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ABSTRACT

In this paper, we present our system submission to the Ze-
roSpeech 2017 Challenge. The track1 of this challenge is
intended to develop language independent speech representa-
tions that provide the least pairwise ABX distance computed
for within speaker and across speaker pairs of spoken words.
We investigate two approaches based on deep learning meth-
ods for unsupervised modeling. In the first approach, a deep
neural network (DNN) is trained on the posteriors of mixture
component indices obtained from training a Gaussian mixture
model (GMM)-UBM . In the second approach, we develop a
similar hidden Markov model (HMM) based DNN model to
learn the unsupervised acoustic units provided by HMM state
alignments. In addition, we also develop a deep autoencoder
which learns language independent embeddings of speech to
train the HMM-DNN model. Both the approaches do not use
any labeled training data or require any supervision. We per-
form several experiments using the ZeroSpeech 2017 corpus
with the minimal pair ABX error measure. In these experi-
ments, we find that the two proposed approaches significantly
improve over the baseline system using MFCC features (aver-
age relative improvements of 30-40%). Furthermore, the sys-
tem combination of the two proposed approaches improves
the performance over the best individual system.

Index Terms— Autoencoders, Gaussian Mixture Mod-
els (GMMs), Hidden Markov Models (HMMs), Deep Neural
Networks (DNNs), Unsupervised Learning.

1. INTRODUCTION

In the recent years, there has been a growing interest in the
task of unsupervised representation learning from raw speech
data without any supervision or labels [1, 2, 3]. In partic-
ular, zero resource speech technologies operate without the
expert labels provided by linguistic knowledge that standard
automatic speech recognition (ASR) systems use such as tran-
scribed speech, language models, pronunciation dictionaries
etc. A robust zero resource system must instead discover
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this linguistic knowledge from the speech signal automati-
cally and in a language independent manner. While a zero
resource speech challenge was earlier conducted [4] using pri-
marily data from English and Xitsonga, the ZeroSpeech 2017
challenge expands the scope of deriving representations in a
language independent fashion [5].

In a zero resource setting, there are no labeled audio
resources and the task is to develop speech representations
which allow the discovery of word units [4]. The main
objective of the feature learning sub-task is to construct a
representation of speech sounds which can support word
identification robustly for both within and across talkers. The
similarity measure used in the evaluation of the challenge is
the ABX discriminability between phonemic minimal pairs
(e.g. “beg” and “bag”). Some of the earliest approaches
explored the HMM framework [1] and the use of posteri-
ograms from the GMM framework [6]. Recently, several
approaches have been proposed for this task using various
feature representations [7] and neural network models [8, 9].
A hybrid dynamic time warping (DTW) approach has also
been previously attempted for the zero resource challenge
[10].

In this paper, we address the problem of extracting unsu-
pervised speech representations in a zero resource scenario
where the representations need to be learned in a language
independent setting. We present our system submission to
the zero speech 2017 challenge (Track 1) [5]. The proposed
system consists of a combination of two subsystems which
are based on a universal background model (UBM) approach.
The first system uses a Gaussian mixture model (GMM)-
UBM followed by a DNN model which generates posteriors
of mixture component indices. The second system uses a hid-
den Markov model (HMM) in conjunction with a DNN that
predicts the posterior probabilities of HMM states. While the
GMM/HMM models are learned with mel frequency cepstral
coefficients (MFCCs), the HMM-DNN models are trained
with either MFCC features or the autoencoder embeddings.
A novel method of system combination is also proposed for
unsupervised feature learning.

We perform several experiments using the ZeroSpeech
2017 challenge corpus [5] where the speech data from En-
glish, French and Mandarin are used for training and devel-
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Fig. 1. Schematic illustrating the various components of the proposed system submission. (a) DNN trained using alignments
obtained from GMM and input MFCC features (b) DNN trained using alignments obtained from HMM and input MFCC
features (c) Extracting autoencoder embeddings from input features (d) DNN trained using alignments obtained from HMM
with autoencoder embeddings as features.

opment. During the evaluation, two other surprise languages
(denoted as L1 and L2) are also provided which are evaluated
using proposed methods. In these experiments, the proposed
systems based on autoencoder (AE) embeddings and the
HMM-DNN hybrid modeling provide significant improve-
ments over the baseline MFCC based feature representations.
The experiments also illustrate that the across speaker con-
ditions provide more relative improvements compared to the
within speaker conditions. In addition to the individual sys-
tem results, the system combination of the two sub-systems
further improves the performance and approaches the topline
results based on supervised representations from a phone
recognition system. These experiments show that the models
which are learned without any supervision using multilingual
data can generate representations that provide high degree of
linguistic similarity in many different languages.

