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ABSTRACT warping [7], RASTA processing [8] and cepstral mean subtraction
L . . . CMS) [9]. ARMA filtering of cepstral features have also been pro-
S_,peech applications in noisy and degradf_sd channel condlpons COHosed for speech recognition [10]. In many of these techniques, ther
tlnutehtct)) bte a Ch%"e?g'.ng prob:je;n ?Specgi!ly Wh:anﬂt]here IS @ MiSg 45 assumption of additive or convolutive noise model. However, in
match between the training and test conditions. In IS paper, a ryy o yjigtic scenario, it is not always possible to characterize the noise

bust s_peech fgature extraction scheme is _developed baseq on autgfesye especially for non-linear channel distortions like radio chan-
gressive moving average (ARMA) modeling that emphasizes hlgrPmels [11]. In this paper, we propose to develop a robust front-end
energy regions of the signal with a data driven modulation l‘ilterWhiCh is devoid of any n,oise model

The peak preserving ability of two dimensional autoregressive (AR) i )
models is used to emphasize the high energy regions in the spectro- N general, an autoregressive (AR) modeling approach repre-
temporal domain. The modulation filtering property is achieved bysents high energy regions with good modeling accuracy [12, 13].
moving average (MA) modeling. The ARMA spectrograms are usedne dimensional AR modeling of signal spectra is widely used for
to derive features for speech recognition in the Aurora-4 databaségature extraction of speech in the form of perceptual linear predic-
In these experiments, the ARMA model features provide significantion (PLP) [14]. The one dimensional temporal AR model has been
improvements (relative improvements $%) compared to other Proposed in the past using frequency domain linear prediction [15,
robust features. Furthermore, the robustness of these featutss is al6]- Recently, it was shown that 2-D AR modeling with modulation
verified for language identification (LID) of highly degraded radio filtering can generate robust speech representations [17]. In this pa-
channel speech. Here, the ARMA approach achieves relative inf€f, we extend this approach using autoregressive moving average

provements of up t80% over the baseline features. (ARMA) spectrogram modeling. The ARMA process is a gener-
alization of AR modeling and can estimate band-pass characteris-

tics while the AR modeling typically estimates low-pass characteris-
tics [18]. In our case, the ARMA modeling is applied on the sub-
band discrete cosine transform (DCT) components for estimating
1. INTRODUCTION temporal envelopes. The ARMA filtered envelopes are used to ob-
tain a spectrographic representation by short-term integration. Then,
Even with several advancements in the practical application of speelihear prediction based spectral smoothing is applied on this spectro-
technology, the performance of the state-of-the-art systems remagram and used for speech/language recognition in noisy conditions.

fragile in high levels of noise and other environmental distortions.  The automatic speech recognition (ASR) experiments are per-
On the other hand, various studies on the human auditory systefgymed on the noisy speech from the Aurora-4 database using a deep
have shown good resilience of the system to high levels of noise angs ;ra| network (DNN) acoustic model [6]. The results from these
degradations [1]. This information shielding property of the auditorygyheriments indicate that the ARMA modeling approach provides
system may be largely attributed to the signal peak preserving funcgqnificant improvements (relative improvements 8%6) over other

tions performed by the cochlea and the spectro-temporal modulatiqiyise robust front-ends. Furthermore, language identification (LID)
filtering performed in the cortical stages. In this paper, we attempéxperiments performed on highly degraded radio channel speech

to emulate some of the_se properties for robust feature extraction._ [11] confirm the generality of the proposed features for a wide range
One common solution to overcome the performance degradatiogf ise conditions.

in noisy conditions is the use of multi-condition training [2] where ) )
the acoustic models are trained using data from the target domain, 1n€ rest of the paper is organized as follows. In Sec. 2, we
However, in a realistic scenario it is not always possible to obtairPUtline the proposed ARMA spectrogram derivation for feature ex-

reasonable amounts of training data from all types of noisy environt@ction. Sec. 3 describes the ASR experiments using the proposed

ments. Therefore, there is a need to attain noise robustness eit{gpnt-énd. In Sec. 4, we describe our experimental setup and the re-
at the front-end signal analysis or at the statistical modeling stag&U!ts for a language recognition task. In Sec. 5, we conclude with a
The goal of this paper is to address the robustness issues in featfdef discussion of the proposed front-end.

extraction.

