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Abstract

Conversational speech, while being unstructured at an utterance
level, typically has a macro topic which provides larger con-
text spanning multiple utterances. The current language mod-
els in speech recognition systems using recurrent neural net-
works (RNNLM) rely mainly on the local context and exclude
the larger context. In order to model the long term dependen-
cies of words across multiple sentences, we propose a novel ar-
chitecture where the words from prior utterances are converted
to an embedding. The relevance of these embeddings for the
prediction of next word in the current sentence is found using
a gating network. The relevance weighted context embedding
vector is augmented in the language model to improve the next
word prediction, and the entire model including the context em-
bedding and the relevance weighting layers is jointly learned
for a conversational language modeling task. Experiments are
performed on two conversational datasets - AMI corpus and
the Switchboard corpus. In these tasks, we illustrate that the
proposed approach yields significant improvements in language
model perplexity over the RNNLM baseline. In addition, the
use of proposed conversational LM for ASR rescoring results
in absolute WER reduction of 1.2% on Switchboard dataset and
1.0% on AMI dataset over the RNNLM based ASR baseline.
Index Terms: Language modeling, recurrent neural network,
conversational modeling, speech recognition.

1. Introduction

Language modeling (LM) is the task of predicting the next word
given the past history of words in a text stream and it forms
an integral part of automatic speech recognition (ASR) sys-
tems and other natural language processing systems. In the past
decade, following a similar trend in several other domains, the
methods used for LM have shifted fundamentally from n-gram
models based on frequency of counts to deep neural network
based models. The earliest approach to LM using feed-forward
networks was proposed by Bengio et al. [1]. These mod-
els were advanced using recurrent neural networks (RNNs) by
Mikolov et. al [2] and then further using long short-term mem-
ory (LSTM) variants of RNNs by Sundermeyer et al. [3] and
more recently by Xiong et al. [4]. The RNN models have mul-
tiple advantages over the traditional n-gram framework. The
continuous-space embedding of words allows word similarities
to be computed in an efficient manner for generalization [2],
and the recurrent architecture also allows an unlimited history
to condition the prediction of next word.

In the current implementation of LM (even for conversa-
tions), the potential advantage of unlimited history, however, is
not used to its full extent. The LM is typically “reset” at the start
of each utterance in current state-of-the-art ASR systems [5, 4].
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This approach assumes that the successive utterances are inde-
pendent of each other, which is not the case in conversational
data. In the past, there have been some attempts to incorpo-
rate the information from a larger context, spanning multiple
speaker utterances, in n-gram models (for example, Bellegarda
et. al [6] and Ji et.al [7]). For neural network based LM, the
inclusion of a longer context as a slowly varying context vector
was attempted by Mikolov et.al. [8] where the context vector
was incorporated as a latent semantic embedding of the previ-
ous context. Xiong et.al [9] recently proposed a LSTM based
LM that takes the history of the conversational utterances in the
LSTM model. However, the modeling of long term dependen-
cies spanning multiple sentences can pose a substantial chal-
lenge in LSTM models. In addition, all the words of the current
sentence may not benefit from the inclusion of the longer con-
text.

In this paper, we propose a novel approach to LM, referred
to as context dependent RNNLM (CRNNLM), using the word
embeddings from contextual sentences along with the words of
the current sentence. The cross correlation of the word em-
beddings from the contextual sentences with the embedding of
the current word is used to derive a context embedding. This
contextual embedding is used in a gating network to generate
a relevance weighted context vector that is augmented with the
word embeddings of the current sentence in the LM. Unlike the
approach in [8], where a single context vector is computed for
the sentence, a separate context vector is computed for each
word in the current sentence to capture local context. The en-
tire model, including the gating network and embedding layers,
is learned jointly from the training data corresponding to con-
versational speech. Experiments on Switchboard dataset [10]
and AMI meeting dataset [11] show that the proposed approach
to LM improves significantly over the state-of-art RNNLM in
terms of perplexity measure, and also in terms of WER in the
ASR task.

The rest of the paper is organized as follows. Section 2
describes the proposed model to LM using contextual embed-
dings. The experiments and results using the proposed LM are
reported in Section 3, which is followed by a brief summary of
the work in Section 4.

