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Abstract
Audiovisual correspondence learning is the task of acquiring
the association between images and its corresponding audio. In
this paper, we propose a novel experimental paradigm in which
unfamiliar pseudo images and pseudo words in audio form are
introduced to both humans and machine systems. The task is
to learn the association between the pairs of image and audio
which is later evaluated with a retrieval task. The machine sys-
tem used in the study is pre-trained with the image-net corpus
along with the corresponding audio labels. This model is trans-
fer learned for the new image-audio pairs. Using the proposed
paradigm, we perform a direct comparison of one-shot, two-
shot and three-shot learning performance for humans and ma-
chine systems. The human behavioral experiment confirms that
the majority of the correspondence learning happens in the first
exposure of the audio-visual pair. This paper proposes a ma-
chine model which performs on par with the humans in audio-
visual correspondence learning. But compared to the machine
model, humans exhibited better generalization ability for new
input samples with a single exposure.
Index Terms: Audiovisual correspondence learning, few-
shot learning, multimodal learning, transfer learning, human-
machine comparison

1. Introduction
The fusion of multi-modal signals, i.e., signals measured in
multiple domains, has been an area of considerable interest for
both humans [1] and machines [2]. In this paper, we consider
a type of fusion problem that pertains to learning how differ-
ent modalities correspond to each other. The modalities under
consideration are audio and image domains.

In human cognition, cross-modal correspondence learning
can be defined as the learning of the mapping that observers ex-
pect to exist between two or more features or dimensions from
different sensory modalities (such as shape of the visual ob-
ject and associated speech phonemes) [3]. Once the learning
is achieved, stimulation in one modality can elicit experiences
in the other sensory modality (for example, sound-color asso-
ciations [4]) which can also extend to behavioral changes and
cross-modal retrieval [5]. However, many questions exist on
how efficient humans are in learning object-audio associations
for previously unknown shapes and sounds. In this paper, we
attempt to highlight the behavioral performance for human sub-
jects in learning cross-modal audio-visual correspondences for
psuedo images and psuedo-words. We also analyze the abil-
ity of humans to generalize to different orientations and color
changes of the visual objects as well as the speaker changes in
the speech data. Past studies have shown that humans require
only a very small number of instances to learn meanings of new
words [6].

It is therefore of significant interest to question whether ma-

chines can achieve human level efficiency with limited data. In
machine learning, cross-modal correspondence modeling and
retrieval has received significant attention in the recent years, in
particular between domains of text and image [7]. For audio-
visual cross-modal modeling, early work by Zhang et. al. [8]
focused on correlation based modeling. Recent work using deep
learning by Arandjelovic et. al. [2] attempted to learn the as-
sociation between audio and images in an unsupervised man-
ner using video data. In a similar vien, development of algo-
rithms for cross-modal data generation has also been attempted
recently [9]. In our previous work [10], we explored a rapid
language learning task where human subjects attempt to learn
a set of words from a new language with image supervision.
A machine comparison for this task revealed that machines can
achieve human level performance for this task on previously
known image classes.

In this paper, we explore a learning paradigm where novel
objects and novel sounds are associated. This novelty is critical
for ensuring a direct human machine comparison as the novelty
guarantees that we are not merely tapping into knowledge ac-
quired prior to the experiment in humans. The pseudo object
images were derived from the novel object and unusual names
(NOUN) dataset [11]. The images in the NOUN Database de-
pict multi-part, multicolored, real three-dimensional (3-D) ob-
jects, as opposed to simple geometric shape configurations. The
unknown names in the dataset were converted to speech using
a speech synthesis software. The audio and visual stimuli were
provided jointly to learn the association. We performed exper-
iments with one-shot, two-shot and three-shot learning for hu-
mans and machines.

