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Introduction 

 Speech is a complex signal containing lots of information  
 Biometric – gender, language, speaker. 
 Content – word sequence, semantics, topic. 
 Higher level – emotion, environment 

 
 Wide range of applications automatic speech systems  

 Coding and Enhancement  
 Speech and Speaker Recognition, Language identification, 

Emotion Recognition 
 Speech Synthesis and Voice Conversion. 

 
 Accelerated interest in speech applications with the 

advances in mobile telecommunications. 



Problem Formulation 

 Traditional approaches to speech processing  
 Rule and heuristic based methodologies 
 Using small amounts of data 

 Recently, most speech problems are addressed as statistical 
pattern recognition problem with big data. 
 
 
 
 
 
 
 



Problem Formulation 

 Using the speech signal directly for pattern recognition 
 Speech is a time-varying non-stationary signal. 
 Information may lie in a small portion of signal. 
 May contain irrelevant information for the application. 
 Presence of noise and other distortions cause issues. 
 Size and dimensionality of the data. 

 
 A need to transform the signal into lower dimensional 

descriptors called features. 
 



Challenges  

 Challenges involved in feature extraction 
 Preserving the relevant information for the application 
 Removing unwanted redundancies in the signal – 

separating the information pertinent to the task. 
 Resilience to noise and other degradations. 
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THE  PAST … 

The farther back you can look, the farther forward you are likely to see. 

-Winston Churchill 
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Speech Coding Inspired Features 

 Coding - Transmitting the speech signal across a communication channel 
with small number of bits, having low latency. 
 Encoding the short-term spectrum. 
 Low latency processing 
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 Coding - Transmitting the speech signal across a communication channel 
with small number of bits, having low latency. 
 Encoding the short-term spectrum. 
 Low latency processing 

 

 

 

Short-term Spectrum 

Encoder  



MFCC 

 Short-term spectra integrated in mel frequency bands followed by log 
compression + DCT – mel frequency cepstral coefficients (MFCC) [Davis 
and Mermelstein, 1979]. 
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MFCC 

 MFCC processing repeated for every short-term frame yielding a sequence 
of features. 

 

 



Mel Spectrogram 

 Short-term spectra integrated in mel frequency bands followed by log 
compression – mel spectrogram [Davis and Mermelstein, 1979]. 

 Mel spectrogram constitutes an excellent tool for signal analysis and 
feature representation for speech. 
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Linear Prediction 

a2 

a1 

a3 

x[n-2] x[n-3] x[n-1] x[n] 

• Current sample expressed as a linear combination of 
past samples [Atal, 1972], 

      𝑥 𝑛 ⩰   𝑎𝑘𝑥[𝑛 − 𝑘]

𝑝

𝑘=1

 



Linear Prediction 

• Prediction error defined as the difference between 
actual value and the estimate [Makhoul, 1975], 
 
e 𝑛 =  𝑥 𝑛 −  𝑎𝑘𝑥 𝑛 − 𝑘

𝑝
𝑘=1 = 𝑥 𝑛 ∗ 𝑑 𝑛  

 
  where the filter,   𝑑 = [1  − 𝑎1  − 𝑎2 …− 𝑎𝑝] 
       

  E 𝜔  =  e 𝑛 𝑒−𝑗𝜔𝑛  =𝑁−1
𝑛=0 𝑋 𝜔 𝐷(𝜔)   

  

 
• Model parameters obtained by minimizing the L2-

norm of the error. 
 

𝐸𝑝 =  |e 𝑛 |2𝑁−1
𝑛=0  =

1

2𝜋
 |E 𝜔 |2
𝜋

−𝜋
𝑑𝜔       



Linear Prediction 

• Linear set of equations with signal autocorrelations obtained from the 
inverse of Fourier transform of the power spectrum {𝑟0,𝑟1,…, 𝑟𝑝 }.   

  
 

• Solution of LP yields the filter coefficients, {𝑎1 , … , 𝑎𝑝 }. Efficient 
coding scheme (code excited linear prediction - CELP) transmits LP 
coefficients with a few bits describing the residual signal. 
 
 

• The inverse of the filter response multiplied by the signal variance 
gives an all-pole estimate of the power spectrum of the signal. 
 

𝑃𝑥 𝜔 =
𝜎2

|D 𝜔 |2
= 

𝜎2

|1 −  𝑎𝑘𝑒
−𝑗𝑘𝜔|2

𝑝
𝑘=1

 

 
      



Linear Prediction 



Perceptual Linear Prediction 

 Critical band integration and compression to original power spectrum – 
convert to autocorrelation estimates – linear prediction [Hermansky, 1991]. 
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Perceptual Linear Prediction 

• PLP provides smooth representation which is more robust.      



Past – Discussion Summary 

Coding Inspired  

Short-term Feat. 
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Pitch 

 Voiced speech exhibits harmonic properties  
 Pitch is a psycho-acoustic measure 
 The fundamental harmonic frequency is a way of quantifying 

pitch. 
 Varies based on speaker and content ~(50 – 400 Hz). 
 Useful in speech recognition, emotion recognition and speaker 

verification 
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Estimating Pitch – Frequency Domain 

 
 
 

 
 

 

 

[Cuadra 2001] 

Harmonics at integer 

multiples of pitch 

 Estimating the signal spectrum with different warping factors. 
 Finding the peak in the product [Noll, 1969].   

 

   𝑌 𝜔 =  |𝑋 𝑟𝜔 |𝑅
𝑟=1  

 



Estimating Pitch – Cepstral Domain 

 
 
 

 
 

 

 

 The log magnitude 
spectrum contains 
regularly spaced harmonic, 
thus can be viewed as a 
periodic signal and the 
period is pitch [Childers, 
1977]. 
 

 Spectrum of log magnitude 
spectrum (cepstrum) will 
provide the pitch estimates 
  

 

 
Courtesy – Yang et al. 



Estimating Pitch – Time Domain 

 
 
 

 
 

 

 

 The difference function in the 
time domain [YIN, 2002].  

 

 
 Cumulative difference function 

 
 
 

 Absolute thresholding and 
picking the smallest τ 
 

𝑑𝑛(τ) =  𝑥 𝑛 − 𝑥 𝑛 + τ 2

𝑁

𝑛=1

 

                  1                             𝑓𝑜𝑟 𝜏 = 0 
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Prosody 

 
 
 

 
 

 

 

 Prosody is intonation, stress and rhythm of speech. 
 

 Example with pitch contours 
 DECALARATIVE: “You are going home” 

 
 INTEROGATIVE: “You are going home?”  (voice is raised at end of sentence) 

 
 IMPERATIVE: “You ARE going home!”  (are is emphasized) 
 

 Prosodic features 
 Pitch Contours, Pause durations [Shriberg 2000].   
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Time 

Delta Processing 

 

 

 

 Filtering the trajectories using a high pass filter to derive deltas – 
implemented using simple difference operations [Furui, 1986]. 

 Enhancing the temporal changes in spectrogram.  
 Widely used configuration for speech processing - spectrogram + 

deltas + double-deltas.  
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RASTA Filtering 

 Human perception of speech modulations suggest a band-pass 
characteristic with a peak around 4-8Hz [Drullman, 1994]. 

 Relative Spectra (RASTA) [Hermansky,1994] - application of a band-
pass infinite impulse response (IIR) filter on the temporal envelope of 
sub-band energy emulating human modulation processing. 
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RASTA Filtering 

 RASTA filtering – emphasizes slow changes and suppresses constant 
regions of the spectrogram as well as transients. 

 Robustness to channel noise achieved through RASTA filtering. 
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Modulation Spectrum of Speech 
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 Modeling the trajectories of individual sub-bands over a long 
duration [Kay, 1982]. 

 Typically used with a temporal context of 200-500ms around the 
current frame. 
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Modulation Spectrogram Features 
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 Stacking modulation spectral components from sub-bands – 
Modulation spectrogram of speech [Kingsbury et al., 1998]. 

 Useful representation in neural network acoustic models. 
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Frequency Domain Linear Prediction 

 Predicting the trajectories of sub-band envelopes using linear 
prediction in the frequency domain [Athineos, 2003].  

 Time-frequency duality. 

Duality 

DCT 
Temporal 

Env. 