Various techniques like spectral subtraction [3], Wiener filter-
ing [4], power bias subtraction [5] and missing data reconstruction [6]
have been proposed for noisy speech recognition scenarios. &eatur
compensation techniques have also been used in the past like feature

2.1. Background

Index Terms— Robust Feature Extraction, ARMA Modeling,
Speech Recognition, Language Identification.

2. ARMA SPECTROGRAM ESTIMATION

This work was supported in part by Contract No. D11PC20192
DOI/NBC under the RATS program. The views expressed are tobtee . . ) o ) .
author and do not reflect the official policy or position of hepartment of  In this subsection, we briefly highlight the difference in the problem
Defense or the U.S. Government. formulation of AR and ARMA models.
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Fig. 1. Spectrogram estimation using temporal ARMA modeling.

(8) AR Spectrogram The frequency domain linear prediction (FDLP) model was pro-
posed by Kumaresan [15]. This was reformulated by Athineos and
Ellis [16] using matrix notations and the connection with DCT se-
guence is established. A simplified derivation without using matrix
notations is provided in [19]. In the FDLP model, the problem is
formulated to identify the set of coefficiends, j = 1, ... ,p such
that,

Freq. (Hz)

X[k] = iazX[k—l] + U[K], 4)

=1

where X [k] are DCT components of the signaln] andp denotes
the FDLP model order.

0 1% Time (me)**? . 1o The fundamental relationship underlying the FDLP model is that

Fig. 2. Comparison of AR = 40) with ARMA (p = 40, q = 6) the auto-correlation of the DCT signal and the squared magnitude of
spectrogram for 4000ms portion of speech signal. the analytic signal (Hilbert envelope) are Fourier transform pairs.
This is exactly analogues to the relation in Eq. 2. In other words, AR
2.1.1. ARModeling modeling of Hilbert envelope can be achieved by linear prediction of

DCT components.
Autoregressive (AR) modeling of short-term spectrum is widely used
in speech and audio signal processing for about four decadesl@ow [ )
13]. Letz[n] denote the input signal for = 0, ... ,N — 1. The ~ 21.2. ARMA Modeling
time domain LP model is formulated to identify the set of coeffi-
cientsa;,j = 1, ... ,p such thaty>?_, a;jz[n — j] approximates
z[n] in a least square sense [12], wherdenotes the model order.
Letr,[r] denote the autocorrelation sequence for time domain sign
z[n] with lag 7 ranging from—N + 1, ... ,N — 1.

In the proposed framework, we use the DCT components in an ARMA
modeling framework to estimate the sub-band envelope. The ARMA
ar&]wodel applied on DCT componeni§[k] is the identification of the

et of coefficients,;, I = 1, ... ,pandb,,,m = 1, ..., g such that,

N-1 P q
ol = = 3 alnjafn — 7] ) X[k =Y aXk =1+ buUlk —m], (5)
o n=|7| =1 m=0
Let 2[n] denote the zero-padded signdh] = z[n], n = wherep, ¢ denote the model order of the AR and MA components
0,.,N — Landé[n] = 0, forn = N,.,2N — 1. T7he rela- andU[k] denotes zero mean white noise signal. The AR model is a

specific case of the ARMA model withy,, =0, form > 0. The
ARMA envelope is given by,

tion between the power spectrum of the sigRalk] = | X[k]|> and
the autocorrelatiom,[7] is given by the Fourier relation,

P, [k] = -7:[7'90 [TH (2) E [n] B | Egnzo bm67i27rmn‘2
~ x - P —i2miln
whereX [k] is the discrete Fourier transform (DFT) of the sighpl] | 2o ae™ 2|

fork =0, ... ,2N — 1. This relation is used in the AR modeling . ' .