The rest of the paper is organized as follows. Sec. 2 de-

scribes the proposed modeling approaches for unsupervised
language independent sub-word learning. In Sec. 3, we pro-
vide the details of the experimental setup used for the evalu-
ation. The results obtained using the various individual sub-
systems as well as the system combination are presented in
Sec. 4 along with an analysis of the results. This is followed
by a summary of the paper in Sec. 5.

2. SYSTEM DESCRIPTION

The individual components of the proposed system submis-
sion are given in Figure. 1. The system uses multiple unsu-
pervised models like autoencoders, GMM/HMM based clus-
tering followed by a DNN based backend. The details of these
components are given below.



Table 1. Details of the ZeroSpeech 2017 corpus for training and testing [5].

Lang.
Training Test

Relatives Outsiders Total Total
#speakers dur./speaker #speakers dur./speaker dur. #words #files dur.(min)

English 9 165-220min 60 10min 45h 370k 30658 1634
French 10 110-195min 18 10min 24h 220k 23765 1061

Mandarin 4 20-25min 8 10min 2h30min 20k 25383 1522
L1 10 85-150min 20 10min 25h 213k 15243 687
L2 4 37-42min 10 20min 4h 31k 7201 354

2.1. Autoencoder

A deep autoencoder is an artificial neural network which
generates non-linear embeddings of the input data while also
learning a reconstruction from the embeddings [11]. Au-
toencoders have been used for unsupervised representation
learning [12, 13]. In our work, we use the deep feed-forward
autoencoder neural network with rectified linear unit (ReLU)
non linearity. The input features are fed frame wise without
any context and we use mel frequency cepstral coefficients
which are utterance level mean and variance normalized. The
non-linear embeddings in our case are set to be higher in di-
mension compared the input features. However, the identity
mapping is avoided with the use of the ReLU non-linearity
with real valued input features (mean normalized cepstral
features). The relatively high dimensional embeddings from
autoencoders were also found to improve the minimal ABX
pair classification task. The autoencoder was trained with all
the languages and a mean square error (MSE) criterion was
used. We use the Theano package [14] for the autoencoder
implementation. The autoencoder features are either directly
used for minimal pair ABX task using the cosine distance
metric or used as features for a second DNN model which
learns a mapping to the HMM state alignments (Sec. 2.3).

2.2. GMM-UBM

A Gaussian mixture model (GMM) is trained on the input fea-
tures with 128/256 mixture components using the maximum
likelihood criterion. The GMM is trained using MFCC fea-
tures (mean/variance normalized) with the training data from
all the five languages. Thus, the GMM functions as a univer-
sal background model (UBM) (similar to GMM-UBM used
in speaker verification [15]). The GMM posteriograms (con-
sisting of posterior probability vectors containing the proba-
bility of cluster indices given the input speech frame) can be
directly used for minimal pair ABX classification (similar to
[6]).

While the GMM mixture components allow a clustering
of the data into a set of language independent units, the in-
dependence assumption between the frames makes the clus-
tering process noisy. In HMM-UBM modeling, we use the
GMM based cluster alignments to initialize the HMM model.

2.3. HMM-UBM

This section briefly describes the process of growing the
GMM-UBM into a HMM. The HMM is also trained using
MFCC features. More details about how the GMM is grown
into a full-fledged HMM are provided in [16]. The HMM
consisting of 128 states is initialized using the 128 mixture
component GMM. The HMM model used in this paper has an
ergodic architecture (unlike the left-to-right architecture used
in supervised HMM training) and the Baum-Welch algorithm
is used to learn the parameters of the model with a maximum
likelihood criterion [17]. The transition probability matrix
to train the HMM is initialized such that the self transition
probability for all the states is given a high value (0.7) and the
other transitions are distributed equally. This initialization
imposes contextual constraints by enabling the same HMM
state to generate successive frames of MFCC vectors. The
observation density of the states in the model are GMMs with
8 mixture components. The HMM posteriograms can also be
used directly for minimal pair ABX classification.

The trained HMM model allows the generation of state
alignments from the training data (Viterbi algorithm) which
are used in hybrid DNN framework (similar to the hybrid
HMM-DNN modeling in ASR [18]). The GMM/HMM
model training as well as the generation of cluster/state align-
ments are done using the HTK toolkit [19].