Frequency Domain Linear Prediction 

Linear prediction on the cosine transform of the signal 

 Hilb. Env. 

DCT 

LP 



Frequency Domain Linear Prediction 

• Features from FDLP [Ganapathy, 2009]. 
• DCT of a long term signal (1000ms). 
• Sub-band Windowing of DCT. 
• Linear prediction on each sub-band DCT to derive envelopes. 
• Stacking the envelopes to form the spectrogram. 

 
 

DCT 

Speech 

FDLP 
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Spectrogram 



Frequency Domain Linear Prediction 

• Higher temporal resolution is achieved with FDLP. 
• Short-term and modulation features can be derived from the 

FDLP spectrogram. 
 
 

FDLP 

Mel 
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Robustness in Feature Processing 

Expectation ! Real 
World 

To expect the unexpected shows a thoroughly modern intellect. 

Oscar Wilde 

Courtesy – Google Images 



Robustness in Feature Processing 

Noise 

Channel 

𝑥 𝑛  

𝑞 𝑛  

𝑦 𝑛  ℎ 𝑛  

Automatic 

Speech Systems 
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 Linear channel has a convolutive effect on the speech signal. 
  
 Telephone channel/microphone channel have filter response  ℎ[𝑛] 

which has small time constant (less than 25ms). For frame index 𝑘, 
 

 Short-term cepstra (DCT of power spectrum) is modified by the 
linear channel, 
 

 

Cepstral Mean Normalization 
   

 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛] 

 𝑦𝑘 𝑛 = 𝑥𝑘 𝑛 ∗ ℎ[𝑛] 



 The mean of the cepstra over all frames in the recording is the sum 
of the mean of signal cepstra and channel cepstra 𝐶ℎ. 

 Hypothesis [Reynolds, 1994]–  
 mean of the signal cepstra is not useful component for speech processing. 
 removing the mean suppresses the effect of the linear channel. 

 
 Cepstral variance normalization to increase the robustness to signal 

scale changes (due to different speakers, recording devices etc). 
 

 Significant robustness achieved by cepstral normalization 
 Widely used in most of the speech signal processing applications. 

 
 
 

 

 

Cepstral Normalization 
   



 Mapping the distribution of the cepstral features to standard Gaussian 
distribution [Pelecanos, 2001]. 
 
 
 
 
 
 
 
 
 
 

 Robustness against noise and linear channel - widely used in speaker and 
language recognition. 

 
 

 

 

Feature Warping 
   



 Recording speech signal in a far-field environment – Received signal 
is the summation of the direct component and weighted-delayed 
components. 

 Modeled as a long-term convolutive effect 
 
 

 Different from short-term convolutive effect like telephone channel 
 Telephone channel filters have time constants < 25ms 
 Reverberant room response functions has time time constant values [200-

900] ms. 
 

  

Reverberation 
   

 𝑦 𝑛 = 𝑥 𝑛 ∗ 𝑟[𝑛] 



 Suppressing reverberation using long-term log spectral subtraction 
[Avendanos, 1996, Gelbert, 2001]. 

 Taking ~1000ms DFT of the signal (not true for short-term DFT). 
 
 
 

 Here 𝑘 denotes the index of 1000ms segments.  
 Computing the mean of log 𝑌𝑘 𝜔  and subtracting the mean 

suppresses reverberation. 
 The phase of 𝑌𝑘 𝜔   is used in the reconstruction.  

  

Long-term Log Spectral Subtraction 
   



 When speech signal is distorted with additive noise 
  
 Assuming stationary noise which is uncorrelated with the signal, 

 
 Effect of additive noise can be mitigated by subtracting the estimate 

of the noise from the signal [Boll, 1979]. 
 

 Using a voice activity detector, the noise power spectral estimate is 
obtained as mean of the power spectrum in the non-speech region. 

Additive Noise 
   

 𝑦 𝑛 = 𝑥 𝑛 + 𝑞[𝑛] 

|𝑌𝑘 𝜔 |
2 = |𝑋𝑘 𝜔 |

2 + |𝑄 𝜔 |2 



 Simple estimate of noise – average value of non-speech frames. 
 Smoothed time-varying estimate (applied only on noisy frames) 
 
  
 Reducing the musical noise by spectral flooring. 

 
 
 

 Wiener filtering –Estimating the gain function 

Spectral Subtraction 
   

𝐺𝑘 𝜔 = 1 − 
|𝑄𝑘 𝜔 |

2

|𝑌𝑘 𝜔 |
2

 

^ 

                     𝑌𝑘 𝜔
2  − α  𝑄𝑘 𝜔

2    if    𝑌𝑘 𝜔
2  > α + β  𝑄𝑘 𝜔

2 

                                       β  𝑄𝑘 𝜔
2     else 

𝑋𝑘 𝜔
2 = 

^ ^ 

^ 



 Assuming a Gaussian distribution for the spectral coefficients of 
clean speech and noise (dropping the frequency and frame index). 

 
  

 
 Minimum mean square error (MMSE) of the noise power spectrum 

[Eprhaim, 1984] given the noisy signal power spectrum 𝑌. 
 

 This estimate is the posterior mean 
 
 
 

Minimum Mean Square Error Estimation 
   

𝑄 2 = 𝐄 𝑄 2   𝑌) 
^ 



 Let 𝜉 denote a-proiri signal-to-noise ratio 
 
  
 Then, the posterior mean can be shown to be [Wolfe, 2001]. 

 
 
 

 Smoothed approach to estimate the apriori SNR [Cappe, 1994] 
 With the estimate from the adjacent frames 
 Suppresses musical noise 
 
 

MMSE Estimator 
   

ξ = 
σ
𝑋
2

σ
𝑁
2
 



MMSE Estimator 
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THE  PRESENT… 

“Yesterday is gone. Tomorrow has not yet come. We have only today. Let us begin.”  

- Mother Teresa  
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Normalizing Reverberation Artifacts 
   

• When speech is corrupted with convolutive distortion like 
room reverberation 

               𝑦[𝑛] = 𝑥 𝑛 ∗ 𝑟 𝑛     

• In the long-term DFT domain, this is a multiplication  
                        𝑌 ω = 𝑋 ω × 𝑅 ω  

• In the 𝑚𝑡ℎ sub-band,  
 
• In narrow bands, 𝑅𝑚[ω] is slowly varying, 
       𝑅𝑚 ω  ≅ 𝑋𝑚 ω × 𝑅𝑚 

 



Normalizing Reverberation Artifacts 
   

 FDLP envelope of 𝑚𝑡ℎ band found by linear prediction  
on 𝑅𝑚 ω  outputs all-pole parameters {𝑎1,.. 𝑎𝑝} 

    𝐸𝑚 𝑛 = 
𝐺

|1 −  𝑎𝑘𝑒
−𝑗2𝜋𝑘𝑛
𝑁 |2

𝑝
𝑘=1

 

  

 For reverberant speech, 𝑋𝑚 ω  is multiplied by 𝑅𝑚 
which modifies the gain 𝐺 in the FDLP envelope. 
 

 Normalization to convolutive distortions is achieved 
by reconstructing the FDLP envelope with 𝐺 = 1.    

 



Gain Normalization in FDLP 
   

 Sub-band decomposition into large number of 
sub-bands applied on a long-term DCT. 

 Derive long-term sub-band envelopes with FDLP. 
 Normalize the gain 𝐺 = 1 on each sub-band to 

suppress reverberation artifacts. 
  

 

DCT 

Speech 

FDLP 

Sub-band Env. Sub-band Windowing Normalized Env. 

Feat. 



   

 Reverberation causes temporal smearing. 
 Conventional mel spectrogram representation cannot provide 

invariant representation to these artifacts 

Normalizing Reverberation Artifacts 

Mel-Spectrogram 



   

 Removing the gain of FDLP model in long-term trajectories [Thomas, 
2008] – suppresses reverberation artifacts. 
 Robust features extraction from FDLP spectrogram. 

Normalizing Reverberation Artifacts 

Gain Normalized FDLP Spectrogram 
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Bio-inspired Approaches 

 Human audio perception is highly robust to noise and channel 
degradations. 