of the power spectrum of the signal [13]. The time domain IinearComparlng Eq_. 3_and E. 6 we f'nd that ARMA envelope IS the AR

prediction (TDLP) refers to the use of time domain autocorreIatione.r('jve(']llobIDe r:nultlplleddb)ll. a f|n|.te |m£ulse Tesponse (FIIF)JlIter k;))rq-

sequence to solve the linear prediction problem. The optimal Se;ﬁeesub)fttaitljvllﬁ\i;E)]grteelr?\?él(?lr;ci;eehiztmtztrm:cltz 1{;p;em(t)%8|;€gr11

ojocadag:r;gr]] \Avghnggze\fgﬁﬂge g\fvgrridigggzn?rr@ with ap = 1 filter over long temporal regign’s of signal. Thus, ARMA modeling

P P P ' combines AR estimation with a data-driven modulation filter. In our
p, k] = G ®) estimation, we use gain normalized ARMA envelopes £ 1 and

| ;zg aje—i27rjk‘2 bo = 1).

(6)
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Fig. 3. Comparison of mel spectrogram and ARMA spectrogram for cleaedp noisy speech (babble noisel@tdB SNR) and radio
channel speech (channel C).

2.2. Feature Extraction . . .
Table 1. Word error rate (%) in Aurora-4 database with clean train-

ing for various feature extraction schemes.

The block schematic of the proposed approach for feature extra¢ Cond. | MFBE | ETSI | PNFBE | AR | ARMA
tion is shown in Fig. 1. Long segments of the input speech sig . Clean Same Mic
nal (1L000ms of non-overlapping windows) are transformed using Clean [ 31 [ 31 [ 58 [ 31 [ 30
IDCT. The lf)utl)l-ba:jnd Dch:T signal is V\(/jintlllowed intoI adset O|f1 overt-) - Clea.n Oiff Micl . .
apping sub-bands. The ARMA modeling is applied on the sub- :
band DCT components to estimate the sub-band envelope Eq.( ) Clean [ 14.9 [ 14'8. [ 11.3 - [ 11.3 [ 1.7
In our ARMA estimation, the numerator and denominator are estit___ Additive Noise Same Mic
mated separately to reduce the computational complexity. Airport 23.6 13.6 17.6 15.4 13.7
Babble 20.7 14.1 15.9 15.2 13.0
The sub-band ARMA envelopes are integrated with a Hamming Car 8.0 8.7 5.9 5.6 5.0
window over &5 ms window with al0 ms shift. The integration in Restaurant| 26.3 19.4 21.9 19.1 17.3
time of the sub-band envelope yields an estimate of the short-term Street 19.8 18.3 16.9 14.8 13.6
power spectrum. For eaddd ms frame, these power spectral esti- Train 20.8 16.9 16.0 14.9 14.5
mates are transformed to temporal autocorrelation estimates using Avg. 19.9 15.2 15.7 14.2 12.9
inverse Fourier transform and used for time domain linear prediction Additive Noise Diff. Mic
(TDLP). This gives the spectrally smoothed ARMA spectrogram. Airport 415 209 35.6 31.2 205
Although ARMA modeling can also be applied to spectral do-| Babble 38.4 31.3 343 | 311) 29.6
main, we apply ARMA model only in the temporal domain for this Car 258 23.9 20.7 17.8 18.4
work. In Fig.2, we compare the spectrographic representation from Restaurany ~ 41.3 34.0 37.4 32.4 311
AR and ARMA modeling. As seen here, the AR modeling resultg ~ St'€et 38.1 33.5 331 1292 283
in a smooth representation which emphasizes only the high energy Train 37.3 32.1 31.7 29.2 29.1
regions of the signal. The ARMA modeling on the other hand, en AVg. 37.1 30.8 32.1 28.5 2r.7

hances the changes in the signal energy while suppressing the con-

stant regions (band-pass modulation filtering) in addition to model-

ing the signal peaks. The tradeoff between these two modeling prop- 3. SPEECH RECOGNITION EXPERIMENTS
erties can be controlled in the ARMA model by varying the model
order valuegp, q]. Unlike the previous techniques like RASTA [8],
the modulation filtering in ARMA modeling is data driven. This
modulation filtering property of the ARMA model provides good
noise robustness properties as shown in the experiments.