2. Human Experiment
2.1. Stimuli

The objects and labels used are primarily from the Novel Ob-
ject and Unusual Name (NOUN) Database [11]. The NOUN
dataset contains 60 novel objects, and 173 pseudo words. We
used the 60 objects as our novel classes and paired it with a
pseudo word label. The label is a trisyllabic pseudo word gen-
erated by combining the original NOUN pseudo words. The
original images from the NOUN data-set were augmented by
performing RGB permutations, horizontal and vertical flipping,
and rotations. For each object class, 10 such augmented vari-
ants of the original image were added to the stimuli set. The
examples of the stimuli used are given in Fig 1. We generated
12 audio samples per label from their synthesized speech, us-
ing Google [12], IBM [13], and Microsoft [14] Text-to-Speech
(TTS) systems. These audio samples had variations as the TTS
models with different gender and accents (American English,
British English and Australian English) were used. An infor-
mal listening test of the files showed no major inconsistencies
in pronunciation across the models.



Figure 1: Examples of the stimuli used in the experiment.
Columns 3,4,5 show augmented variants of the image corre-
sponding to the audio label.

2.2. Subjects

The participants were Indian nationals with self-reported nor-
mal hearing and vision. Twenty four adults participated in this
study (mean age = 24.08, age span = 22-31). All subjects pro-
vided written informed consent to take part in the experiment
and received a monetary compensation. The Institute Human
Ethical Committee of Indian Institute of Science, Bangalore ap-
proved all procedures of the experiment.

2.3. Experimental Setup

The stimuli were randomly divided into 6 blocks with 10 novel
classes in each block. During the experiment, these blocks
appeared in a different random order for different subjects.
Each block was a n-shot learning paradigm of 10 novel objects
(n = 1, 2 or 3). An n-shot learning task means the participant
is exposed to n augmented variants of the stimulus before the
evaluation. There were 2 blocks for each n-shot learning. The
experiment starts with a practice session to familiarize partic-
ipants with the experiment setup. The practice session used 3
objects as stimuli, which are not part of the main experiment.
They were from the Fribbles stimuli set [15], and labels were
sampled from the trisyllabic word pool. Each block in the main
experiment had two phases: learning phase and testing phase.

Learning Phase: In the learning phase, the subjects were
presented with image-audio pairs for each class in the session.
Classes within a session were randomly shuffled. For the 2 and
3 shot sessions, the 10 classes were presented in cycles, in a
random order within each cycle. No limit was imposed on the
learning time per sample, or the number of times the audio clip
could be heard. For each subject, we recorded the total time
spent and number of audio play button clicks on each sample.

Testing Phase: During the testing phase, the subjects were
asked to perform two tasks: an image retrieval (IR) and an au-
dio retrieval (AR) task. In IR, the subject had to pick the match-
ing image for the given audio sample from a set of 10 image
choices. In the AR, the subject had to pick the corresponding
audio clip for the given image sample from a set of 10 audio
choices. For each session, both tasks included 10 test cases (as
each block had 10 novel objects to learn). The image and au-
dio samples used in the test phase were augmented versions of
its training counterparts. Further, one-shot learning blocks had
an additional test case for each of the 10 objects showed in the
training phase. In this testing case, the query sample was the ex-
act same image/audio sample that appeared during the learning
phase. Hence, the subject had already seen this exact sample

Table 1: Machine model experiment: Details of the dataset used
for pretraining. The numbers for each class (total 655 classes)
are listed here.

Data Train Validation Test
Image 160 16 16

(ImageNet ImageNet ImageNet ImageNet
classes) train val val
Image 60 20 20
(Other 30 Google 10 Google 10 Google
classes) 30 Flickr 10 Flickr 10 Flickr

22 5 5
Speech 10 Google 2 Google 2 Google

(TTS voice) 1 IBM 1 IBM 1 IBM
(English) 11 Microsoft 2 Microsoft 2 Microsoft

Table 2: Machine model experiment: Top-k Image and Audio
Retrieval Accuracy over pre-training classes. Chance accuracy
is 0.15%

Retrieval Top-1 Top-5 Top-10
Image 72.40 84.17 87.10
Audio 70.46 84.10 87.13

before the evaluation. But the multiple-choice answer options
include augmented versions of samples from the other modality.
This strategy enables us to compare the generalisation capabil-
ity of humans and machines on the one-shot task.

3. Machine Experiments
3.1. Dataset

For pre-training, we use the 655 classes from [10]. These
classes have labels of one word length. Images are obtained
from the Imagenet database [16], and the Flickr and Google im-
age repository. The audio recordings of the labels are generated
using the Google, Microsoft [14] and IBM [13] TTS systems.