 Several studies attributes the robustness to spectro-temporal 
filtering achieved in the cortical stages [Shamma, 2004]. 
 2-D modulation filters applied on the spectrogram with different 

high-pass/band-pass/low-pass characteristics. 
 Frequency along temporal axis – rate (Hz) and frequency along 

spectral axis – scale (cycles per kHz). 
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Bio-inspired Approaches 

 Different speech sounds are 
characterized by different modulation 
properties. [Elliott, 2009]. 
 

 For example, vowels and stationary 
sounds are low-rate, while plosives 
and stops have high-rate. 
 

 Most important speech information is 
band-pass in temporal modulations 
(1-16Hz) and low-pass in spectral 
modulations (0-3 cyc/kHz). 
 

 
 
 
 



Emphasizing Spectro-temporal Modulations 

Low-scale 

Low-rate 

High-scale 

Low-rate 

Low-scale 

High-rate 

High-scale 

High-rate 

[Nemala,2013] 



Robustness to Noise 
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 Low-level features capture the acoustic signal 
information from the recording. 

 For many applications, the statistical summary of the 
low-level features over the entire recording is useful. 
 Example, for speaker and language verification, these average statistic 

is a good representation and widely used. 
 Avoids dependency on the duration of the audio recording. 

 
 This statistical summary can be derived from a universal 

background model (UBM).  
 

 
 
 

 

 

 

Data Driven Features 



 Higher level features can be derived 
from lower level features by training an 
acoustic model. For example, 
 Derive low-level features like MFCC. 
 Training a Gaussian mixture model from a 

large number of speech recordings. 
 Aligning the low-level features with the 

GMM model. 
 Deriving model based features based on the 

alignment statistics. 
 

 
 
 

 

 

 

Overview of UBM Based Features 

Speech data 

Low-level Feat. 



Overview of i-vector Features 
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• The i-vector model is   𝑚1 
𝑚2

= 𝑉𝑦  where y is the i-vector  



• A popular GMM based feature is the i-vector [Kenny, 2005] 
• The GMM-UBM with 𝐶 mixtures is typically trained with a EM 

algorithm on large number of recordings from a corpus. 
• Let  λ = π𝑐, μ𝑐 , Σ𝑐  denote the parameters of the GMM-UBM 

 
 

• Here, 𝐹
 
is the dimension of μ𝑐  and Σ𝑐 is assumed diagonal 𝐹 x 𝐹  

• Let supervector 𝑴0 be the concatenation of μ𝑐 for 𝑐 = 1. . 𝐶 
with dimension 𝐶𝐹 x 1 

• Let 𝜮 be 𝐶𝐹 x 𝐶𝐹 block diagonal matrix with diagonal blocks 
Σ1… . Σ𝐶 

 
 

i-vector Feature Extraction 
   

 𝑝λ 𝑥 = π𝑐 𝑁(𝑥 ; μ𝑐 ,Σ𝑐

𝐶

𝑐=1
) 



• Let 𝑋(𝑠) denote the low-level feature sequence for input 
recording with 𝑋 𝑠 = 𝑥𝑖𝑠, 𝑖 = 1…𝐻(𝑠)  where 𝑠 denotes the 
recording index and 𝑖 denotes the frame index, 𝐻 𝑠  denotes 
number of frames. Each 𝒙𝑖𝑠 is a 𝐹 dimensional feature vector. 

• Let 𝑴 𝑠  denote the 𝐶𝐹 x 1 supervector formed by the 
concatenation of means for the recording 𝑠.  

• The i-vector model is  
  

 
• 𝑽 is of dimension 𝐶𝐹 x 𝑅 known as total-variability matrix.  
• The i-vector 𝒚(𝑠) is of random vector of dimension 𝑅 and 

assumed to be 𝑁(𝟎, 𝑰)   
 

i-vector Feature Extraction 
   

𝑴 𝑠 = 𝑴𝟎 + 𝑽𝒚(𝑠) 



• Outline of the iterative i-vector model estimation using EM 
algorithm (details of the proofs Appendix-A). 
• Step 1 - Finding the posterior distribution 𝑝𝑽, λ 𝒚 𝑋 𝑠 ) of the          

i-vector given the recording 𝑋 𝑠  and the current estimates of 𝑽. 
 
 

   This posterior distribution is a Gaussian and the mode is the mean. 
• Step II – Update the estimate of 𝑽 using the entire set of recordings 

and the 𝑠 = 1… . 𝑆 and the estimates 𝒚 𝑠  
 

 

i-vector Model Estimation 
   

𝒚 𝑠 =  argmax
𝒚

 𝑝𝑽, λ 𝒚 𝑋 𝑠 ) 

𝑽 =  argmax
𝑽

   𝑝𝑽, λ

𝑆

𝑠=1
𝑋 𝑠   𝒚 (𝑠)) 
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Broad classification of data-driven feature 

extraction techniques 

Feature Extraction Techniques 

Data independent  
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Data-driven  
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based 
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information 
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     Features after applying  
transforms independent  

of class labels 
  e.g PCA/iVector 



Integrating data with feature extraction 

 Introduction 
 Variants of data-driven features 

 PCA/LDA  
 Manifold Learning 
 Neural Networks 
 Application specific training criteria  
 
 



Improving feature extraction with data 

 Lower level acoustic features can be transformed to 
better represent the data and task at hand 

 The transformation can be learnt from the data itself  



Probabilistic models for classification 
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Probabilistic models for classification 

= 

Data used 
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Discriminative Models 

Generative Models 

Model directly 
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Discriminant functions for classification 

-  Weight vector 
-  bias 
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Discriminant functions for classification feature extraction 

 The transform is being applied to the feature vector 
 Transform is learnt from data – information from the 

training data can be incorporated into feature 
extraction 

 Projection to one dimension might be disadvantageous  
- but useful to improve features 



 The components of      can be adjusted to maximally 
separate classes 

 Example - A projection such that there is maximal 
separation between class means and variance within 
each class is minimum 
 Fisher’s linear discriminant 

Discriminant functions for classification feature extraction 



Generalized linear discriminant functions 

Input vector 

Basis functions 

Weight coefficients 

Linear combination 

Activation Function 

Predicted output 



Perceptron model for classification 

Activation Function 

Generalized linear discriminant function 

Perceptron training criteria 

Generalized linear discriminant functions 



Neural Network Models for classification 
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Neural Network Models for classification feature extraction 
 
 

 
 

 
 
 
 
 
 
 
 

Data-driven feature transforms  
Posterior probabilities of output classes 

Generalized linear discriminant functions 



 Learn class-independent distributions of the data 
with certain constraints 

 Example – Find an orthogonal projection of data 
onto a lower dimensional linear space such that 
the variance of the projected data is maximized 
 Principal Component Analysis or Karhunen-Loeve 

transform 
 

Data driven transformations without class information 



Data driven transformations without class information 

An alternate formulation of PCA is based on minimizing the sum-of-squares 
of the projection errors 



Integrating data with feature extraction 

 Introduction 
 Variants of data-driven features based on 

 PCA/LDA  
 Manifold Learning 
 Neural Networks 
 Application specific training criteria  
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Data-driven features – projection on fixed basis 

N. Malayath and H. Hermansky, “Data-driven spectral basis functions for automatic speech recognition”,  Speech Communications 2002. 

Variance captured by the first 
cosine basis vectors amounts 
to 70% of the total variability 

The first 10 cosine basis 
capture almost the entire 
variance present in the data 

Spectral covariance matrix 
far from diagonal – 
projection on the first 8 
vectors, makes it partially 
diagonalized 

First cosine basis is flat across 
all bands – majority of the 
variance in the speech 
spectrum is caused by 
variation in the average 
energy 



Data-driven features - PCA 

DCT basis functions PCA basis functions 

N. Malayath, “Data-driven methods for extracting features from speech”, PhD Thesis, OGI 2000. 

 The PCA basis vectors are reminiscent of cosine 
functions – first vector measures spectral energy, 
higher basis functions similar to cosine-like 
functions with decreasing periods 

 DCT basis very similar to PCA basis – DCT is indeed 
a good choice for decorrelation and dimensionality 
reduction, which also results in minimum 
reconstruction error 



Data-driven features - LDA 
The first 7 Eigen vectors seem to 
have significant Eigen values 
 
The first discriminant appears 
to evaluate spectral energy in 
the first formant region 
 
The second and third 
discriminants seem to be 
focusing on spectral ripples in 
the central part of the critical-
band spectrum. 
 