2.4. Deep Neural Network

Using the UBM model either from GMM or HMM, the mix-
ture component/state alignments of the acoustic features are
generated at the frame level. We use these alignments with
the corresponding MFCC input frames to train a feed for-
ward neural network using the stochastic gradient descent al-
gorithm. We also experiment with training the neural network
using autoencoder embeddings along with the HMM-UBM
state alignments (the autoencoder embeddings are generated
at the same sampling as the input features). The DNN model
is learned with a cross entropy cost function and a softmax
target layer over 128 classes. After the model training, the
hidden layer features before the softmax layer are used in
DTW based minimal pair ABX classification with the cosine
distance scoring. The DNN training requires careful frame



Table 2. Baseline and topline results for the corpus measured using minimal pair ABX error rate (%).

English French Mandarin Avg. L1 L2 Avg.1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s

Baseline within 12.0 12.1 12.1 12.5 12.6 12.6 11.5 11.5 11.5 12.0 10.3 9.3 9.4 14.1 14.3 14.1 11.9
across 23.4 23.4 23.4 25.2 25.5 25.2 21.3 21.3 21.3 23.3 23.6 23.2 23.0 30.0 29.5 29.5 26.5

Topline within 6.5 5.3 5.1 8.0 6.8 6.8 9.5 4.2 4.0 6.2 8.7 7.1 7.0 6.6 4.6 3.4 6.2
across 8.6 6.9 6.7 10.6 9.1 8.9 12.0 5.7 5.1 8.2 12.8 10.5 10.4 7.1 3.6 4.3 8.1

Table 3. Results for various system components on the development languages measured using the minimal pair ABX error
rate (%). All the systems are trained with MFCC features.

System English French Mandarin Avg.1s 10s 120s 1s 10s 120s 1s 10s 120s

GMM-128 within 9.0 8.2 8.1 12.7 11.6 11.6 13.7 12.4 12.2 11.1
across 13.3 12.4 12.4 17.9 16.7 16.6 14.9 13.9 13.9 14.7

GMM-128-DNN within 8.3 7.3 7.1 11.2 9.9 9.8 11.7 10.3 10.2 9.5
across 13.8 12.4 12.2 17.8 16.0 15.8 14.3 13.3 13.3 14.3

GMM-256 within 8.2 7.3 7.4 11.9 10.9 10.8 12.4 11.5 11.4 10.2
across 12.8 11.8 11.7 17.2 15.7 15.6 14.0 13.1 13.1 13.9

GMM-256-DNN within 8.2 7.2 7.0 10.9 9.7 9.6 11.3 10.2 10.1 9.4
across 13.8 12.4 12.2 17.5 16.0 15.6 14.0 13.2 13.2 14.2

HMM-128 within 8.6 7.2 7.8 11.7 10.9 10.9 13.4 12.7 12.7 10.7
across 13.8 12.4 11.7 16.3 14.9 14.9 15.0 14.1 14.0 13.9

HMM-128-DNN within 7.9 7.0 7.0 10.6 9.2 9.3 10.5 9.4 9.3 8.9
across 13.3 12.0 11.9 17.3 15.9 15.6 13.0 12.1 12.2 13.7

AE within 8.3 7.5 7.6 10.4 9.4 9.3 9.1 8.2 8.2 8.7
across 19.2 18.0 17.9 22.0 20.0 19.9 14.8 14.3 14.4 17.8

selection (exclude the speech frames that do not align well
with any of the unsupervised HMM states) to avoid any con-
vergence issues [16]. The DNN was implemented using the
Theano package [14].

2.5. System Combination

In our experiments, we find that the autoencoder features pro-
vide good representations for intra speaker minimal pair ABX
task while the HMM-DNN models provide robust representa-
tions for inter speaker ABX tasks (Sec. 4). Thus, we perform
a system combination of the two systems. One approach to
system combination uses the AE embeddings for the final
DNN training (using the HMM state alignments). Another
approach for system combination is obtained by modifying
the cosine distance metric in the following fashion,

C ′(A,X) = α CAE(A,X) + (1− α) CHMM (A,X)

whereA,X represent a pair of words andC denotes the DTW
distance using cosine similarity measure with either the au-
toencoder embeddings (AE) or theHMM -DNN based rep-
resentation. The combined distance C ′ is used in the final
minimal pair ABX scoring. A similar combination is also

used to compute C ′(B,X). The parameter α is obtained on
the development set using the languages provided in training.

3. EXPERIMENTAL SETUP

3.1. Data

The data used in experiments is the ZeroSpeech 2017 corpus
[5]. The details of the database are provided in Table 1 for
training languages (English, French and Mandarin) as well as
for the two surprise languages (L1 and L2). The training data
for Mandarin and L2 are relatively small compared to other
languages as well as the number of speakers. The training
data is also setup in such a way as to simulate infant language
learning data where large amount of speech from a few speak-
ers (Relatives) with higher per speaker data is present com-
pared to large number of other speakers with small amount of
per speaker data (Outsiders).

