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ABSTRACT

Language identification (LID) of speech data recorded over
noisy communication channels is a challenging problem es-
pecially when the LID system is tested on speech data from an
unseen communication channel (not seen in training). In this
paper, we consider the scenario in which a small amount of
adaptation data is available from a new communication chan-
nel. Various approaches are investigated for efficient utiliza-
tion of the adaptation data in a supervised as well as unsuper-
vised setting. In a supervised adaptation framework, we show
that support vector machines (SVMs) with higher order poly-
nomial kernels (HO-SVM) trained using lower dimensional
representations of the the Gaussian mixture model supervec-
tors (GSVs) provide significant performance improvements
over the baseline SVM-GSV system. In these LID experi-
ments, we obtain30% reduction in error-rate with6 hours of
adaptation data for a new channel. For unsupervised adap-
tation, we develop an iterative procedure for re-labeling the
development data using a co-training framework. In these ex-
periments, we obtain considerable improvements (relativeim-
provements of13 %) over a self-training framework with the
HO-SVM models.

Index Terms— Language Identification, Noisy Commu-
nication Channel, Supervised and Unsupervised Adaptation.

1. INTRODUCTION

Although state-of-the-art LID systems perform reasonably
well in clean speech environments, the task of language iden-
tification in noisy environments continues to be challenging.
One of the goals of the DARPA Robust Automatic Tran-
scription of Speech (RATS) program [1], is the language
identification of speech signals received over communication
channels that are extremely noisy and highly distorted. In
this database, a clean source signal is transmitted over eight
different radio channels where the variation across channels
results in a range of degradation modes. Each channel in-
duces its own acoustic signature based on its modulation
type, carrier channel bandwidth and device operating points.
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In a realistic scenario, the eight channels are not repre-
sentative of the potential radio communication devices used
in the field. In order to investigate the effects of an unseen
communication channel (not seen in training) on the LID sys-
tem, we experiment with a leave-one-out strategy by holding
out the training data from a particular channel of interest.In
these experiments, it was found that there is significant perfor-
mance degradation on this unseen channel data compared to
the seen channels (reported in Sec. 2.3). This can be attributed
to the unique characteristics induced by the radio communi-
cation channels.

To our knowledge, the problem of acoustic mismatch be-
tween training and test conditions is relatively unexplored in
language identification. In the past, background model syn-
thesis [2] and feature mapping [3] have been proposed for
adapting a speaker recognition system to a new telephone
hand-set. However, the effects of radio communication chan-
nel are non-linear/time varying and cause acoustic artifacts
which are different from the traditional channel mismatch set-
ting.

In order to simplify the problem of channel mismatch,
we consider the scenario of having a small amount of de-
velopment data from an unseen communication channel. We
investigate various approaches for the efficient utilization of
the development data in supervised and unsupervised frame-
works. The baseline LID system is based on support vector
machine-Gaussian mixture model super-vector (SVM-GSV)
system [4] using shifted delta cepstrum (SDC) features with
a delta computation window of 7-1-3-7 [5].

In the supervised setting, we investigate the application
of SVMs with higher-order (HO) polynomial kernels [6]
based on a low-dimensional principal component analysis
(PCA) representation of the GSVs. HO-SVMs transform the
low-dimensional PCA vectors onto high dimensional feature
spaces and try to separate the language classes in this high
dimensional space by modeling the dependencies across dif-
ferent input dimensions. We use the supervised adaptation
data from the new channel for learning the HO-SVM models.
This approach provides significant improvements over the
baseline system (about30% reduction in equal error-rate with
6 hours of adaptation data for the new channel).

For unsupervised adaptation, we investigate the applica-
tion of the co-training algorithm described in [7, 8]. Co-
training is a machine learning algorithm that uses multiple



Fig. 1. Block Schematic of the SVM-GSV LID System.

weak classifiers and incrementally uses the unlabeled data.
The assumption in co-training is that the classifiers can co-
train each other, as one can label samples that are difficult for
the other. The most confidently classified examples from one
classifier are added to the original pool of labeled data and
used to the train the other classifier. The process can continue
for several iterations. Co-training has been successfullyap-
plied to a wide-variety of classification problems (for exam-
ple, email classification [9], sentence recognition [10] etc).

In this paper, we use the training data from the seen chan-
nels as the supervised data for training the classifiers. We
investigate the use of HO-SVM and multi-layer perceptron
(MLP) based classifiers in the co-training framework to esti-
mate the labels for the unsupervised development data from
a new channel. In these unsupervised adaptation experiments
with 30 hours of adaptation data, the co-training approach
provides 13% reduction in error-rate over a self-training
framework with the HO-SVM models.