We perform a set of automatic speech recognition experiments in
the Aurorad database [20] using a deep neural network (DNN) hy-
brid system [6]. We use the clean training setup which con®if8

In Fig. 3, we compare the spectrographic representation of thelean recordingsl@h) for training the acoustic models. The system
speech signal in three conditions - clean speech, noisy speech (ages a tri-gram language model wiik vocabulary size. The test
ditive babble noise at0 dB signal-to-noise ratio (SNR)) and ra- data consist o830 recordings each from4 conditions which in-
dio channel speech (from channel C in the RATS database [11]tlude clean testing with same microphone, clean testing with differ-
The plots compare the representation from the conventional mel freént microphone¢ additive noise conditions which include airport,
quency analysis with the ARMA representation. As seen here, thbabble, car, restaurant, street and train noige-atl5 dB signal-to-
proposed approach yields a representation focussing on importanoise ratio (SNR) and conditions with the combination of additive
regions of the clean signal. For the degraded conditions, the reprand channel noise.
sentation provides a good match with the clean signal suppressing We experiment with various feature extraction methods for the
the effects of noise. DNN-ASR system namely - mel filter bank energies (MFBE), power



Table 2. LID performance (in terms of EER (%)) for various feature techegjior120s, 30s and10s duration.

120s 30s 10s
Cond. | MFCC | MVA | PNCC | ARMA MFCC | MVA | PNCC | ARMA MFCC | MVA | PNCC | ARMA
Chn.A| 21.0 125 15.0 8.1 21.0 13.3 175 11.0 245 20.0 23.6 16.6

Chn.C| 145 16.6 13.9 13.2 13.8 15.4 10.9 10.5 20.0 221 194 17.7
Chn.D| 185 16.6 131 12.2 22.0 191 16.1 17.3 243 22.9 195 20.2
Chn.F| 124 19.9 7.7 55 115 16.7 10.1 6.9 17.3 23.2 145 12.5
Avg. 16.6 16.4 12.4 9.7 171 16.1 13.7 11.4 21.3 221 19.3 16.7

lation types, network parameter settings etc [11].

Table 3. Description of RATS radio communication channels [11]. The five target languages are Arabic, Farsi, Dari, Pashto and

Channel Characteristic Urdu. In order to investigate the effects of an unseen communica-
A Receiver 50kHz offset tion channel (not seen in training), we divide the eight channels to
C Receiver 3kHz offset two groups - channels B,E,G,H used in the training and the channels
D Frequency Shift A,C,D,F used in testing. This division of channels is done to target
F Spread Spectrum the realistic application of these systems where the noise and chan-

nel characteristics of the test data are not available during training.

normalized filter bank energies (PNFBE) [5] and ETSI [4]. All these The description of the four test channels is given in Table 3.
features use a1 frame context with utterance based mean variance 1 N€ training data consist @ft, 123 recordings witr270 hours of
normalization. We also compare the ARMA filtering method with data from each of the four noisy communication channels (B,E,G,H)
the AR modeling technique [21]. For these features, weldsaod- and the test set consists ©f164 recordings with _ab0u15 hours
ulation components from each mel-band obtained by a DCT0on of data.fr.om each of the fou_r target c‘hannels of interest (A,C,D,F).
ms windows of sub-band envelopes. The modulation componenfEhe training and test recordings consisti@fs, 30s and_lOs speech
are spliced with their frequency derivatives to form the input fea-S€gments. The speech features are processed with feature warp-
tures for the DNN. For the ARMA spectrogram estimation, we usdnd [7] and are used to train a Gaussian mixture model-Universal
p = 40, q = 6 poles per second per sub-band. We also use a Corrpackgrou_nd model (_GM_M-UBM) W|tth_24 m|>_<ture_com_ponents.
pression factor of.2 on the MA part for envelope computation. Then, an i-vector pro.je'ctlgn model'a(ﬁ(] dimensions is trained [23.].