The results for the ABX tasks are measured as an error
rate which is the percentage of ABX pairs incorrectly classi-
fied (a ABX pair with “bag”,“beg” and “beg” denoting A, B
and X respectively is said to be incorrectly classified if dis-
tance C(A,X) is less than C(B,X)). Here C denotes the



Table 4. Definition of various system combinations used in
ZeroSpeech evaluation.

Name Definition
S1 Cos. Comb. of AE and GMM-DNN (MFCC)
S2 Cos. Comb. of AE and HMM-DNN (MFCC)
S3 AE feats. for HMM alignments in DNN

DTW based distance computed using the cosine similarity
measure (for real valued features), the modified cosine sim-
ilarity measure (Sec.2.5) or the Kullbeck-Leibler (KL) dis-
tance for posterior features. For each language, the error rate
is measured under two conditions - within speaker and across
speaker pairs (A,B are always from the same speaker while
X can be from the same speaker or a different speaker). The
words A,B and X come from test utterances that are of vary-
ing duration (1s, 10s and 120s) and the results are reported
separately for different lengths of the test recordings.

3.2. Setup

The features used in all the models are the mel-frequency cep-
stral coefficients (MFCCs) extracted using 25 ms windows
which are shifted every 10 ms. The 13 dimensional coeffi-
cients are appended with deltas and acceleration coefficients
to provide 39 dimensional features. We perform a speech
activity detection using an adaptive energy based threshold-
ing [20]. The speech regions are then normalized at the ut-
terance level using cepstral mean and variance normalization
(CMVN). A global CMVN is also applied across the record-
ings in the training data before the model learning step. All
the models in our setup use the same features and the models
are trained using the training portions of the five languages in
the ZeroSpeech corpus (Table 1).

The autoencoder (AE) model is a 5 layer feed forward
DNN with a MSE cost having a configuration of 39× 1024×
1024× 50× 1024× 1024× 39. The GMM model consist of
128/256 mixture components and the HMM model contains
128 states with 8 mixture component GMMs in each state.
The DNN model is trained with MFCC/AE embeddings and it
has a configuration of 39/50×512×512×128. The 128 targets
for DNN come from GMM/HMM mixture-component/state
alignments. The hidden activations from the last hidden layer
of 512 units is used for the minimal pair ABX task.

4. RESULTS AND DISCUSSION

The baseline and topline results for the ZeroSpeech corpus
using the minimal pair ABX error rate measure is shown in
Table 2. The first row provides the result for the baseline
system which uses MFCC features with cosine distance met-
ric. Among the various languages, the L2 data has the highest
error rate while the Mandarin data provides the lowest error.

Also, the across speaker error pairs result in error rates that are
about twice the error rates for the within speaker pairs. The
second row provides the topline results which are obtained
using a supervised phone recognition engine based on Kaldi
[21] with labeled data from each language. The topline per-
formance for the surprise languages (L1 and L2) are similar
on the average to the performance on three known languages.

During the training and development phase, only the three
known languages were provided. Thus, most of the system
development experiments were performed using these three
languages. The results for the system development with var-
ious individual system components are reported in Table 3.
The system combination results are reported in Table 5.

4.1. Sub-system Results

The first and third row of Table 3 report the results for the
GMM system using the mixture component posterior features
with 128 and 256 mixture components respectively. The min-
imal pair ABX score in this case is computed using the DTW
distance with a KL distance measure. The GMM -128 and
GMM -256 provides significant improvements over the base-
line system with average relative improvements of 8% and
16% for within speaker and 37% and 40% for across speaker
conditions respectively. The second and fourth rows consist
of the results for the DNN model trained with GMM cluster
alignments. The GMM alignments are obtained by finding
the mixture component index which has the maximum pos-
terior value and these are used as labels for the DNN. The
activations from the final hidden layer of the DNN model are
used in the ABX scoring along with the cosine distance metric
(Fig. 1(b)). The DNN model using GMM based alignments
improves the performance over the GMM posterior features
for both within and across speaker conditions (average rel-
ative improvements of 14% are achieved for within and 3%
for across speaker conditions). Using the DNN backend, we
also find that both 128 and 256 mixtures gives similar per-
formance. Thus, we use 128 mixture component GMM for
initializing the HMM.

The fifth row of Table 3 shows the results for the HMM
with 128 states using the state posterior features along with
the KL based minimal pair ABX scoring. This improves over
GMM -128 in both within and across conditions by 4% and
5% respectively. Further, the hybrid DNN model (Fig. 1(c))
improves the HMM-128 system and provides the best across
speaker performance among all the individual system compo-
nents (average relative improvements of 41% over the base-
line system).

