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Abstract

The degradation in performance of a typical speaker vetifina
system in noisy environments can be attributed to the mitima

in the features derived from clean training and noisy test co
ditions. The mis-match is severe in low-energy regions ef th
signal where noise dominates the speech signal. A robust fea
ture extraction scheme should focus on the high-energyspeak
in the time-frequency region. In this paper, we develop aalig
analysis technique which attempts to model these highggner
peaks using two-dimensional (2-D) autoregressive (AR)-mod
els. The first AR model of the sub-band Hilbert envelopes is de
rived using frequency domain linear prediction (FDLP). ithe
these all-pole envelopes from each sub-band are convested t
short-term energy estimates and the energy values acrass va
ous sub-bands are used as a sampled power spectral estimate f
the second AR model. The output prediction coefficients from
the second AR model are converted to cepstral coefficiertts an
are used for speaker recognition. Experiments are perfdrme
using noisy versions of NIST 2010 speaker recognition ealu
tion (SRE) data with the state-of-art speaker recognitjesm.

In these experiments, the proposed features provide signtfi
improvements compared to baseline MFCC features (relative
improvements oB80%). We also experiment on a large data-
set of IARPA NIST 2011 speaker recognition challenge, where
the 2-D AR model provides noticeable improvements (retativ
improvements ofl5 — 20%).

1. Introduction

Speaker recognition in noisy environments continues to be a
challenging problem mainly due to the mis-match in speech
data from training and test. One common solution to overcome
this mis-match is the use of multi-condition training [1] erk
the speaker models are trained using data from the target do-
main. However, in a realistic scenario it is not always possi
ble to obtain reasonable amounts of training data from plk$y
of noisy and reverberant environments for training the kpea
models. Therefore, there is a need to attain noise robiusties
ther at the front-end signal analysis or at the statistipab&er
models. In this paper, we address the robustness issuea-in fe
ture extraction.

Various techniques like spectral subtraction [2], Wienkr fi
tering [3] and missing data reconstruction [4] have been pro
posed for noisy speech recognition scenarios. Feature @omp
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sation techniques have also been used in the past for speaker
verification systems (for example, feature warping [5], RAS
processing [6] and cepstral mean subtraction (CMS) [7]wHo
ever, the mel frequency cepstral coefficients (MFCC) [8hwit
mean and variance normalization continue to represeniime ¢
mon front-end analysis scheme in state-of-art speakegréco

tion systems.

When speech is corrupted with additive noise, the valleys
in the sub-band envelopes are filled with noise. Even with-mod
erate amounts of noise, the low-energy regions are sulstgnt
modified and cause acoustic mis-match with the clean trginin
data. Thus, a robust feature extraction scheme must rely on
the high energy regions in the spectro-temporal plane. in ge
eral, an autoregressive (AR) modeling approach reprebaytts
energy regions with good modeling accuracy [9, 10]. One di-
mensional AR modeling of signal spectra is widely used far fe
ture extraction of speech [11]. In the past, one dimensidiral
modeling of Hilbert envelopes have also been used for speake
verification [12]. 2-D AR modeling was originally proposed
for speech recognition by alternating the AR models between
spectral and temporal domains [13].

In this paper, we propose a feature extraction technique
based on two-dimensional (2-D) spectro-temporal AR models
The initial model is the temporal AR model based on frequency
domain linear prediction [14, 15]. The FDLP model is derived
by the application of linear prediction on the discrete nesi
transform (DCT) of the sub-band speech signal. We use an ini-
tial sub-band decomposition 66 sub-bands in a linear scale.
The sub-band FDLP envelopes are integrated in short-tegm se
ments to obtain sub-band energy estimates. In each short-te
frame, the energy values across the sub-bands form a sampled
power spectral density (PSD) estimate. The inverse Fourier
transform of this PSD provides autocorrelations which aedu
for the spectral AR model. The prediction coefficients frdma t
second AR model are converted to cepstral coefficients using
the cepstral recursion [16]. These cepstral parameterssae
as features for speaker recognition.