The rest of the paper is organized as follows. In Sec. 2,
we describe the baseline SVM-GSV LID system and report
the performance of the LID system on the seen and unseen
channels. Adaptation experiments in a supervised framework
are described in Sec. 3. Unsupervised adaptation using the
iterative co-training procedure is described in Sec. 4. Sec. 5
concludes with a summary of the adaptation experiments.

2. BASELINE LID SYSTEM

2.1. System Description

The block schematic of the baseline LID system is shown
in Fig. 1. The speech signal is processed by Wiener filter-
ing [11]. The Wiener filter output is used for feature extrac-
tion which calculates the shifted delta cepstrum [5] using a
computation window of 7-1-3-7. These98 dimensional fea-
tures are used to train a Gaussian mixture model-Universal
background model (GMM-UBM) with1024 mixture com-
ponents. Then, for a given speech recording, maximum-a-
posteriori (MAP) adaptation is performed using the UBM and
the adapted mixture component means are concatenated to
form a long super-vector (SV). The SVs are used to train lan-
guage specific support vector machines (SVM) which learn

Table 1. Performance (EER %) of LID system in matched
and mismatched conditions.

Matched Train on All
Channel D 3.5
Channel H 4.1

Avg. of all channels 3.6
Mis-matched-Leave D Out
Unseen Channel D 15.1

Avg. of seen channels 3.5
Mis-matched Leave H Out
Unseen Channel H 12.4

Avg. of seen channels 3.2

to discriminate the target language from the rest. For testing,
the SV from the test sample is evaluated using each SVM to
generate scores and the language identity claim is verified by
comparing the score against a pre-set threshold. The perfor-
mance of the LID system is measured in terms of equal error
rate (EER).

2.2. Database

The development and test data for the LID experiments use
the LDC releases of phase-I RATS LID development [1]. This
consists of speech recordings from previous NIST-LRE clean
recordings as well as other RATS clean recordings passed
through eight (A-H) noisy communication channels. The five
target languages are Arabic, Farsi, Dari, Pashto and Urdu. In
addition to this, the database consists of several other im-
poster languages. In our experiments, the UBM is trained
using73, 143 recordings with270 hours of data from each of
the eight noisy communication channels and the test set con-
sists of14, 328 recordings. These recordings contain of120
seconds of speech.

2.3. Results

The baseline experiments use the entire development data
from all the channels (referred to as the Matched case). We
also experiment with the situation where the speech data from
one channel is omitted from the training (Mismatched case).



Table 2. Performance (EER %) of the LID system in matched and mismatched conditions using6 hours of supervised devel-
opment data for the baseline SVM-GSV system and the PCA-SVM system with HO kernels.

Cond. Avg. Perf. Seen Unseen-D Avg. Perf. Seen Unseen-H
Matched 3.6 3.5 3.6 4.1

Mis-matched 3.5 15.1 3.2 12.4
SVM adaptation 3.4 8.4 3.2 8.6
PCA-SVM-linear 3.4 9.6 3.1 13.4

PCA-HO-SVM-2nd-order 1.6 6.5 1.4 6.6
PCA-HO-SVM-3rd-order 1.4 6.3 1.4 5.7
PCA-HO-SVM-4th-order 1.4 5.9 1.1 5.2
PCA-HO-SVM-5th-order 1.3 5.9 0.6 4.7

In this case, the results are split on the seen and the unseen
channels (the channel which was left out of training). In
this paper, we use channelsD andH for mismatched exper-
iments (which were the channels with the most significant
degradation in unseen conditions.).

The performance of the baseline SVM-GSV system for
matched and mismatched conditions is reported in Table 1.
The baseline system achieves an EER of3.6% for the matched
condition. As seen here, the performance is significantly de-
graded if speech data from the communication channel of in-
terest is not seen in training. These can be attributed to the
channel specific acoustic characteristics induced by the radio
communication system.

3. SUPERVISED ADAPTATION

We consider the scenario of having a small amount of de-
velopment data from an unseen channel. In this section, we
assume that the development data is labeled. The scenario
of unsupervised adaptation is discussed in the next section.
Further, we also assume that there are equal amounts of de-
velopment data for each language of interest.

For the pilot experiments, we assume1 hour of develop-
ment data from each language of interest and1 hour of data
from each of the imposter languages yielding6 hours of la-
beled data from the unseen channel. This corresponds to2.2%
of the total270 hours available from the channel. The base-
line experiment is the re-learning of the SVMs using the addi-
tional development data along with the supervised data from
the other seen channels. This reduces the error-rate by about
40% from the completely unseen setup as shown in Table 2.

