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ABSTRACT

The ability to detect talker changes when listening to conversational
speech is fundamental to perception and understanding of multi-
talker speech. In this paper, we propose an experimental paradigm
to provide insights on the impact of language familiarity on talker
change detection. Two multi-talker speech stimulus sets, one in a
language familiar to the listeners (English) and the other unfamiliar
(Chinese), are created. A listening test is performed in which listen-
ers indicate the number of talkers in the presented stimuli. Analysis
of human performance shows statistically significant results for: (a)
lower miss (and a higher false alarm) rate in familiar versus unfamil-
iar language, and (b) longer response time in familiar versus unfa-
miliar language. These results signify a link between perception of
talker attributes and language proficiency. Subsequently, a machine
system is designed to perform the same task. The system makes
use of the current state-of-the-art diarization approach with x-vector
embeddings. A performance comparison on the same stimulus set
indicates that the machine system falls short of human performance
by a huge margin, for both languages.

Index Terms— Talker change detection, language familiarity,
benchmarking speaker diarization, response time, human versus ma-
chine.

1. INTRODUCTION

When a speech signal is processed in the human brain, we not only
extract the underlying message but also extract para-linguistic at-
tributes, such as the identity, dialect, age, and emotional state of
the talker [1]]. Evidence from behavioral studies suggests that per-
ception of voice attributes influences speech processing. For exam-
ple, speech in noise perception is more intelligible when a talker is
familiar (2| 3| |4] and familiarity with accent impacts interpretation
of the meaning of utterances [5]]. Interestingly, perceptual learning
of talker identity also enhances speech intelligibility in both quiet
[2] and acoustically-cluttered environments [3 4)]. Further, talker-
dependent adaptability in perception can be induced from exposure
to just a few sentences [6]]. These benefits hint at listeners’ ability to
track talkers in conversational speech, even in the absence of visual
or spatial cues.

Detecting a change in talker identity seems to rely upon an abil-
ity to track regularities and deviations in the perceived features spe-
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cific to a talker. Lavner et al. [7] suggest that talkers are identified by
a distinct group of acoustic features. In a similar way, Kimberly et al.
(2003) [8] have described inattention to talker changes in the context
of listening for comprehension as a form of talker change deafness
[9l]. Further, Neuhoff et al. [[10] found interactions between change
detection and attention to language (and indexical) attributes. On av-
erage, talker change detection (TCD) can happen within 700 msec;
this response time can be predicted from vocal tract feature differ-
ence between speech segments before and after the change instant
[11,12]. However, it is unclear if TCD is influenced by language
familiarity, a deeper understanding of which could help to establish
a bi-directional link between perceived phonological representation
and voice perception. Evidence from the literature does suggest a
dependence between linguistic proficiency and talker identification.
For example, talker identification improves with increasing com-
plexity in speech, that is, from vowels to words to sentences [13].
Also, repeated exposure to a foreign language does not suffice to
improve talker identification performance in the foreign language
[14]. Further, dyslexic listeners have poor talker identification even
in their native language [[15].

This paper aims at furthering the understanding of TCD perfor-
mance when multi-talker speech utterances are from an unfamiliar
language. Towards this end, an experimental setup is designed where
every trial contains two sentences which have been carefully chosen
not to have any contextual continuity. The sentences can be either
from the same speaker or from different speakers (sex matched). The
listener in the experiment is asked to report the number of talkers (1
or 2) in the trial after hearing the two sentences. The experiment
contains an equal number of same and different talker trials. Us-
ing trials from a proficient language (English) and from an unknown
language (Chinese), we analyze the impact of language familiarity
in talker change decisions and response times.

In the design of machine systems for talker change detection, a
focus on speaker diarization has attracted renewed interest [[16}[17]].
Most of the testing data for speaker diarization is in the English lan-
guage with large amounts of in-language training data and record-
ings of significantly long duration (5 — 10 minute recordings). In this
paper, we attempt to benchmark the diarization systems on the task
done by the humans participants. Specifically, this analysis high-
lights machine vs. human performance for stimuli of short duration.
The link for our experimental setup can be found below. E]
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Fig. 1. Illustration of the experimental setup used in the listening test. Two sentences from either a single talker or two talkers are spliced to
form the stimuli. The two sentences do not share any contextual relationships.
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Fig. 2. Scatter plot of the stimuli features in English and Chinese.
The English character units are grapheme sized English alphabets
while the Chinese character units are syllable sized Chinese charac-
ters.

2. MATERIALS AND METHODS

The experimental paradigm proposed to probe the human perfor-
mance for detecting multiple talkers in speech utterances is schema-
tized in Fig.[T]

Stimuli: Each English language stimulus was composed of two
utterances sourced from audiobooks taken from the LibriSpeech au-
diobook corpus [18], a public-domain corpus of audio data corre-
sponding to audiobooks by 1000 different talkers. These audiobooks
feature natural speech intonations. Both male and female talkers
are considered, as labeled in the corpus. In two talker stimuli, the
concatenation was performed only with speakers of the same sex.
The utterances (single sentence level) were always drawn from dif-
ferent stories, or different parts of a story, so that semantic conti-
nuity did not provide a clue to talker continuity. For the Chinese
stimuli, we used the Aishell corpus containing 500k record-
ings from 400 speakers in a high fidelity, noise-free environment. In
these recordings, the talking varied among five broad topics like “Fi-
nance”, “Sports”, “Science”, “Entertainment” and “News”. For both
English and Chinese stimuli, we considered sentences which were
between 2.5 — 5 sec in duration.