Experiments are performed on core conditions of NIST
2010 SRE data [17]. The speaker recognition system is
based on Gaussian mixture model-universal background Imode
(GMM-UBM). We use factor analysis methods on the GMM
supervectors [18] with i-vector probabilistic linear digginant
analysis (PLDA) for score computation [19]. In order to dete
mine the noise robustness of the speaker recognition, we use
data from condition2 (interview mic-training with interview
mic-testing) of SRE 2010 data added with various noise types
and signal-to-noise rations. The choice of condition 2 is mo
tivated in part by the potential application of speaker ggio
tion technologies on handheld devices with distant micongls
in noisy environments. In these experiments, the proposed 2
D AR model provides considerable improvements compared to
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Figure 1:1llustration of AR modeling in time and frequency domain - (a) a portion of voiced speech, (b) power spectrum, (c) AR model
of power spectrum obtained from TDLP, (d) Hilbert envelope and (€) AR model of Hilbert envelope using FDLP.

the conventional MFCC system (relative improvements ofiabo
30%).

We also measure the performance of these speaker verifi-
cation systems on a large data-set from IARPA BEST evalua-
tion challenge 2011 [20]. The speech data in these evahstio
contain a wide variety of intrinsic variabilities (withirpeaker
variations like vocal effort), extrinsic variabilitiesnglude dif-
ferences in room acoustics, noise level, sensor diffeseaoe
speech coding) and parameter variabilities (variatiordiffer-
ent languages, aging factors etc). In these evaluatioagrth
posed 2-D model outperforms the MFCC system in most of the
testing conditions (relative improvementsiaf — 20%).

The rest of the paper is organized as follows. In Sec. 2,
we outline the linear prediction approaches in the speeindl
temporal domain. Sec. 3 details the proposed feature ¢xtnac
scheme using 2-D AR model. Sec. 4 describes our experimental
setup used for the NIST 2010 SRE. The results of these evalua-
tions are reported in Sec. 5. Sec. 6 describes the speakay-rec
nition experiments using the IARPA BEST database. In Sec. 7,
we conclude with a brief discussion of the proposed frort-en

2. AR Modeling in Time and Frequency
2.1. Spectral AR model - TDLP

Spectral AR modeling has been widely used in speech and audio
signal processing for about four decades now [9, 10]. 4]ef
denote the input signal fat = 0, ... , N — 1. The time domain

LP model is to identify the set of coefficients,j = 1, ... ,p
suchthab¥_, a;z[n — j] approximates:[n] in a least square
sense [9], wherg denotes the model order.

Let r,[r] denote the autocorrelation sequence for time do-

main signak:[n] with lag 7 ranging from—N +1, ... | N — 1.

N-1

ralrl = 5 - alaleln 7]

n=|T|

)

Let Z[n] denote the zero-padded sigrgh] = x[n], n =
0,..,N—1landz[n] =0, forn = N,..,2N —1. The relation
between the power spectrum of the zero-padded signi] =
| X [K]|? and the autocorrelation, [7] is given by,

P.[k] = Flra[r]] 2
where X [k] is the discrete Fourier transform (DFT) of the sig-
nalz[n] fork =0, ... ,2N — 1. This relation is used in the AR
modeling of the power spectrum of the signal [10]. Time do-
main linear prediction (TDLP) refers to the use of time domai
autocorrelation sequence to solve the linear predictioblpm.
The optimal set ofi; along with the variance of prediction error
G andagp = 1 provides an AR model of the power spectrum,
Polk] = ——— ¢
| J=P

=0 ase

—i27rjk|2 (3)

An illustration of AR model of power spectrum obtained from

TDLP is shown in Fig. 1, where we plot the original power spec-
trum in (b) for a250 ms portion of speech signal in (a). The

TDLP approximation of the power spectrum in shown in Fig. 1
(c). We use a model order db.

2.2. Temporal AR model - FDLP

Linear prediction in the spectral domain was first proposgd b
Kumaresan [14]. The analog signal theory is used for develop
ing the concept and the extension of the solution for a disere
sample case is provided. This was reformulated by Athineos
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Figure 2:Block schematic of the proposed feature extraction using 2-D AR modeling.

and Ellis [15] using matrix notations and the connectionhwit
DCT sequence is established. In this paper, we derive the
discrete-time relations underlying the FDLP model withost
ing matrix notations. We begin with the definition of anadyti
signal (AS). Then, we show the Fourier transform relation be
tween the squared magnitude of AS, a.k.a. Hilbert envelage a
the autocorrelation of DCT signal. This would mean thatdine
prediction in DCT domain can be used for AR modeling of the
Hilbert envelope of the signal.