The fourth one analyzes the 
portion of the spectrum that lies 
above 5 barks.  
 
The fifth discriminant vector is 
sensitive to spectral ripples with 
a 5 bark period.  
 
The fifth and sixth 
discriminants are very similar 
to sinusoidal functions. 

N. Malayath and H. Hermansky, “Data-driven spectral basis functions for automatic speech recognition”,  Speech Communications 2002. 
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LDA basis functions RASTA filter and the RASTA filter 
combined with the delta and double-delta filters 

The first discriminant vector, explains about 80% of 
the variability in the data. The frequency response of 
the first discriminant vector agrees well with the 
frequency response of hand designed RASTA filter 

The frequency characteristic of the second and third 
discriminant vectors are somewhat comparable to the 
second and third orthogonal polynomials approximating 
the time trajectory of the feature within a 9 frame time 
interval. 

S. van Vuuren and H. Hermansky, “Data-driven design of RASTA-like filters”,  Eurospeech 1997. 



Extensions of LDA 

 LDA is related to the maximum-likelihood 
estimation of a Gaussian model with two a priori 
assumptions 
All class-discrimination information resides in a 

p-dimensional sub-space of the n-dimensional 
feature space 

The within-class variances are equal for all the 
classes 

N. A. Campbell, “Canonical Variate analysis - A General Model Formulation”, 1984. 



Extensions to LDA 

 LDA is suited for classifier models where the class 
distributions have equal variance 

 LDA is not the optimal transform when the class distributions 
are heteroscedastic 

 

N. Kumar and A. Andreou, “A Generalization Of Linear Discriminant Analysis In Maximum Likelihood Framework ”,  1996 

Two classes have almost the same mean, but 
the variances are different in one direction. It 
would be best for the classifier, if the data was 
projected along the direction where the 
variances are different and un-equal variance 
models can be used in the classifier design 



Extensions to LDA - HLDA 

N. Kumar and A. Andreou, “A Generalization Of Linear Discriminant Analysis In Maximum Likelihood Framework ”,  1996 

       Let θ be a full rank linear transformation that transforms x into y. First p columns of θ carry 

components of y that carry class-discrimination information. Partition the parameter space of the 

means and variances in y as - 

 

Common for all classes 

 
Different across classes 

 

       The probability density of xi under the preceding model is given as 

 

       Techniques based on the generalized EM algorithm are then used to find the best transform. 

 



Extensions of LDA 

 LDA has been used from very early on for speech recognition 
 To improve features 

 M. Hunt, “A statistical approach to metrics for word and syllable recognition,” 1979. 
 P. Brown, “The acoustic-modeling problem in automatic speech recognition,” 1987. 

 To improve the discrimination between HMM states 
 G. Doddington, “Phonetically sensitive discriminants for improved speech recognition,” 1989. 

 As feature rotation and reduction technique in a maximum likelihood setting 
 E. Schukat-Talamazzini, J. Hornegger, and H. Niemann, “Optimal linear feature transformations 

for semi-continuous hidden Markov models,” 1995. 
 An alternate definition of HLDA (sometimes referred to as HDA) uses weighted contributions of classes to 

the LDA objective function 
 G Saon,  “Maximum likelihood discriminant feature spaces” 2000 

 When p = n (no dimensionality reduction), HLDA transformation becomes a diagonalization transform – 
A popular such transform is the Maximum Likelihood Linear Transform (MLLT)  

 R. Gopinath. “Maximum likelihood modeling with Gaussian distributions for classification”,1998. 
 

 
 

 
 

 



Manifold Learning 

 While the PCA and LDA techniques described above are useful in 
describing transforms in the Euclidean space, manifold based techniques 
characterize data as being embedded in a manifold space 

 
 Speech is produced by a set of articulators that have only few degrees of 

freedom – hence there should exist a lower dimensional manifold of the 
high dimensional space of all possible sounds 

 
 Learning problems are usual solved as optimization problems or as 

generalized eigenvector problems. 
 A. Jansen and P. Niyogi, “Intrinsic Fourier analysis on the manifold of speech 

sounds,” 2006. 
 V. Jain and L. Saul, “Exploratory analysis and visualization of speech and music by 

locally linear embedding,” 2004. 
 A. Errity and J. McKenna, “An investigation of manifold learning for speech analysis,” 

2006. 



Speech Code 
/w//a//n/ /w//a//n/ 

Inventory of phonemes 

Channel 
Speaker/Environment 

characteristics 

Feature 
Extraction Conventional Acoustic 

Features based on time-
frequency representations 

Signal 
Speech Signal 

Speech  
Recognizers 

HMM/GMM models 
trained on large amounts 

of data 

Message “one one” 

Message one one 

Data-driven features for ASR 

Neural Network 

Large amounts of 
task-independent 

data 

Feature 
Extraction 

Data-driven Features derived 
using neural networks trained on 

large amounts of data 

Posteriograms – Representations of 
phoneme posterior probabilities 
estimated using neural networks  



Neural Networks For Feature Extraction 

 Introduction 
 Types of Neural Networks 

 Deep Neural Networks 
 Deep Belief Networks 
 Convolutional Neural Networks 
 Recurrent Neural Networks 
 Autoencoder Networks 
 



Neural network based features – Key differentiators – 

Training criteria 

 Neural networks are trained to discriminate between output 
classes using non-linear basis functions, with its cross-entropy 
training criteria.  
 

 For acoustic modeling in speech recognition, MLP based 
systems estimate posterior probabilities of output classes 
[Appendix-B] like phonemes, conditioned on the input features. 
 

 Training can also be scaled efficiently to work on large 
amounts of training data. 



Neural network based features – Key differentiators – 

Input assumptions 

 Neural networks can model high dimensional input features 
without any strong assumptions about the probability 
distribution of these features. 

 
 Several different kinds of correlated feature streams can also 

be integrated together since there are also no strong 
assumptions on statistical independence 



Neural network based features – Key differentiators – 

Output representations 

For speech recognition, MLP based acoustic models - 
 trained on large amounts of data from a diverse collection of 

speakers and environments, can achieve invariance to these 
unwanted variabilities. 
 

 outputs from several networks trained on different feature 
representations can be combined in a multi-stream fashion to 
improve the final posterior estimations. 



Neural network based features – Variants - DNNs 

 A deep neural network (DNN) is a feed-forward, artificial neural network 
that has more than one layer of hidden units between its inputs and its 
outputs 

Intermediate layers 

Output layer 

Training criteria cost function 

Parameter updates 

G. Hinton et.al , “Deep Neural Networks for Acoustic Modeling in Speech Recognition ”,  2012 



Features for 

ASR 

Outputs from 

intermediate 

layers 

Neural network based features 

Log-transform PCA 

Features for 

ASR 

Tandem 

Approach 

Decoder Word 

sequences 

Hybrid DNN 

Approach  



 
Model 

400 hours - 
Broadcast News 

(dev04f) 

300 hours – 
Conversational 

Telephony (Hub 5) 

Baseline 
GMM/HMM 16.0 14.5 

Hybrid DNN 15.1 12.2 

Neural network 
features 13.1 11.5 

T. Sainath et.al, “Deep convolutional neural networks for LVCSR ”,  2013 

Neural network based features 



Neural Networks For Feature Extraction 

 Introduction 
 Types of Neural Networks 

 Deep Neural Networks 
 Deep Belief Networks 
 Convolutional Neural Networks 
 Recurrent Neural Networks 
 Autoencoder Networks 
 



DNNs have large number of parameters  
– hard to optimize 
– right initialization 
 
Discriminative pre-training is a layer-
by-layer initialization technique using 
labeled training data. 
 