For the novel object learning task, we use the same 60 novel
classes as in the human experiment. The data split per class, as
(train, test), is (n, 10-n) for images with a total of 10 images
per class. For audio, it is (n, 12-n) with a total of 12 audio
variants per class. Here, n = 1,2 or 3 for n-shot learning.

3.2. Audio-Visual Semantic Network

We use the joint audio-visual model [10] illustrated in Fig 2.
It consists of audio and image sub-networks which are jointly
trained on the multi-modal input.

Audio sub-network: The audio sub-network has two long
shot term memory (LSTM) layers followed by fully connected
(FC) layers. The audio is fed as 80 dimensional bottleneck fea-
tures, from a deep neural network trained for automatic speech
recognition (ASR) on the switch-board and Fisher corpora [17].
After pre-training, only the final fully connected layer of 576
dimensions is trained on the novel audio labels.

Image sub-network: The image sub-network uses the Xcep-
tion network [18] which is trained on the Imagenet classes. We
use the 2048 dimensional pre-softmax layer from the Xception
network as the input representation. This input is then mapped
to a 576 dimensional latent space using a fully connected layer
which is trained jointly with the audio sub-network.



Figure 2: Joint audio-visual semantic network trained with triplet loss (example with image as anchor). Yellow indicates the layers that
are trained.

3.3. Training

Pretraining: The 576 dimensional FC layers of the audio
and image subnetworks are trained jointly on 655 pretraining
classes. We use the modified proxy based approach of [19][10]
to train using multimodal input. Similarity is maximized be-
tween the input representation and matching proxy vector, and
minimized against the non-matching proxy vectors. In the first
stage, the proxy matrix and FC layer of the image subnetwork
are trained on the image data. The proxy matrix is then kept
fixed. In the second stage, the FC layer of the audio subnet-
work is trained using the audio data. We minimize the NCA
loss for training [20] and train for 100 epochs with a learning
rate of 0.001. We use the Adam optimizer with batch-norm
and dropout. Results for retrieval on the pre-training classes are
given in table 2.

Transfer Learning: The data for the novel classes is di-
vided into blocks of 10 classes. Our machine setup is trained
on the data of one block at a time to emulate the human ex-
periment. For 2 and 3 shot learning, the data is repeated in
cycles. Since the blocks contain novel independent objects and
labels, we train and test each block separately and not in an
incremental fashion. Like the human experiment, the order of
classes is randomized. We use a triplet based approach for train-
ing, and maximize similarity between a matching image/audio
pair while minimizing similarity between non-matching im-
age/audio pairs. Similarity is given by:

Sj,k = −||yj − xk||22 (1)

where yj and xk are the L2 normalized embedding for image j
and audio k respectively. The triplet loss is given by,

C(θ) = Sa,n − Sa,p + α (2)

where θ are the model parameters, a is the anchor point, p and n
are the corresponding positive and negative points, and α is the
margin which we set at 0.8. The model is trained to convergence
on one class before moving to the next. In 1-shot learning, the
anchor and positive data samples are the image/audio samples
used in the human experiment with negative data sampled from
the pretraining classes. During the 2 and 3 shot learning phases,
the anchor is the novel image/audio of the current cycle, positive
points are sampled from the current and previous cycles, and
negative points are sampled from the previous cycles and pre-
training classes. We train on each novel class for 5 epochs with
4 batches per epoch of size 120, using a learning rate of 0.001.
We use the Adam optimizer with batch-norm and dropout.
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N-shot learning
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Figure 3: Comparison of human and machine retrieval accu-
racy for 1, 2 and 3 shot blocks. Error bars depict the standard
errors.

4. Results and Discussions
4.1. Human Experiment Results

4.1.1. Retrieval Scores

Fig. 3 shows the average score for each n-shot learning across
all subjects as accuracy (%). For humans, both IR and AR
scores in the 1, 2 and 3 shot blocks are in an ascending order.
The overall AR accuracy is higher than that of IR, with means
of 88.194 and 86.528 respectively.