We investigate the use of compact representations for the
GSVs using principal component analysis (PCA). As before,
the GSVs are extracted using SDC features and the GMM-
UBM. The high dimensional SVs (100k dim.) extracted from
the training data are used to learn a PCA projection matrix
which transforms the SVs to a lower dimensional sub-space
by preserving the directions of maximum variance. This is
similar to the recent i-vector approaches used in language
identification [12].

The dimensionality reduced SVs are used in SVM learn-
ing with higher order (HO) polynomial kernels [6]. The HO
polynomial kernel can be written as,

k(xi, xj) = (1 + xT
i xj)

d (1)

wherexi,xj denote the PCA vectors used for SVM training
andd denotes the order of the polynomial. We refer to this
as the HO-SVM system. For our experiments, we use PCA
dimensionality of800 and experiment withd = 1, .., 5, where
d = 1 represents a linear kernel.

The performance of the HO-SVM with PCA vectors for
the seen and unseen channels is also shown in Table 2. The
application of the HO-SVM results in significant improve-
ments for the unseen channel (relative improvements of about
30 %). The performance improvements are also significant
for the seen channels using HO-SVMs [6]. This may be at-
tributed to the increased language separability in a higheror-
der kernel subspace as opposed to the original high dimen-
sional SV space. These improvements are consistent for the
two channels (D,H) considered here.

In Fig. 2, the performance of the LID system when the
amount of adaptation data is varied for channel-D is shown.
We report the performance using the2nd and5th order kernel
as well as the baseline SVM-GSV system. The higher order
kernels based on PCA projections of SVs provide consistent
improvements over the baseline SVM-GSV system even with
1.5 hours of development data. The second-order kernel is
better for the unseen channel case. However, the higher order
kernels are beneficial for all supervised experiments. In com-
parison with the baseline SVM-GSV system, we observe a
relative improvement of30% in unseen conditions using only
about6 hours of the new channel data.

4. UNSUPERVISED ADAPTATION

In this section, we discuss the scenario of having small quan-
tities of development data without any language label infor-
mation. The problem is more challenging than the supervised
adaptation case. In these experiments we use5 hours of de-
velopment data from each target language and5 hours of data
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Fig. 2. Performance as a function of the amount of adaptation data for channel-D for SVM-GSV system and the HO-SVM
system with 2nd and 5th order kernels.

Fig. 3. First iteration of co-training using MLP and HO-SVM models.

from the set of non-target languages yielding30 hours of un-
supervised adaptation data. Further, since the HO-SVMs per-
form better than the baseline SVM-GSV system we use only
the HO-SVM system with second order and third order kernel
in the unsupervised adaptation experiments. We use the unla-
beled development data in PCA training. We use a weighted
PCA learning where the new channel data is weighted more
compared to the data from the other seen channels.

We investigate the applicability of co-training [8] for this
semi-supervised adaptation problem using the supervised
data from the seen channels and the unsupervised data from
the unseen channel. The co-training algorithm works by
learning two or more classifiers trained on the input labeled
data which are then used to label the unlabeled adaptation
data separately. In our application, we use two classifiers,
MLP and SVM models, trained on the PCA vectors. For the
unsupervised adaptation data, the confident labels generated
by one classifier is used to train the other classifier and vice-
versa. The underlying assumption is that the confident labels
generated by one classifier may be more beneficial in dis-
criminative learning for the other classifier as opposed to the
use of these confident labels for re-training the same classifier
(self-training). This is inherently related to the notion that the

errors from the two classifiers are less correlated which would
result in the confident examples from one classifier boosting
the learning of the other classifier.

In this paper, we describe the application of the co-
training for language identification where the two classifiers
used are the HO-SVM model with a2nd order kernel and
a multi-layer perceptron (MLP) model. Although different
feature sets can be used for both classifiers to increase the
diversity, we use the same lower dimensional PCA represen-
tation as input to both the classifiers. Similar to the SVM
learning, three layer MLPs are trained (with a configuration
of 800x100x2) to classify the target and non-target examples
for each language using a sigmoidal hidden unit and soft-
max non-linearity at the output layer. After each iterationof
learning, the output scores on the development data for each
MLP/SVM model are arranged in a decreasing order and the
highly confident examples are chosen for re-training in the
next iteration.