An independent informal listening test with utterances drawn
from the corpus revealed that human participants easily perceive

speaking rate and average fundamental frequency differences across
talkers. Fig. 2] provides an illustration of the variability along these
two feature dimensions for the corpus. Here, the fundamental fre-
quency and speaking rate were measured using the Kaldi pitch esti-
mator [20]] and the characters-per-second extracted from the spoken
text, respectively. To make talker change detection challenging, we
resorted to concatenating utterances based on the euclidean distance
in this 2-D space. For single talker stimuli, we chose utterances from
the same talker that were maximimally distant in the feature space.
For multi-talker stimuli, we chose utterances from across talkers that
were minimally distant in the feature space. All stimuli were manu-
ally verified to be devoid of any noise or other channel distortions.

Following this strategy, two sets of stimuli were designed (100
trials each) to focus on the language familiarity aspect of the par-
ticipants. The first set was all English language utterances (known)
and the second set contained all Chinese language utterances (un-
known). No talker appeared in both of the sets and no stimulus
was repeated within a set. On average, the duration of a single trial
was 7.35(=%1.14) seconds (English) and 7.30(£1.02) seconds (Chi-
nese). In each stimulus set, exactly half of the trials had a single
speaker while the other half had two speakers. The trials from the
two languages were not mixed in the listening experiment with each
stimulus set presented in its respective session. Whether participants
started with the English or Chinese set was counterbalanced across
participants.

Farticipants: A total of 14 human participants (age between
21 — 27; mean age 24.2 and university students) with self reported
normal hearing participated. All were proficient in English (con-
firmed by their university education curriculum) and had no prior
exposure to Chinese. The protocol for the behavioral experiment
was approved by the Indian Insitute of Science Ethics Board. All
participants provided written consent for the test.

Procedure: Fig.[T]illustrates the listening test experiment setup.
The experiment was carried out in isolated sound booth and partic-
ipants listened to the stimuli through headphones. The experiment
was presented using a GUI developed with Python and HTML. After
presentation of each stimulus, the listeners responded with a button
press indicating the number of talkers (1 or 2) in the stimulus. A
visual feedback (correct/incorrect) was provided to the participant
after every trial.

On average each session took 20 minutes and there was a
10 minutes break between sessions, making the total experiment
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Fig. 3. Depiction of human performance on english (familiar) and
chinese (unfamiliar) stimulus set as percentage of miss (top) and
false alarm (bottom) responses. The error bars indicate one standard
deviation.

duration around 45 minutes. We find that this experimental setup
challenges the continuous perception faculties of the auditory sys-
tem to detect, compare, and subsequently categorize the stimuli.
This is unlike previous behavioral studies exploring voice percep-
tion [14} which have specifically focused on talker identification
after voice exposure training on each talker.

3. HUMAN PERFORMANCE RESULTS

The following measures are used to analyze the performance of the
human participants.

e Miss rate: The percentage of two talker trials that were re-
ported as having only one talker.

o False alarm rate: The percentage of single talker trials that
were reported to be multi-talker trials.

The performance of the human participants in the talker detec-
tion experiment is reported in Fig.[3] As seen here, the performance
is different across the two languages. In particular, the Chinese lan-
guage trials showed a significantly higher miss-rate compared to the
English trials, ¢(26) = 4.53,p = 0.0001. In terms of the false
alarm-rate, the role of the two languages are reversed, that is, the
Chinese trials had much lower false alarm rates compared to the En-
glish trials, ¢(26) = —2.60,p = 0.015. It is also interesting to note
that this effect is remarkably consistent among all the participants
in the listening test. These results indicate a fundamental difference
in talker change detection for familiar vs. unfamiliar languages and
suggest an interplay between perception of voice attributes and se-
mantics. The results are also in agreement with talker identification
studies based on exposure training [[14].

4. HUMAN RESPONSE TIME

The response time in this task corresponds to the time taken after
the end of the second sentence to provide the decision. The trials in
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Fig. 4. Depiction of human response time on english (familiar) and
chinese (unfamiliar) stimulus set. The error bars indicate one stan-
dard deviation.

which the participants took more than 2 s for a decision were con-
sidered as outliers and were excluded from the mean computation
(less than 2% of trials). Further, we analyzed the response times for
correct and incorrect responses separately. The mean response times
across subjects is shown in Fig. [} For most of the participants, the
response time for the English task is greater than the response time
for Chinese. Comparing between languages, we find a statistically
significant difference for both correct (£(26) = —2.63,p = 0.014)
and incorrect responses (£(26) = —2.51,p = 0.019).