The subject-wise scores for each n-shot learning are shown
in Fig. 4. The differences between IR and AR scores are more
pronounced here for individual subjects. It is to be noted that
the subjects are tested on the same set of objects in both retrieval
tasks, with no feedback in between. Since the learnt associ-
ation does not change after the learning phase, we expect the
retrieval scores to be the same. The difference suggests that the
modality of the query factors into the strength of the associa-
tion. Another possibility is the elimination of options for harder
test cases, which may vary across subjects depending on their
memory preference of one modality over the other.

4.1.2. Temporal Dynamics of Association Learning

For each exposure, we analyze the number of clicks for a sam-
ple termed as the number of listens per sample. The average
number of listens per sample for every subject is shown in Fig
5. From the figure, it is evident that the average number of lis-
tens per sample for the 1st exposure is significantly higher than
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Figure 4: Subject-wise accuracy for image (top) and audio (bot-
tom) retrieval tasks.
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Figure 5: Average number of listens for the nth exposure of
classes.
that of the 2nd exposure for all subjects. This difference is ob-
served between the 2nd and 3rd exposures as well. However, the
difference between the average listens per sample in 2nd expo-
sure and 3rd exposure is a lot lesser compared to the difference
between first and second exposures.

We can speculate that a major chunk of the association
learning happens during the 1st exposure, which is reinforced
in the memory during the 2nd exposure. The average number
of listens for the 3rd exposure is 1.375 which suggests that, for
most classes, the subjects are merely confirming the association
by hearing the audio once.

4.1.3. Analysing Human’s Correspondence Learning

Most of the human subjects participated in the experiment were
able to learn audio-visual correspondence of unknown image
and audio stimuli with more than 90% accuracy with just three
time-separated exposures of the stimuli in 2 modalities. The re-
trieval accuracy is observed to increase significantly with two
exposures than after the single exposure. The average accu-
racy is higher for three shot learning than the two shot learning
blocks, but the relative change is less. The second exposure
itself helped the humans to revise and recollect the correspon-
dence they tried to learn in the first exposure. These results
show that humans are able to learn the major chunk of associ-
ation and cues of the multi-modal input with a single exposure
itself. The second exposure helps embed this information in
their short term memory by recalling what they seen and heard
in the first exposure. This recollection helps to improve the re-
trieval accuracy. These observations are more evident in audio
retrieval task than in the image retrieval task. The audio re-
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Figure 6: Generalisation of humans and machines in 1-shot
learning. Error bars depict the standard errors.

trieval task shows a more gradual improvement in accuracy with
increase in exposures as compared to the image retrieval task.
Image retrieval accuracy is more or less similar for two-shot and
three-shot learning sessions.

4.2. Machine Results

The random sampling of negative points primarily from the
large set of pretraining samples leads to variance in the model.
We average the retrieval accuracy of the model trained using 5
random seeds. The mean and standard error of the accuracy is
given in Fig 3.

4.2.1. Machine vs Human performance

The model’s retrieval accuracy is averaged over each n-shot as
shown in Fig. 3. The model retrieval accuracy pattern is com-
parable to that of humans after n-shot learning. It follows a
steady increasing trend in accuracy as n increases, with the IR
accuracy consistently better than that of AR. It also outperforms
humans in all cases, except for AR in one-shot learning.

4.2.2. One shot generalisation

The test results for generalisation from a single exposure are
shown in Fig 6. Unseen query stands for the testing case where
augmented variants of the query sample, different from those
in the training, are used. Seen query stands for the testing case
where the query sample is same sample used in training. The
machine model has a significant improvement in performance
for IR and AR on the seen queries. For humans, the scores ap-
pear more consistent with a minor improvement between the
seen and unseen queries. This suggests that humans have a
better ability to generalize to new samples even from a single
exposure.

5. Conclusions
• With increase in the number of exposures to the stimulus,

humans and machines learn the audio-visual correspon-
dence with better accuracy.

• The time spent and number of times a subject listens to
the audio at a particular exposure confirms that the major
chunk of association learning happens in the first expo-
sure of the audio-visual pair.

• This paper proposes a machine model which performs
on par with the humans in audio-visual correspondence
learning.

• Humans have a better ability to generalize to new sam-
ples even from a single exposure.
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