For all the acoustic features, the ASR model consists of a DNNThe bac_k-end classmer_ is a multi-layer perceptron (MLP) trained
with 4 hidden layers ofi024 activations and uses context depen_Wlth the i-vectors as the input and the corresponding language labels

dent phoneme targets obtained from an initial alignment using 8s the targets [24]. The MLP ha§00 hidden units and is trained

hidden-Markov-model-GMM system. The DNNs are generativelyw'th a cross-entropy cost function. The performance of the LID sys-

pre-trained with a restricted Boltzmann machine (RBM) trained onemis measured in terms of_equal error rate (EE.R)' .
We experiment with various feature extraction schemes in the

the acoustic features. The DNN training and ASR setup are obtainei_ D system like - MFCC features, MVA features [10], PNCC fea-

from the Kaldi toolkit [22]. The performance of the ASR system is )
measured in terms of word error rate (WER). tures [5] and the' proposed ARMA modellng approaqh. The results
The ASR results for various feature pr ina schemes is sh for the LID experiments for various features is shown in Table. 2. As
€ ESUTLS Tor various eature processing Schemes IS shovgiiq , here, the PNCC features provide the best baseline performance

in Table 1. Among the baseline features, the ETSI features provid : : )
the best ASR performance on the noisy conditions. The AR model?n these highly degraded noisy channels. The proposed ARMA fea

ing aoproach improves the performance on all the noisv condition ures provide significant improvements over the other features con-
Ing app Improv P ISy MONRidered here for most of the channel conditions (except channel-D in

. ; : L OIN€S0s and10s duration). We obtain an average relative performance
the benefits of AR modeling with the modulation filtering provided improvement ofl5 — 20% for the ARMA filtering approach over

Ey ';/'A nfmdellng. .Tqﬁ ARMA mogt_at! base;:it:‘ea'tAl\Jres p;O\t”di thoethe PNCC baseline. These results are in conjunction with the ASR
thes nper ormnzijn.?er:n .tehntﬁ'sy cr(;n :#)25 Oh ne trlljm;\??-M :?n. d ?esults and indicate the consistency of the proposed approach for va-
€ naisy conditions wi € same microphone, the 0 eriety of speech applications involving various types of artifacts like

achieves an average performance improvemen0®f relative com- additive and convolutive noise as well as non-linear radio channel
pared to AR model and5% compared to the ETSI features. For distortions

the noisy conditions with different microphone, the ARMA model
provides an average relative improvementl10f6 over the ETSI

features. Furthermore, the improvement obtained by ARMA model 5. SUMMARY
features over the AR model features shows the benefits of combining .
the AR model with the MA modulation filter. In this paper, we have proposed an ARMA model of spectrogram

for noise robust feature extraction. The ARMA model is applied on
sub-band DCT components to estimate the temporal envelopes and
4. LANGUAGE RECOGNITION EXPERIMENTS it combines the peak estimation properties of AR approach along

with the modulation filtering property of MA modeling. We perform
The development and test data for the LID experiments use the LD&everal speech recognition and language identification experiments
releases of phase-1 RATS LID evaluation [11]. This consists ofin noisy and degraded channel conditions. In these experiments,
speech recordings from previous NIST-LRE clean recordings s wethe proposed features provide significant improvements compared to
as other RATS clean recordings passed through eight noisy radigarious other noise robust front-ends and exhibit good generalization
communication channels. Each channel induces a degradation mogiea wide variety of acoustic distortions.
to the audio signal based on its device non-linearities, carrier modu-
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