The average response time over all the 14 participants in En-
glish (0.67 s) was also similar to the previous observations of re-
sponse time of 0.69 s reported in [11]]. However, the response time
for Chinese trials was 0.15 s less than those for English. We hypoth-
esize that this difference may occur as a result of interference, i.e.
in a known language, the semantics of the spoken utterances distract
from the ability to focus on talker features, increasing cognitive load
and delaying the talker change decision. Such semantic interference
does not occur in the case of an unknown language and results in
faster response times. This notion of interference and increased cog-
nitive load is in line with previous research, e.g. [21] 22} 23] 24]] but
remains to be further tested using the current paradigm.

5. MACHINE SYSTEM FOR TCD

5.1. System Description

The speaker diarization is based on using x-vector embeddings
followed by a probablistic linear discriminant analysis (PLDA)
approach [23]). The model is implemented in Kaldi [26].

5.1.1. Feature Extraction

The acoustic features used are 30 dimensional mel frequency cep-
stral coefficients (MFCC), extracted over 25 msec short-time speech
segments with 10 msec overlap over temporal shifts, for training the



x-vector system [27]. A sliding mean normalization was applied
over a 3s window.

5.1.2. x-vector Extractor

For training, we use a combination of VoxCeleb 1 and VoxCeleb 2
[28,129] augmented with additive noise and reverberation according
to the recipe from [30]. Segments under 4 secs in duration are
discarded, resulting in a training set with 7, 323 speakers. Speech
samples with reverberation are augmented by convolution of clean
speech samples with room responses from the RIR dataset [31],
while noisy speech augmentation is done using additive noises
drawn from the MUSAN dataset [[32]. The x-vector model is a time
delay neural network (TDNN) [27] with 5 layers of frame level
features followed by a segment level pooling of the statistics like
mean and standard deviation. There are two feedforward layers
following the statistical pooling layer. The final layer is the speaker
target layer implementing a softmax activation and the entire model
is trained on cross-entropy loss. The x-vector embeddings are the
512 dimensional hidden layer activations immediately after the seg-
ment pooling layer. At test time, x-vectors are extracted from 1.0 s
segments with 0.5 s overlap over temporal shifts.

5.1.3. PLDA training and scoring

Probabilistic Linear Discriminant Analysis (PLDA) is used to model
speaker and channel variability space. To adapt the PLDA matrix
to the speaker change stimuli, a PCA transformation trained on the
development dataset is applied to the training set, followed by length
normalization. An utterance level PCA is applied before PLDA scor-
ing for dimensionality reduction [33].

5.1.4. Agglomerative Hierarchical Clustering (AHC)

The AHC hierarchically clusters the segments based on speaker sim-
ilarity scores (PLDA scores) and merges the clusters that represent
the same speaker identity. Clusters are merged until their similarities
dip below a stopping threshold. We vary the threshold from -0.250
to 0.250, in increments of 0.005, to obtain values for the detection
error tradeoff, as plotted in Fig.[3]

5.2. Results

The performance of the speaker diarization system for English and
Chinese trials is shown in Fig.[3} This plot is obtained by sweeping
the threshold used in AHC clustering. The obtained miss rate and
false alarm rate allow a better evaluation of the system. The human
performance is the miss rate and false alarm rate computed for each
of the 14 participants as well as the average over all. As seen in this
plot, the human performance is significantly better than the machine
performance.

In the typical evaluation of diarization systems [17], the perfor-
mance is evaluated on long audio recordings of duration up to sev-
eral minutes. Hence, in the current scenario, where the recordings
range from 6 — 8s in duration, the state-of-art diarization systems
have significantly higher errors. Note that, the diarization outputs
are only analyzed in terms of the number of speakers and not the di-
arization error rate (DER) metric. Even with this simplified metric,
this evaluation shows that the human performance on multi-talker
detection tasks has less than half the number of errors generated by
a machine system. The results show that machine systems rely on
large amounts of within speaker audio to perform speaker clustering.
With only a small number of within speaker x-vector embeddings in
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Fig. 5. Comparison of talker change detection performance for hu-
man participants with state-of-art diarization system. The diarization
system output is only used for counting the number of speaker clus-
ters.The human evaluation results in terms of individual listener miss
and false-alarm rates are provided along with the mean values.

the test data (6 — 10 embeddings from each sentence), the AHC al-
gorithm has substantial trouble in identfying speaker clusters. The
performance gap highlights that understanding human processing of
talker change detection in short duration recordings can provide im-
portant cues for the design of improved speaker diarization systems.

6. CONCLUSION

In this paper, we present a novel paradigm to probe the impact of
language familiarity in talker change detection. We find that human
human detection of talker change is impacted by language famil-
iarity. In a known (English) vs. unknown (Chinese) language, hu-
mans have significantly higher false-alarm rates, lower miss rates,
and longer response times. Compared to a state-of-the-art machine
system with x-vector PLDA scoring and agglomerative hierachical
clustering, human performance for both the familiar and unfamiliar
languages on the talker change detection task results in fewer errors.
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