 
 

Neural network based features – 

Variants - DNNs 



Neural network based features – 

Variants - DBNs 

 An alternate pre-training technique exists which 
does not require labeled training data 

 The goal is design feature detectors that model the 
structure of the data rather than discriminate 
between classes 

 The generative pre-training finds a region of the 
weight space that allows the discriminative fine-
tuning to make rapid progress, and it also 
significantly reduces over-fitting 

G. Hinton et.al , “Deep Neural Networks for Acoustic Modeling in Speech Recognition ”,  2012 



Neural network based features – 

Variants - DBNs 

Probability of    using functions of the form             where     are model parameters 

 

- Partition function 

The model parameters are learnt by maximizing the probability of the training data 

or minimizing the negative log of              , also called the energy 

Gradient descent methods are used to find a local minimum of the energy function 



Neural network based features – 

Variants – DBNs 

 Restricted Bolzmann’s machines are a type of graphical models that have been 
shown to be useful in building such generative models 

 A learning procedure called contrastive divergence is useful in training these 
models 

 The RBMs in a stack can be combined in a surprising way to produce a single, 
multilayer generative model called a deep belief net (DBN) 

G. Hinton et.al , “Deep Neural Networks for Acoustic Modeling in Speech Recognition ”,  2012 

RBM 

copy 

copy 

RBM 

RBM DBN 

DBN-DNN 



Neural network based features – 

Variants - DNNs 

t-SNE 2-D map of fbank feature vectors t-SNE 2-D map of the 1st layer of the fine-
tuned hidden activity vectors using fbank 

inputs 

A. Mohamed, G. Hinton, G. Penn, "Understanding how Deep Belief Networks perform acoustic modelling", 2012. 



Neural network based features – 

Variants - DNNs 

t-SNE 2-D map of the 8th layer of the fine-
tuned hidden activity vectors using fbank 

inputs 

A. Mohamed, G. Hinton, G. Penn, "Understanding how Deep Belief Networks perform acoustic modelling", 2012. 

t-SNE 2-D map of fbank feature vectors 



Neural network based features – 

Variants - CNNs 

 Convolutional neural networks (CNN) are very similar to conventional deep 
neural networks - the difference between these models, being the additional CNN 
feature extracting layers 

 These layers generate features for succeeding layers instead of pre-processed 
features that are usually input to the DNNs 
 
 



Neural network based features – 

Variants - CNNs 

H. Lee et.al , “Unsupervised feature learning for audio classification using convolutional deep belief networks”,  2009 

Visualization of 
randomly selected 
first-layer CDBN 
bases trained on 
the TIMIT data 

Visualization of the 
four different 

phonemes and their 
corresponding first-
layer CDBN bases. 



Neural network based features – 

Variants - RNNs 

 Integrating temporal information via neural networks – feed-
back connections instead of only feed-forward connections 

T T-1 

Unidirectional RNNs 

T T-1 T+1 

Bidirectional RNNs 

M. Schuster and K. K. Paliwal, “Bidirectional Recurrent Neural Networks”,  1997 



Neural network based features – 

Variants – Autoencoders 

       Autoencoders for 
dimensionality 

reduction of data 

High-dimensional data can be converted to 
a lower dimension by training a multilayer 

neural network with a small central layer to 
reconstruct high-dimensional input vectors.  

G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks”,  1996 

P. Vincent et. al, “Extracting and composing robust features with denoising autoencoders”,  2008 

       Autoencoders for 
denoising data 

Denoising autoencoders are variants of 
basic autoencoders to reconstruct a clean 

input from a noisy corrupted version  
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Feature transforms based on application specific 

training criteria 

 Feature transforms based on speaker data 
 Vocal tract length normalization (VTLN) 
 Constrained maximum likelihood linear regression 

(cMLLR) 
 

 Feature transforms based on an acoustic model 
training criteria 
 fMPE – feature based minimum phone error rate training 
 fMMI – feature based maximum mutual information 

training 



 A major contributing factor for speaker variability is the 
length of the speaker’s vocal tract 
 

 Scaling of the vocal tract length from L to kL corresponds to 
scaling of the frequency axis by 1/k 
 

 Vocal tract length normalization (VTLN) is a procedure of 
finding the scaling factor k for each speaker that best matches 
speech from the speaker to speech from a “canonical” speaker 
who has an average vocal tract length. 

H. Soltau et. al, “Attila: The IBM Speech Recognition Toolkit”,  2010 

L. Lee and R. C. Rose, “A frequency warping approach to speaker normalization,” 1998 

Feature transforms based on speaker data - VTLN 



H. Soltau et. al, “Attila: The IBM Speech Recognition Toolkit”,  2010 

Feature transforms based on speaker data - VTLN 



Feature transforms based on speaker data - VTLN 
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Feature transforms based on speaker data 

– constrained MLLR 

• Adaptation technique used in ASR to reduce the mismatch 
between acoustic features from a speaker and trained models 

Constrained MLLR transform 

• Equivalent to transforming the features   

• Transformation parameters are estimated with EM to 
maximize the likelihood of the adaptation data   

M. J. F. Gales. “Maximum Likelihood Linear Transformations for HMM-based Speech Recognition”, 1998 



Feature transforms based on speech 

recognition  - fMMI 

• Given an observation sequence, O, and corresponding word sequence, W,  there 
should be minimal uncertainty about the correct answer (i.e.,  minimize the 
conditional entropy of the word sequence given the observation): 

• To accomplish this, the probability of the word sequence given the observation 
must increase - the recognizer should make good guesses 

• The mutual information, I(W;O), between W and O: 

• Two choices: minimize H(W) or maximize I(W;O) 

K. Vertanen. “An Overview of Discriminative Training for Speech Recognition”. 



Feature transforms based on speech 

recognition  - fMMI 

• Maximizing the mutual information is equivalent to choosing the parameter set 
 to maximize: 

• Maximization involves increasing the numerator term (maximum likelihood 
estimation – MLE) or decreasing the denominator term (maximum mutual 
information estimation – MMIE) 

• The denominator term is accomplished by reducing the probabilities of 
incorrect, or competing, hypotheses. 

HMM corresponding to the 

transcription w Probability of the word 

sequence w as determined by 

the language model 

Sums over each possible word 

sequences 

L.R Bahl et.al, “Maximum Mutual Information Estimation of Hidden Markov Model Parameters for Speech Recognition,”1986 



Feature transforms based on speech 

recognition  - fMMI 

• fMMI is a form of discriminative training that optimizes the same 
objective function as MMI but does so by modifying the features 

D. Povey et.al, “Boosted MMI for Model and Feature-space Discriminative Training ,”2008 

High dimensional feature 

vector of Gaussian derived 

posteriors Transformation 

matrix trained using  

the MMI criteria 

• fMPE is a similar transformation except that the objective function 
is the Minimum Phone Error criteria 

Average of the transcription accuracies of all possible sentences 

s, weighted by the probability of s given the model 

D. Povey et.al, “fMPE: Discriminatively trained features for Speech Recognition ,”2008 



THE FUTURE … 

 The distinction between past, present, and future is only a stubbornly persistent illusion. 

-Albert Einstein 



Future Directions  

 Speech technologies in newer languages with 
limited supervised data 
 Need for multi-lingual data driven approaches 
 Large amount of un-transcribed data is continuously 

being generated – semi-supervised approaches. 
 Handling noisy and mis-matched acoustic data 

 Commercial and military applications of speech data 
with varying recording devices and environments. 

 Ubiquitous speech technologies 
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Feature Configuration Word Error Rate (%) 

PLP features - 15 hours  53.5 

PLP features  -  1 hour 71.2 

Data-driven features - 1 

hour 

70.0 

Word Recognition Error Rates (%)  - Callhome English 

Low Resource ASR 
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Phoneme posteriors 
In terms of high-

resource  

Acoustic features 
of low-resource language 

Ground truth labels 
of low-resource language 

Neural network trained on high-
resource language 

Low resource ASR – Solution I 



15hr of out-of-language 

data - Spanish 

15hr of out-of-language 

data - German 

Pool data  using a 

common phoneme set 

Multilingual 

MLP 

1hr of Low-Resource 

Language  - English 

Phoneme set 

map 
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System 

Improved 

posteriors 

Low resource ASR – Solution I 



S. Thomas, S. Ganapathy and H. Hermansky,  “Cross-lingual and Multi-stream Posterior Features for Low-resource LVCSR Systems”, 2010. 