In a discrete-time case, an “analytic” signal (AS)[n] can
be defined using the following procedure [21]-

1. Compute the N-point DFT sequen&gk]
2. Find the N-point DFT of the AS as,

X[0] fork=0
2X[k] for1<k< -1
Xo k] = 4
k] X[&] fork=1% @
0 for L +1<k<N

3. Compute the inverse DFT of, [k] to obtainz,[n]

We assume that the discrete-time sequerie has a zero-
mean property in time and frequency domains, 0] = 0
and X[0] = 0. This assumption is made so as to give a direct
correspondence between the DCT of the signal and DFT. Fur-
ther, these assumptions are mild and can be easily achigved b
appending a zero in the time-domain and removing the mean of
the signal.

The type-l odd DCTy[k] of a signal fork =0, ... , N — 1
is defined as [23]
2 k
_4chkm ] cos 7;\/7) (5)

where the constant¥/ = 2N — 1, ¢, = 1 forn,k > 0 and
¢nk = 3 forn,k = 0andc, , = = for the values ofy, k,
where only one of the index i& The DCT defined by Eq. 5 is
a scaled version of the original orthogonal DCT with a factbr

2v/M.

We also define the even-symmetrized version| of the
input signal,

_ Jznl
A important property of;[n] is that it has a real spectrum given
by,

N-1
M —1

forn=0,..,
n] forn=N, ..

(6)

N—-1 k’
QK =2 [n] cos ( 7m) @)
n=0
fork=0, ..,M—1.

For signals with the zero-mean property in time and fre-
qguency domains, we can infer from Eq. 5 and Eq. 7 that,

y[k] = 2QI[K] (8)

for k = ,N — 1. Let g denote the zero-padded DCT
with g[k] = y[k] for k = 0, ... ,N — 1 andg[k] = O for
k=N, ..., M — 1. From the definition of Fourier transform of

the analytic signal in Eq. 4, and using the definition of therev
symmetric signal in Eq. 6, we find that,

Qalk] = 9lk] )
fork =0, ..., M — 1. This says that the AS spectrum of the
even-symmetric signal is equal to the zero-padded DCT kigna
In other words, the inverse DFT of the zero-padded DCT signal
is the even-symmetric AS. Since the auto-correlation ofiaig
z[n] is related to the power spectrupX [k]|? (Eq. 2), we can
obtain a similar relation to the auto-correlation of the D&F
quence.

The auto-correlation of the DCT signal defined as (similar
to Eq. 1),
N—
LY

k=|7|

% 3 ylklylk — |7 (10)

rylT] =

From Eq. 9, the inverse DFT of zero-padded DCT sigha] is
the AS of the even-symmetric signal. It can be shown that,

M-1

2ntnT
nlrl =5 Z |ga[n]|* e "1

(11)
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Figure 3: Comparing mel spectrogram with 2-D AR model spectrogram - (a) a portion of clean speech, (b) a portion of noisy speech
(babble noise at 10 dB), (c) Mel spectrogram of clean speech, (d) Mel spectrogram of noisy speech (€) 2-D AR model spectrogram of

clean speech and (f) 2-D AR model spectrogram of noisy speech.

i.e., the auto-correlation of the DCT signal and the squearag-
nitude of the AS (Hilbert envelope) of the even-symmetrg: si
nal are Fourier transform pairs. This is exactly dual to the r
lation in Eqg. 2. In other words, we have established that AR
modeling of Hilbert envelope can be achieved by linear mredi
tion of DCT components. The AR modeling property of FDLP
is illustrated in Fig. 1 where we plot the discrete time Hithe
envelope of the signal in (d) and the FDLP envelope in (e) us-
ing a model order ofl0. As seen in this figure, the temporal
AR model provided by FDLP is dual to the spectral AR model
provided by TDLP.

3. 2-D AR Modeling

The block schematic for the proposed feature extraction is
shown in Fig. 2. Long segments of the input speech sigrtes)(
are transformed to the frequency domain using a DCT [12]. The
full-band DCT signal is windowed into a set 86 linear sub-
bands in the frequency range 1f5-3800 Hz [22]. In each sub-
band, linear prediction is applied on the sub-band DCT compo
nents to estimate an all-pole representation of Hilberekpe.
We use a model order G0 poles per sub-band per second. At
the output of this stage we obtain the temporal AR model. The
FDLP envelopes in each sub-band are integrated in shont-ter
frames @5ms with a shift of10ms). The output of the inte-
gration process provides an estimate of the power spectfum o
signal in the short-term frame level. The frequency resofut
of this power spectrum is equal to the initial sub-band decom
position of96 bands.