The first iteration of the proposed co-training framework
used in the LID system is shown in Fig. 3. Language spe-
cific MLP detectors are trained using the supervised training
data (from seen channels). Then, the unsupervised develop-
ment data is passed through each MLP and a portion of the



Table 3. Performance (EER %) of the LID system using30 hours of unsupervised development data from channel-D for
MLP/HO-SVM co-training and self-training using HO-SVM with 2nd order (M2) and 3rd order (M3) kernels.

Cond. Unseen

Unsup. Adaptation
Sup. AdaptSelf Training Co-Training

Iter1 Iter2 Iter1 Iter2
MLP M2 M3 M2 M3 M2 M3 MLP M2 M3 MLP M2 M3 M2 M3

Avg. Seen 3.1 1.7 1.5 1.6 1.4 1.6 1.4 3.2 1.6 1.4 3.1 1.6 1.3 1.6 1.3
Unseen-D 12.1 11.0 11.2 9.3 8.8 9.1 8.7 9.4 8.5 8.6 9.3 8.0 7.7 5.0 4.9
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Fig. 4. Score scatter plots before and after co-training for channel-D test data using the second order kernel.

labels (selected from recordings with high scores) is used for
the HO-SVM re-training along with the supervised data. The
trained HO-SVM models are used to detect the language iden-
tity of the development data and a portion of the recordings
with high scores is selected for MLP re-training in the next
iteration.

The results of the LID system using this iterative proce-
dure are shown in Table 3. The performance of the MLP
system is worse for the seen channels compared to the HO-
SVM1. The performance of the HO-SVM in the self-training
mode is shown next. We use the HO-SVM with2nd order ker-
nel (M2) for re-labeling the unsupervised data. The confident
labels from the first iteration are used in the second iteration
of SVM learning using2nd and3rd order polynomial kernels.
Here, we use the confident labels from the MLP and the HO-
SVM with 2nd order kernel (M2) in an iterative manner to
re-label the unsupervised data. This is then used for SVM
learning using2nd and3rd order polynomial kernels.

The performance of the co-training framework improves
over the self-training approach. Using30 hours of unsuper-
vised data, we obtain a relative improvement of13% using the
co-training framework over the self-training framework. The
co-training algorithm also improves the performance of the

1The MLP based LID system was not optimized in this work in terms of
number of parameters, choice of input feature etc. The main motivation was
to use an alternate classifier to boost the performance of theSVM system for
an unseen channel.

MLP based LID system. In the co-training and self-training
algorithms, we use10 hours of adaptation data for the first
iteration and15 hours for the second iteration. The perfor-
mance of the self-training and the co-training algorithm does
not improve beyond the second iteration.

The scatter plots for the Arabic and Farsi scores before
and after co-training of the HO-SVM models are shown in
Fig. 4. The data used for these plots come from Arabic, Farsi
and Urdu recordings from the unseen channel-D. As seen
here, the separation of the scores for the target languages is
improved by the co-training framework.

In a repeated experiment, the application of the co-
training procedure to unseen channel H is shown in Table 4.
Here, we use the same procedure as before using the same
thresholds. The performance improves by about21% with
the co-training algorithm. These experiments show that the
performance improvements obtained on channel D data are
consistent with those obtained on the other unseen channel H
data.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have discussed the issue of channel mis-
match in the case of language identification of speech recorded
over noisy radio communication channels. The channel mis-
match can be attributed to a number of acoustic distortions in-
troduced by the channel like frequency shifting, companding



Table 4. Performance (EER %) of the LID system using30
hours of unsupervised development data from channel H. for
HO-SVM with 2nd order kernel (M2).

Cond. Avg. Perf. Seen Unseen Chn.H
Unseen

M2 1.4 11.0

Co-Training
M2-ITER1 1.4 9.3
M2-ITER2 1.4 8.7

Fully Supervised
M2 1.4 5.8

and burst noise. We have addressed the scenario of having a
small quantity of development data for improving the perfor-
mance on a new channel of interest. In a supervised setting,
the LID system using lower dimensional PCA representation
of the supervectors along with a higher order SVM provides
significant improvements over the baseline SVM-GSV sys-
tem. In an unsupervised setting, the co-training algorithmis
applied to boost the the performance of the HO-SVM system.

The application of co-training for unsupervised adapta-
tion experiments made certain important assumptions. These
include a uniform selection of development data from each
target language and selection of thresholds for each iteration
without any validation set. The use of the same input features
in the two classifiers also reduces the diversity of the classi-
fiers. Moreover, it is typical in the co-training framework to
have the two classifiers focus on different portions of the data.
In future, we plan to investigate the application of co-training
by relaxing these constraints and by increasing the diversity
among the classifiers.
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