Low resource ASR – Solution I 



MLP trained on 

Spanish data 

(high-resource) 

MLP trained on 

German data 

(high-resource) 

MLP trained on 

English data 

(low-resource) 

Intermediate layer 

trained on Spanish 

Intermediate layer 

trained on German 

Final layer 

trained on English 

Layers shared 

across languages 

Bottleneck 

features 

Posterior 

features 

Low resource ASR – Solution II 



S. Thomas, S. Ganapathy and H. Hermansky, “Multilingual MLP features for Low-resource LVCSR systems”, 2012. 

Low resource ASR – Solution II 
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Multilingual DNN based features 

 
System 

Word Error  
Rate (%) 

1 hour transcribed English 71.2 

1 hour transcribed English + 31 hours 
German/Spanish – DNN features 59.0 

15 hours transcribed English 53.5 



Semi-supervised Training 

Semi-supervised 
Training 

How do we make use of lots of 
audio (without transcriptions)? 

DNN 
feature 

extractor 
LVCSR 
system 

Audio with 
transcriptions 

Audio without 
transcriptions 

Low resource setting 
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Semi-supervised Training 

 ASR based word confidence scores 
 Sentences that have high lattice based word confidences 

 MLP posteriogram based confidence scores 
 Sentences that have high phoneme occurrence counts  

 Logistic regression is used to combine these scores 



Semi-supervised Training 

 
System 

Word Error  
Rate (%) 

1 hour transcribed English 71.2 

1 hour transcribed English + 31 hours 
German/Spanish – DNN features 59.0 

Semi-supervised data to DNN training 57.3 

15 hours transcribed English 53.5 



Semi-supervised Training 

1hr of transcribed data 

Data-driven 
front-end 

Features for 
LVCSR 

LVCSR 
System 

Un-transcribed 
data 

Partially reliable 
transcribed data 

Semi-
supervised data 



Semi-supervised Training 
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Feature Configuration Word Error Rate (%) 

PLP features - 15 hours  53.5 

PLP features  -  1 hour 71.2 

Data-driven features - 1 hour 70.0 

Multilingual MLP 62.8 

Multilingual deep network 59.0 

Self training with Multilingual deep 

network 

 

57.3 

Self training with ASR with 

deep network features 

 

55.2 

S. Thomas, et.al, “Deep Neural Network Features and Semi-supervised training for Low Resource Speech Recognition”, 2013. 

Low resource ASR 
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Dealing with noise – Multi-stream Idea 
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Dealing with noise – Stream creation 

 



Speech 
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MLP 
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Stream 
Evaluation 

N. Mesgarani, S. Thomas and H. Hermansky, A Multistream Multiresolution Framework for Phoneme Recognition, 2010. 

Dealing with noise – Stream Evaluation 
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in 
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Stream 
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Feedback on quality of fusion 

Stream 
Evaluation 

Stream 
Evaluation Fusion 

Feedback on quality of streams 

Applications 

Dealing with noise – Stream Fusion 

 



N. Mesgarani, S. Thomas and H. Hermansky, Toward Optimizing Stream Fusion in Multistream Recognition of Speech, 2011 

Issues with data-driven features  

– Dealing with noise – Stream Fusion 

 



N. Mesgarani, S. Thomas and H. Hermansky, Adaptive Stream Fusion in Multistream Recognition of Speech, 2011 

Static Weights - Minimize  the mean-squared –error between 
actual and estimated posteriors 

Cross-correlation of estimated posteriograms of each stream 
with the actual labels, normalized by the autocorrelation of 

stream posteriograms 

Issues with data-driven features  

– Dealing with noise 

 



N. Mesgarani, S. Thomas and H. Hermansky, Adaptive Stream Fusion in Multistream Recognition of Speech, 2011 

Dealing with noise – Multi-stream Idea 

 



CONCLUSIONS 



Summary 

Challenges Past Present Future 

Preserving the relevant 
information for the 
application 

MFCC/PLP Multiple Data 
Representations 

Adaptive Stream 
Combination 

Removing unwanted 
redundancies in the signal 
– separating the 
information pertinent to 
the task. 

Normalization 
Techniques 

 
Data-driven 

Features 
 

End-to-end Systems 

Resilience to noise and 
other degradations 

Spectral 
Subtraction 

 
Multi-condition 

Training 
 

Unsupervised 
Adaptation  



Fuzzy Distinction Between Features and Models 

T. Sainath, B. Kingsbury, A. Mohamed, B. Ramabhadran, “Learning Filter-Banks Within A Neural Network Framework”, ASRU 2013. 

Learning Filter-
banks directly 

from data 



Fuzzy Distinction Between Features and Models 

Learning Filter-
banks directly 

from data 

T. Sainath, B. Kingsbury, A. Mohamed, B. Ramabhadran, “Learning Filter-Banks Within A Neural Network Framework”, ASRU 2013. 



Fuzzy Distinction Between Features and Models 

D. Palaz, R. Collobert, M. Doss, “Estimating Phoneme Class Conditional Probabilities from Raw Speech Signal using Convolutional Neural Networks”, 2013. 



Do We Need A Feature Extraction Step ? 

 Pros 
 Extracting features and learning the model can be 

single step with the same target cost function 
 Not constrained by the assumptions in windowing and 

filtering prevalent in the current features 
 Purely data-driven 

 
 Cons 

 Noise Robustness could be a huge challenge 
 Models may be bigger - prone to over-training 
 May require more data and computation 



THANK YOU 



Open Source Tools 

[Dan Ellis, Feature Extraction Toolbox] - http://www.ee.columbia.edu/ln/rosa/matlab/ 

 

[Malcolm Slaney, Auditory Toolbox] - https://engineering.purdue.edu/~malcolm/interval/1998-010/ 

 

[Van Der Maaten, et al, Dimensionality Reduction Toolbox] - 

http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html 

 

[HTK ASR Toolkit] - http://htk.eng.cam.ac.uk/download.shtml 

 

[ICSI Quicknet MLP Toolkit] - http://www1.icsi.berkeley.edu/Speech/qn.html 

 

[Kaldi ASR Toolkit] - http://kaldi.sourceforge.net/about.html Povey, Daniel, et al. "The Kaldi speech 

recognition toolkit." Proc. ASRU. 2011. 

 

[Ganapathy, FDLP Feature Extraction Toolkit] - http://old-site.clsp.jhu.edu/~sriram/software/soft.html 
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APPENDIX - A 



• The proofs follow the details presented in [Kenny, 2005]. 
• Defining sufficient statistics from the recording. For the recording 𝑋 𝑠  and 

UBM λ = π𝑐, μ𝑐 ,Σ𝑐 , Let 𝑝λ 𝑐  𝑥𝑖) denote the posterior probability of the 
mixture component given the feature vector 𝑥𝑖 of dimension 𝐹 for 
𝑐 = 1…𝐶 and 𝑖 = 1…𝐻(𝑠) 

• The sufficient statistics are 
 
 
 
 

• Let 𝑵 𝑠  denote the 𝐶𝐹 x 𝐶𝐹 block diagonal matrix with diagonal blocks 
𝑁1 𝑠 𝐼, … , 𝑁𝑐 𝑠 𝐼, …𝑁𝐶 𝑠 𝐼 and 𝐼 is 𝐹 x 𝐹 identity matrix.  

• Let 𝑺𝑋 𝑠  be the 𝐶𝐹 x 1 vector by concatenating  𝑆𝑋, 1 𝑠 , … , 𝑆𝑋, 𝐶 𝑠  
 

i-vector Estimation 
   

𝑁𝑐 𝑠 =   𝑝λ 𝑐 𝑥𝑖)
𝐻 𝑠

𝑖=1
 𝑆𝑋, 𝑐 𝑠 =   𝑝λ 𝑐 𝑥𝑖)

𝐻 𝑠

𝑖=1
(𝑥𝑖 − μ𝑐) 

𝑆𝑋𝑋, 𝑐 𝑠 =   𝑝λ 𝑐 𝑥𝑖)
𝐻 𝑠

𝑖=1
𝑥𝑖 − μ𝑐 𝑥𝑖 − μ𝑐

∗ 



Theorem I The log-likelihood function is given by 
 

where 
 
 
 
 

Proof 
Let 𝑶 = 𝑽𝒚 be vector of dimension 𝐶𝐹 with 𝑂𝑐 denoting the 𝑐𝑡ℎ block 
of 𝑶 and of dimension 𝐹. Also, let   
  

 
 

 

i-vector Estimation 
   

𝑙𝑜𝑔( 𝑝𝑽 𝑋 𝑠   𝒚(𝑠))) = 𝐺(𝑠) + 𝐻𝑽(𝑠, 𝒚(𝑠))                 (𝟏)      