The power spectral estimates from the short-term integra-
tion are inverse Fourier transformed to obtain an autotaire

tion sequence. This autocorrelation sequence is used faPTD
with a model order ofl2. The TDLP model provides an all-
pole approximation of thé6 point short-term power spectrum.
The output LP parameters of this AR model are transformed to
13 dimensional cepstral coefficients using the standard rpst
recursion [16]. Delta and acceleration coefficients areaex¢d

to obtain39 dimensional features which are used for speaker
recognition.

In Fig. 3, we show the spectrographic representation of
clean and noisy speech (babble noise at!B) using the mel-
spectrogram as well as the 2-D AR model based spectrogram.
As shown in this figure, the conventional mel-spectrogram is
modified significantly due to the presence of additive noise
(Fig. 3 (c) and (d)) which will cause a mis-match between the
clean training and noisy test conditions. The 2-D AR model
spectrogram is relatively more robust compared to Mel spect
gram ((Fig. 3 (e) and (f)). When features are derived from 2-D
AR model, the mis-match between clean and noisy conditions
is reduced.

4. Experimental Setup

We use a GMM-UBM based speaker verification system [24].
The input speech features are feature warped [5] and geeder d
pendent GMMs withL024 mixture components are trained on
the development data. The development data set consists of a
combination of audio from the NIST 2004 speaker recognition
database, the Switchboard Il Phase 3 corpora, the NIST 2006
speaker recognition database, and the NISTOS8 interviewldev
opment set. There ar324 male recordings and461 female
recordings in development set.



Table 1: EER (%) and False Alarm (%) at 10% Miss Rate (MissA@grantheses for core evaluation conditions in NIST 2018.SR

Cond. MFCC-baseline| 2-D AR Feat.

1. Int.mic - Int.mic-same-mic. 2.1(0.1) 1.8(0.1)

2. Int.mic - Int.mic-diff.-mic. 3.0(0.5) 2.7 (0.3)

3. Int.mic - Phn.call-tel 3.8(0.9) 3.8(0.9)

4. Int.mic - Phn.call-mic 3.4(0.5) 2.9(0.3)

5. Phn.call - Phn.call-diff.-tel 2.9(0.5) 3.6 (0.9)

6. Phn-call - Phn.call-high-vocal-effort-te 4.5 (1.5) 5.3(2.5)
7. Phn-call - Phn.call-high-vocal-effort-mig 7.6 (4.9) 4.6 (1.9)
8. Phn-call - Phn.call-low-vocal-effort-tel 1.9(0.2) 2.9(0.6)
9. Phn-call - Phn.call-low-vocal-effort-mig 1.8(0.1) 1.5(0.1)

Table 2: EER (%) and False Alarm (%) at 10% Miss Rate
(Miss10) in parantheses for conditi@n

Noise SNR (dB) | MFCC-baseline| 2-D AR Feat.
20 3.8(0.8) 3.3(05)
15 4.8(1.6) 4.0(0.8)
Babble 10 7.2 (4.5) 5.9 (2.6)
5 12.0(15.2) | 10.3(10.6)
20 3.7(0.8) 3.1(05)
15 43(13) 3.7(0.7)
Exhall 10 5.9 (2.9) 5.1 (L.6)
5 9.4 (8.7) 7.9 (5.7)
20 3.6 (0.8) 3.2(05)
15 43(13) 3.8(0.8)
Restaurant 7, 6.0(2.9) 5.2 (1.9)
5 9.4 (8.8) 8.4 (6.5)

Once the UBM is trained, the mixture component means
are MAP adapted and concatenated to form supervectors. We
use the i-vector based factor analysis technique [18] osethe
supervectors in a gender dependent manner. For the faabr an
ysis training, we use the development data from Switchbbard
Phases 2 and 3; Switchboard Cellular, Parts 1 and 2, NIST04-
05 and extended NISTO8 far-field data. There Er&30 male
recordings an@1320 female recordings in this sub-space train-
ing set. Gender specific i-vectors @50 dimensions are ex-
tracted and these are used to train a PLDA system [19]. The
output scores are obtained using# dimensional PLDA sub-
space for each gender.

5. Resultson NIST 2010 SRE

The proposed features are used to evaluate the core corditio
of the NIST 2010 speaker recognition evaluation (SRE) [17].
There are9 conditions in the NIST 2010 which are described in
Table 1. The baseline features consist®@timensional MFCC
features [8] containing 3 cepstral coefficients, their delta and
acceleration components. These features are computzihas
frames of speech signal with a shift odms. We use7 Mel-
filters in the frequency range df25-3800 Hz for the baseline
features.

