confident examples are chosen for re-training in the
by one classifier is used to train the other classifier and-vice€xt iteration.
versa. The underlying assumption is that the confident$éabel The first iteration of the proposed co-training framework
generated by one classifier may be more beneficial in disdsed in the LID system is shown in Fig. 3. Language spe-
criminative learning for the other classifier as opposed t cific MLP detectors are trained using the supervised trginin
use of these confident labels for re-training the same diessi data (from seen channels). Then, the unsupervised develop-
(self-training). This is inherently related to the notidvatthe  ment data is passed through each MLP and a portion of the



Table 3. Performance (EER %) of the LID system usiB@ hours of unsupervised development data from channel-D for
MLP/HO-SVM co-training and self-training using HO-SVM wi2nd order (M2) and 3rd order (M3) kernels.

Unsup. Adaptation
Self Training Co-Training Sup. Adapt
Iterl Iter2 Iterl Iter2
MLP | M2 | M3 | M2 | M3 | M2 | M3 || MLP | M2 | M3 | MLP | M2 | M3 || M2 | M3
Avg. Seen| 3.1 1.7 15|16| 14|16 |14 32 |16|14| 31 |16| 13| 16| 1.3
Unseen-D| 12.1| 110|112, 9388|9187 94 | 85|86| 93 | 80| 77| 50| 4.9

Cond. Unseen
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Fig. 4. Score scatter plots before and after co-training for channel-D test data using the second order kernel.

labels (selected from recordings with high scores) is used f MLP based LID system. In the co-training and self-training

the HO-SVM re-training along with the supervised data. Thealgorithms, we us@0 hours of adaptation data for the first

trained HO-SVM models are used to detect the language ideiiteration and15 hours for the second iteration. The perfor-

tity of the development data and a portion of the recordingsnance of the self-training and the co-training algorithnesio

with high scores is selected for MLP re-training in the nextnot improve beyond the second iteration.

iteration. The scatter plots for the Arabic and Farsi scores before
The results of the LID system using this iterative proce-and after co-training of the HO-SVM models are shown in

dure are shown in Table 3. The performance of the MLPFig. 4. The data used for these plots come from Arabic, Farsi

system is worse for the seen channels compared to the H@nd Urdu recordings from the unseen channel-D. As seen

SVM!. The performance of the HO-SVM in the self-training here, the separation of the scores for the target languages i

mode is shown next. We use the HO-SVM witH order ker-  improved by the co-training framework.

nel (M2) for re-labeling the unsupervised data. The confiden In a repeated experiment, the application of the co-

labels from the first iteration are used in the second itemati training procedure to unseen channel H is shown in Table 4.

of SVM learning usin@”? and3"? order polynomial kernels. Here, we use the same procedure as before using the same

Here, we use the confident labels from the MLP and the HOthresholds. The performance improves by ab®i# with

SVM with 2" order kernel (M2) in an iterative manner to the co-training algorithm. These experiments show that the

re-label the unsupervised data. This is then used for SVMperformance improvements obtained on channel D data are

learning using®”? and3"? order polynomial kernels. consistent with those obtained on the other unseen channel H
The performance of the co-training framework improvesdata.

over the self-training approach. UsiBg hours of unsuper-

vised data, we obtain a relative improvement 8% using the 5. DISCUSSION AND CONCLUSIONS

co-training framework over the self-training frameworkh&

co-training algorithm also improves the performance of than this paper, we have discussed the issue of channel mis-
- S _ match ir_lthe case of Iangu_age_identification of speech reu:brq
The MLP based LID system was not optimized in this work in ®oh o gjsy radio communication channels. The channel mis-

number of parameters, choice of input feature etc. The maiivation was . .. . .

to use an altemate classifier to boost the performance @vhé system for ~ Match can be attributed to a number of acoustic distortiens i

an unseen channel. troduced by the channel like frequency shifting, compagdin




Table 4. Performance (EER %) of the LID system usiB@
hours of unsupervised development data from channel H. for
HO-SVM with 2nd order kernel (M2).

Cond. | Avg. Perf. Seen| Unseen Chn.H
Unseen
M2 ] 14 | 11.0
Co-Training
M2-ITER1 14 9.3
M2-ITER2 14 8.7
Fully Supervised
M2 ] 1.4 | 5.8

[3]

[4]

[5]

and burst noise. We have addressed the scenario of having a
small quantity of development data for improving the perfor [6]
mance on a new channel of interest. In a supervised setting,
the LID system using lower dimensional PCA representation
of the supervectors along with a higher order SVM provides
significant improvements over the baseline SVM-GSV sys- [7] A. Blum and T. Mitchell, “Combining labeled and un-
tem. In an unsupervised setting, the co-training algorithm
applied to boost the the performance of the HO-SVM system.
The application of co-training for unsupervised adapta-
tion experiments made certain important assumptions. & hes
include a uniform selection of development data from each [&]
target language and selection of thresholds for eachiiberat
without any validation set. The use of the same input feature
in the two classifiers also reduces the diversity of the ¢lass
fiers. Moreover, it is typical in the co-training framewoxk t
have the two classifiers focus on different portions of thda
In future, we plan to investigate the application of co+tiag
by relaxing these constraints and by increasing the diyersi
among the classifiers.

[9]

(10]
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