𝐺 𝑠 = 𝑁𝑐 𝑠  𝑙𝑜𝑔
1

2π 𝐹/2|Σ𝑐|
1/2
  −  
1

2
𝑡𝑟(Σ𝑐

−1𝑆𝑋𝑋, 𝑐 𝑠 )
𝐶

𝑐=1
 

𝐻𝑽 𝑠, 𝒚 = 𝒚
∗𝑽∗𝜮−1𝑺𝑋 𝑠  −

1

2
𝒚∗𝑽∗𝑵 𝑠 𝜮−1𝑽𝒚 

𝑆𝑋𝑋, 𝑐 𝑂𝑐  =   𝑝𝑽, λ 𝑐 𝑥𝑖)
𝐻 𝑠

𝑖=1
𝑥𝑖 − μ𝑐 − 𝑂𝑐 𝑥𝑖 − μ𝑐 − 𝑂𝑐

∗              (𝟐) 



 Then, the likelihood function 𝑝𝑽 𝑋 𝑠   𝒚(𝑠)) is sequence of Gaussian models 
with 𝑁𝑐 𝑠  frames assigned to the 𝑐𝑡ℎ mixture component having a mean 
vector μ𝑐 + 𝑂𝑐,and diagonal covariance Σ𝑐. This gives (removing 𝑠  for ease)    

 
 
Expanding 𝑆𝑋𝑋, 𝑐 𝑂𝑐  from Eq. (2) gives  
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𝑙𝑜𝑔( 𝑝𝑽 𝑋  𝒚)) = 𝑁𝑐 𝑙𝑜𝑔
1

2π 𝐹/2|Σ𝑐|
1/2
  −  
1

2
𝑡𝑟(Σ𝑐

−1𝑆𝑋𝑋, 𝑐 𝑂𝑐 )
𝐶

𝑐=1
 

 

𝑆𝑋𝑋, 𝑐 𝑂𝑐 = 𝑆𝑋𝑋, 𝑐 − 𝑆𝑋, 𝑐𝑂𝑐
∗  − 𝑂𝑐𝑆𝑋, 𝑐

∗ + 𝑁𝑐𝑂𝑐𝑂𝑐
∗ 

𝑡𝑟(Σ𝑐
−1𝑆𝑋𝑋, 𝑐 𝑂𝑐 ) = 𝑡𝑟(Σ𝑐

−1𝑆𝑋𝑋, 𝑐)  − 2𝑆𝑋, 𝑐
∗Σ𝑐
−1𝑂𝑐 + 𝑂𝑐

∗Σ𝑐
−1𝑁𝑐𝑂𝑐 

 𝑡𝑟(Σ𝑐
−1𝑆𝑋𝑋, 𝑐 𝑂𝑐 )

𝐶

𝑐=1
=
 
 𝑡𝑟(Σ𝑐

−1𝑆𝑋𝑋, 𝑐)
𝐶

𝑐=1
− 2𝑶∗𝜮−1𝑺𝑋 + 𝑶

∗𝑵𝜮−1𝑶 

(3) 

(4) 



Substituting Eq. (4) in Eq. (3),  
 

 
 
 
 
where the definition of 𝑶 = 𝑽𝒚 was invoked in the last step. Thus, theorem-1 is 
proved for the likelihood function. 

 
Theorem II  The posterior distribution 𝑝λ 𝒚  𝑋) is Gaussian with covariance 

matrix 𝒍−1(𝑠) and mean value 𝒍−1 𝑠  𝑽∗ 𝜮−1𝑺𝑋(𝑠) where 𝒍 𝑠  is 𝑅 x 𝑅   
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        𝑙𝑜𝑔( 𝑝𝑽 𝑋  𝒚))

= 𝑁𝑐 𝑙𝑜𝑔
1

2π 𝐹/2|Σ𝑐|
1/2
 −
1

2
𝑡𝑟(Σ𝑐

−1𝑆𝑋𝑋, 𝑐)) + 𝑶
∗𝜮−1𝑺𝑋 + 𝑶

∗𝑵𝜮−1𝑶

 

𝐶

𝑐=1
  

 
= 𝐺(𝑠) + 𝐻𝑽(𝑠, 𝒚(𝑠)) 

𝒍 𝑠 = 𝑰 + 𝑽∗𝜮−1𝑵 𝑠 𝑽 



Proof  This is perhaps the most important component where the mean and covariance 
of the posterior distribution are found. In order to prove Theorem-II, it is enough to 
show that  

 
 
where 𝒂 𝑠 = 𝒍−1 𝑠  𝑽∗ 𝜮−1𝑺𝑋(𝑠). Ignoring the index 𝑠, using the Gaussian 
prior distribution of 𝒚 and the results from Theorem-1 (Eq. (1)), 
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𝑝𝑽, λ 𝒚  𝑋) ∝ exp −
1

2
𝒚 − 𝒂 𝑠

∗
𝒍(𝑠) 𝒚 − 𝒂 𝑠  

𝑝𝑽, λ 𝒚  𝑋) ∝ 𝑝 𝑋  𝒚) 𝑁(𝒚|𝟎, 𝑰) 

∝ exp 𝒚∗𝑽∗𝜮−1𝑺𝑋 −
1

2
𝒚∗𝑽∗𝑵𝜮−1𝑽𝒚 −

1

2
𝒚∗𝒚  

= exp 𝒚∗𝑽∗𝜮−1𝑺𝑋 −
1

2
𝒚∗𝒍𝒚  

∝ exp −
1

2
𝒚 − 𝒂 ∗𝒍 𝒚 − 𝒂  



Thus, Theorem-II is proved. Note that, since the posterior distribution of 𝒚 is a 
Gaussian, the optimal estimate of i-vector argmax

𝒚
 𝑝𝑽, λ 𝒚 𝑋 𝑠 ) is the mean 

given by 𝒍−1 𝑠  𝑽∗ 𝜮−1𝑺𝑋(𝑠) 
 

Theorem III Given initial estimate 𝑽0 , the i-vector posterior distribution is 
given by Theorem-II. Using the conditional moments of the posterior, E 𝒚(𝑠)  
and E 𝒚(𝒔)𝒚∗(𝑠) , let the new estimate of 𝑽  be the solution of 

 
 
Then, this new estimate 𝑽 improves the data likelihood  
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 𝑵 𝑠 𝑽 E 𝒚(𝒔)𝒚∗(𝑠)  
𝑆

𝑠=1
=
 
 𝑺𝑋 𝑠  E 𝒚

∗(𝑠) 
𝑆

𝑠=1
 

 𝑙𝑜𝑔 𝑝𝑽(𝑋(𝑠)  
𝑆

𝑠=1
≥ 𝑙𝑜𝑔 𝑝𝑽𝟎(𝑋(𝑠)  

𝑆

𝑠=1
 



Proof  This proof completes the re-estimation of the parameters in the EM algorithm. 
To prove this, we invoke the Jensen’s inequality,  
 

 

 

 

 

The right hand side of the inequality simplifies to 
 
 
Thus, Theorem-III can be proved (non-decreasing likelihood) if the left hand side of 
the inequality Eq. (5) is non-negative. Now,  
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  𝑙𝑜𝑔
𝑝𝑽 𝑋 𝑠 , 𝒚 𝑠

𝑝𝑽𝟎 𝑋 𝑠 , 𝒚 𝑠
𝑝𝑽𝟎 𝒚 𝑠  | 𝑋 𝑠 𝑑𝒚 ≤

𝑆

𝑠=1
 

 𝑙𝑜𝑔 
𝑝𝑽 𝑋 𝑠 , 𝒚 𝑠

𝑝𝑽𝟎 𝑋 𝑠 , 𝒚 𝑠
𝑝𝑽𝟎 𝒚 𝑠  | 𝑋 𝑠 𝑑𝒚 

𝑆

𝑠=1
 

 log𝑝𝑽 𝑋 𝑠 , 𝒚 𝑠  − log
𝑆

𝑠=1
 𝑝𝑽𝟎 𝑋 𝑠 , 𝒚 𝑠

𝑆

𝑠=1
 

(5) 