The results for the autoencoders (AE) embeddings using
a cosine distance based minimal pair ABX scoring are shown
in the last row of Table 3. The AE features provide the best
within speaker performance among all the individual systems
considered here (average relative improvements of 28% over
the baseline system). However, AE embeddings do not gen-



Table 5. Results for various system combinations submitted to the ZeroSpeech 2017 challenge on evaluation set measured
using minimal pair ABX error rate (%).

English French Mandarin Avg. L1 L2 Avg.1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s

S1 within 7.4 6.6 6.6 9.8 8.7 8.5 9.3 8.5 8.3 8.2 6.9 6.1 6 9.9 9.2 9.1 7.9
across 14.5 13.3 13.2 17.8 16.4 16.2 13.2 12.8 12.7 14.5 16.9 14.7 14.7 18.8 17.7 17.7 16.8

S2 within 7.4 6.6 6.6 9.8 8.5 8.4 9.2 8.3 8.2 8.1 6.8 6 6 10.1 9.6 9.6 8.0
across 13.7 12.5 12.4 17.2 15.8 15.6 12.6 12.0 12.0 13.8 16 14 13.9 17.9 16.9 16.6 15.9

S3 within 7.7 6.8 6.7 10.4 8.9 8.8 10.4 9.3 9.1 8.7 7.3 6.2 6.1 11.1 10.3 10.2 8.5
across 13.2 12.0 11.9 17.2 15.6 15.4 13.0 12.2 12.3 13.6 15.5 13.5 13.4 17.6 16 16 15.3

eralize well for the across speaker conditions compared to the
HMM-DNN representations.

4.2. System Combination Results

The definition of various systems used in the system com-
bination experiments is given in Table 4. For S1, we com-
bine the representations of individual sub-systems AE with
GMM -DNN using the combination method mentioned in
Sec. 2.5. A similar cosine distance combination of AE em-
beddings with HMM -DNN is denoted as S2. The system
S3 refers to the use of AE embeddings in training the hybrid
DNN using the HMM state alignments (Fig. 1 (d)). The best
value of the parameter α (obtained on the development set) is
0.8 for the modified cosine distance metric of S1 and S2 .

Table 5 provides the summary of the evaluation results
for all the conditions in the five languages. As seen here, the
cosine distance based combination (S1 and S2) improves the
within speaker conditions of ABX pair error rate compared
to the best individual system result in Table 3 for the known
languages. Among the three system combination methods
for the surprise languages (L1, L2), the best within speaker
condition result is obtained for S1. However, for the across
speaker conditions, the S3 system which is the feature level
combination (using AE features for DNN training with HMM
state targets), provides the best results for both known lan-
guages and the surprise languages. In terms of average rela-
tive improvements over the baseline features for the surprise
languages, the proposed system S3 improves 29% for within
speaker pairs and 42% for the across speaker pairs. It is also
interesting to note that, for language L1 in all the durations
(1s, 10s and 120s) for within speaker pairs, the results for all
the proposed systems (S1,S2,S3) are better than the topline
results (supervised phone recognition system). These results
highlight that the proposed approaches for unsupervised rep-
resentation learning in language independent settings can ap-
proach the linguistic similarity results achieved by the su-
pervised phoneme posterior features for the matched speaker
pairs.

5. SUMMARY AND FUTURE WORK

In summary, we have shown that using the GMM and HMM
cluster assignments followed by the training of a hybrid DNN
model provides considerable benefits for the task of unsu-
pervised subword modeling. Also, the features derived from
the autoencoder are beneficial for language generalization in
within speaker conditions. Thus the combination of the two
approaches further improves the results for within speaker
pairs. This may help in reducing the performance gap be-
tween within speaker and across speaker pairs. In addition,
using the AE embeddings with the HMM state alignments
in a DNN framework generates representations that are rela-
tively robust to speaker variability. With experiments on sur-
prise languages, we have also showcased that the proposed
systems generalizes across multiple languages which is one
of the intended goals for the ZeroSpeech 2017 challenge.

While the experiments reported in this paper are encour-
aging, we believe that further progress can be achieved by em-
ploying Vocal Track Length Normalization (VTLN) and Fea-
ture space Maximum Likelihood Linear Regression (fMLLR)
techniques using the state alignments. In addition, DNN train-
ing methods using soft alignment instead of hard alignments
might further prove to be beneficial. In the future, we also
plan to investigate other neural network architectures such as
convolutional and recurrent neural networks that incorporate
more contextual information.
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