The performance metric used is the EER (%) and the false-
alarm rate at a miss-rate @b % (Miss10). The Miss10 is an
useful metric for variety of applications in which a low fals
alarm rate is desired. The speaker recognition resultshfer t
baseline system as well as the proposed 2-D AR features is
shown in Table 1. From these results, it can be seen that the

proposed 2-D features provides good improvements in mis-
matched far-field microphone conditions like Cond. 1,2 7 and
9). In these conditions the modeling of high-energy regions
in time-frequency domain is beneficial. However, the base-
line MFCC system performs well in telephone channel matched
conditions (Cond. 5, 6 and 8.)

For evaluating the robustness of these features in noisy con
ditions, the test data for Cond-2 is corrupted using (a) &bb
noise, (b) exhibition hall noise, and (c) restaurant noreenf
the NOISEX-92 database, each resulting in speech at 5, 10, 15
and 20 dB SNR. These noises are added at various SNRs using
the FaNT tool [25]. The generation of the noisy version of the
test data is done using the setup described in [26]. The etodic
condition-2 is motivated in part by speaker recognitionliap
tions in far-field noisy environments. Further, the IARPASE
evaluation [20] also targets noisy data recorded usinguiee
microphone. Condition-2 has the highest number of trials in
the NIST 2010 SRE evaluation with8M trials and it contains
2402 enrollment recordings an@203 test recordings. Enroll-
ment data is the NIST 2010 clean speech data and voicetgctivi
decisions provided by NIST are used in these experiments. Fo
these noisy speaker recognition experiments, the GMM-UBM,
i-vector and the PLDA sub-spaces trained from the developme
data are used without any modification.

The results of noisy speaker recognition experiments is
shown in Table. 2. The results of the proposed features are
consistently better than the baseline feature for all ntipes
and signal-to-noise-ratios. On the average, the proposad f
tures provide abou85 % relative Miss10 improvement over
the baseline MFCC system. These improvements are mainly
due to the robust representation of the high energy regigns b
two dimensional AR modeling. When the signal is distorted by
noise, these peaks are relatively well preserved and trertfe
speaker recognition system based on these features artpsrf
the MFCC baseline system.

6. Resultson BEST 2011 Challenge

The speaker verification systems outlined in the previoags se
tion are used for a speaker verification task using the IARPA
BEST 2011 data [20]. The database conte8$98 record-
ings (25822 enrollment utterances arii¥376 test utterances)
with a wide-variety of intrinsic and extrinsic variabiks like
language, age, noise and reverberation. There3gké trials
which are split into various conditions as shown in Table 3.
Condition 1 contains majority of the trial&{M trials) recorded
using interview microphone data with varying amounts ofiadd
tive noise and artificial reverberation. We use the GMM-UBM
and factor analysis models trained using the developmeat da



Table 3: False Alarm (%) at 10% Miss Rate (Miss10) for evaduatonditions in IARPA BEST 2011 task.

Cond.

1. Int.mic - Int.mic-noisy.
2. Int.mic - Phn-call-mic
3. Int.mic - Phn.call-tel
4. Phn-call-mic - Phn.call-mig
5. Phn.call-mic - Phn.call-tel
6. Phn.call-tel - Phn.call-tel

MFCC-baseline| 2-D AR Feat.
15.5 11.3
3.7 2.8
3.3 2.8
7.4 6.7
7.5 6.3
1.3 1.8

(Sec. 4) for these experiments. For these speaker recogniti
experiments, we use the automatic voice activity decision o
tained using multi-layer-perceptrons [27].

The performance (Miss1bjor the baseline MFCC system
is compared with proposed features in Table 3. In these exper
iments, the proposed features provide noticeable imprewntsn
for all conditions except the matched telephone scenawadC
6). Onthe average, the proposed features provide impravesme
of about18% in the Miss10 metric relative to the baseline sys-
tem.

7. Summary

In this paper, we have proposed a two-dimensional autasegre
sive model for robust speaker recognition. An initial tempo
ral AR model is derived from long segments of the speech sig-
nal. This model provides Hilbert envelopes of sub-band dpee
which are integrated in short-term frames to obtain powecsp
tral estimates. These estimates are used for a spectral AR mo
eling process and the output prediction coefficients are con
verted to cepstral parameters for speaker recognitionioiar
experiments are performed with noisy test data on NIST 2010
SRE where the proposed features provide significant improve
ments. These results are also validated using a large speake
recognition dataset from BEST. The results are promisirg) an
encourage us to pursue the problem of joint 2-D AR model-
ing instead of a separable time and frequency linear piiedict
schemes adopted in this paper.
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