𝑝𝑽 𝑋 𝑠 , 𝒚 𝑠 = 𝑝𝑽 𝑋 𝑠  | 𝒚 𝑠  𝑁 𝒚 | 𝟎, 𝑰  



The left hand side of inequality Eq. (5) can be written as 𝓐𝑉 −𝓐𝑉0  where  
 

 
To summarize, we have shown that  𝑙𝑜𝑔 𝑝𝑉(𝑋(𝑠)  

𝑆
𝑠=1 ≥  𝑙𝑜𝑔 𝑝𝑉0(𝑋(𝑠)  

𝑆
𝑠=1 if 

𝓐𝑽 ≥ 𝓐𝑽𝟎. This is the standard EM formulation with the auxiliary function 𝓐𝑽 and 
the above condition can be met by maximizing 𝓐𝑽 with respect to 𝑽. Using Theorem-I 
 

 

 

 

 
where 𝐸[𝐻𝑽 𝑠, 𝑦 𝑠 ] is the conditional expectation given 𝑋 𝑠 . The term with 𝐺 𝑠  is 
independent of 𝑽. Thus maximizing 𝓐𝑽 reduces to maximizing  𝐸 𝐻𝑽 𝑠, 𝑦 𝑠

𝑆
𝑠=1  
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𝓐𝑽 =  𝑝𝑽 𝑋 𝑠  | 𝒚 𝑠 𝑝𝑽𝟎 𝒚 𝑠  | 𝑋 𝑠 𝑑𝒚 
𝑠

 

𝓐𝑽 𝑋 𝑠 =  [𝐺 𝑠 + 𝐻𝑽 𝑠, 𝑦 𝑠 ] 𝑝𝑽𝟎 𝒚 𝑠  | 𝑋 𝑠 𝑑𝒚 
𝑆

𝑠=1
 

= 𝐺 𝑠 + 𝐸[𝐻𝑽 𝑠, 𝑦 𝑠 ]
𝑆

𝑠=1
 



Using the definition of 𝐻𝑽 𝑠, 𝑦 𝑠  from Theorem-I 
  
 

 
 

 

 

Taking derivative of above w.r.t. 𝑽 and equating to 𝟎  
 

 
  

Thus, Theorem-III is proved and provides the re-estimation formula for 𝑽 
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 𝐸 𝐻𝑽 𝑠, 𝑦 𝑠 =
𝑆

𝑠=1
 𝐸 𝒚∗(𝑠)𝑽∗𝜮−1𝑺𝑋 𝑠  −

1

2
𝒚∗(𝑠)𝑽∗𝑵 𝑠 𝜮−1𝑽𝒚(𝑠)

𝑆

𝑠=1
 

 
= 𝐸 𝒚∗(𝑠)

𝑆

𝑠=1
𝑽∗𝜮−1𝑺𝑋 𝑠  −

1

2
𝑡𝑟 𝑽∗𝑵 𝑠 𝜮−1𝑽𝐸 𝒚(𝑠)𝒚∗(𝑠)  

 
= 𝑡𝑟 𝜮−1 𝑽∗𝑺𝑋 𝑠 𝐸 𝒚

∗(𝑠)  −
1

2
𝑵 𝑠 𝑽𝐸 𝒚(𝑠)𝒚∗(𝑠) 𝑽∗

𝑆

𝑠=1
 

 𝑵 𝑠 𝑽 E 𝒚(𝒔)𝒚∗(𝑠)  
𝑆

𝑠=1
=
 
 𝑺𝑋 𝑠  E 𝒚

∗(𝑠) 
𝑆

𝑠=1
 



APPENDIX - B 



 Neural networks estimate posterior probabilities of classes when 
trained using squared loss function for classification problem 
[Lippmann, 1991]. 

 Let 𝑋 denote input vector 𝑥𝑖 , 𝑖 = 1…𝐷  which is to be assigned to 
one of the classes 𝐶𝑖 , 𝑖 = 1…𝑀 . By Bayes theorem, the class 
posterior is 
 
 

 Let {𝑦𝑖(𝑋), 𝑖 = 1…𝑀} denote the output of the network and 
𝑑𝑖 , 𝑖 = 1…𝑀  denote the desired outputs. For the classification 

problem, if 𝑋 belongs to 𝐶𝑗, then 𝑑𝑖 = 1 for 𝑖 = 𝑗 and 0 otherwise. 

Estimating Posteriors with MLPs 
   



 The squared loss function is defined as  
 
 
 
 
 
 
 
 
 

 Expanding the function inside the expectation 
 
 
 
 
 

Estimating Posteriors with MLPs 
   

            Δ = 𝑬  𝑦𝑖 𝑋 − 𝑑𝑖
2

𝑀

𝑖=1

=   𝑦𝑖 𝑋 − 𝑑𝑖
2

𝑀

𝑖=1

𝑝 𝑋 𝑑𝑋                    

=     𝑦𝑖 𝑋 − 𝑑𝑖
2

𝑀

𝑖=1

𝑀

𝑗=1

𝑝 𝑋, 𝐶𝑗 𝑑𝑋

=     𝑦𝑖 𝑋 − 𝑑𝑖
2

𝑀

𝑖=1

𝑀

𝑗=1

𝑝 𝐶𝑗  𝑋) 𝑝 𝑋 𝑑𝑋

= 𝑬   𝑦𝑖 𝑋 − 𝑑𝑖
2

𝑀

𝑖=1

𝑀

𝑗=1

𝑝 𝐶𝑗  𝑋)  

   



 The squared loss function is defined as  
 
 
 

 Now, 𝑦𝑖 𝑋  is only a function of 𝑋 and  𝑝 𝐶𝑗  𝑋) = 1
𝑀
𝑗=1   

 
 
 
 
 

 Adding and subtracting the term 𝑬2 𝑑𝑖 | 𝑋  to make a perfect square 
 
 
 
 
 
 
 
 
 
 

Estimating Posteriors with MLPs 
   

            Δ = 𝑬   𝑦𝑖
2 𝑋 𝑝 𝐶𝑗  𝑋) − 2𝑑𝑖𝑦𝑖 𝑋 𝑝 𝐶𝑗  𝑋) + 𝑑𝑖

2𝑝 𝐶𝑗  𝑋)

𝑀

𝑖=1

𝑀

𝑗=1

 

   

           Δ = 𝑬  𝑦𝑖
2 𝑋 − 2𝑦𝑖 𝑋   𝑑𝑖𝑝 𝐶𝑗  𝑋) + 

𝑀

𝑗=1

 𝑑𝑖
2𝑝 𝐶𝑗  𝑋) 

𝑀

𝑗=1

𝑀

𝑖=1

= 𝑬  𝑦𝑖
2 𝑋 − 2𝑦𝑖 𝑋  𝑬 𝑑𝑖 | 𝑋 + 𝑬 𝑑𝑖

2| 𝑋

𝑀

𝑖=1

 

 

   



 
 The second term 𝑣𝑎𝑟 𝑑𝑖 | 𝑋  is independent of the weights. 
 For classification case (𝑑𝑖 = δ𝑖𝑗 = 1 for 𝑖 = 𝑗 and 0 otherwise for 𝑋 

belonging to class 𝐶𝑗) ,  
 
 

 Thus, minimizing squared loss function Δ estimates the posterior 
probabilities  𝑝 𝐶𝑖  𝑋 ) 
 
 
 
 
 
 
 
 
 
 
 

Estimating Posteriors with MLPs 
   

            Δ = 𝑬  𝑦𝑖
2 𝑋 − 2𝑦𝑖 𝑋  𝑬 𝑑𝑖 | 𝑋 + 𝑬

2 𝑑𝑖 | 𝑋  − 𝑬
2 𝑑𝑖 | 𝑋 + 𝑬 𝑑𝑖

2| 𝑋

𝑀

𝑖=1

= 𝑬  𝑦𝑖 𝑋  − 𝑬 𝑑𝑖 | 𝑋
𝟐

𝑴

𝒊=𝟏

+ 𝑬  𝑣𝑎𝑟 𝑑𝑖 | 𝑋

𝑴

𝒊=𝟏

 

   

𝑬 𝑑𝑖 | 𝑋 = 𝑑𝑖 𝑝 𝐶𝑗  𝑋) 

𝑀

𝑗=1

= δ𝑖𝑗 𝑝 𝐶𝑗  𝑋) 

𝑀

𝑗=1

=  𝑝 𝐶𝑖  𝑋 ) 