2. Context dependent RNNLM

A block diagram of the proposed context dependent RNNLM
(CRNNLM) is shown in Fig. 1. The utterances in the conver-
sation are serialized, based on the onset time, as shown in Fig.
2. To model a given utterance, a set of past c utterances is con-
sidered as the context. The current utterance and the context
utterances are given as two separate input streams to the neural
network. The neural network is divided into three stages. In the
first stage, a hidden representation is computed for each word
in the input and context streams. In the second stage, a cross-
attention like operation [12] between input and context streams,
is used to derive a context embedding separately for each word
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Figure 1: Block diagram of the C-RNNLM architecture.
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Figure 2: Conversation progression and utterance serialization.

in the input stream. The context embedding is further gated us-
ing a relevance weight, which quantifies the importance of con-
text in predicting the next word. In the final stage, the relevance
weighted context embedding is augmented with the input hid-
den representation and fed to a next word prediction network. A
detailed description of the different computation steps is sum-
marized below.

2.1. Input representation

Let {wo,...,wn_1} denote the sequence of word embed-
dings of the current input sentence containing words < s >

,Wi,...,wn—1. The hidden representation h, for the tth input
word is obtained via the following operations:
h; = tanh (linear (LSTM ({w+}))), V t. e}

At time instant ¢, the uni-directional LSTM computes a rep-
resentation dependent on the words w<;, which is linearly pro-
jected and the tanh activation is used for range compaction. The
word embedding w is obtained from 1-hot-K representation of
input word w; using the input embedding matrix E;. We use
the transpose of the output embedding matrix E, as the input
embedding matrix, i.e., B; = EZ, inspired by [13].

2.2. Context embedding

Let L denote the number of words from context (previous c) ut-
terances, and let {a1,...,ar} be the sequence of correspond-
ing word embeddings computed using the input embedding ma-
trix E; shown in Fig. 1. The hidden representation g; for the

I*" word in the context input is computed as:

g = tanh (linear (BiLSTM ({a;}))), V1. 2)

The BIiLSTM layer looks at all the words in the context, and
the linear layer with tanh activation is used for joint projection
of the forward and backward LSTM output streams and range
compaction. The context embedding ct corresponding to the
word w is then computed as a weighted sum of representations
{g1,...,gr} of context input.

L
c=Y aug, 3)
=1

. T .
where the weight vector avy = [au1,...,q:r]  is computed
using cross correlation as,

oy = softmaa:(htT[gl,...,gL]). “)

The correlation between h; and g; will be high, if the corre-
sponding words are related, or occur frequently in a similar con-
text. Hence, the derived context embedding c; captures local
context information.

2.3. Relevance weighted context embedding

The context may not be relevant to predict the next word in a
word sequence. To model this, we consider relevance weight-
ing of the context embedding using joint, linear projection of the
context embedding and the input representation. This method
is inspired by the cold fusion method proposed in [14]. We ex-
plore two strategies for relevance weighting, (i) coarse weight-
ing and (ii) fine weighting.

In coarse weighting, the context embedding is multiplied
by a scalar weight: ¢; = S:c:, where

T
Bt = sigmoid (WT [hf;cﬂ ) ,we R (5

and in fine weighting, the context embedding is multiplied
element-wise by a vector weight: ¢; = B¢ ® c¢, where

T
B = sigmoid (WT [hz; ctT] ) , WeRMh (6

2.4. Feature augmentation

We explore additive and concatenative schemes for the augmen-
tation of the relevance weighted context embedding vector with
the input feature. In the additive scheme, the augmented feature
is obtained as, .

h; = h; + ¢, N
and in the concatenative scheme, the augmented feature is ob-
tained as,

b =[] ®)

2.5. Next word prediction and output embedding

The next word prediction network consists of a uni-directional
LSTM layer followed by a linear layer, which gives an embed-
ding vector as the output O;:

0; = Linear (LSTM (flt)) )

The output embedding matrix E, is used to project the embed-
ding 6 to the word level output o; (0; = E,6;). The softmax
of the vector o is taken as the word level posterior distribution
for the next word prediction.



Table 1: CRNNLM architecture variants

Name | Relevance weight | Feature augmentation
V1 Unity Concatenative
V2 Scalar Concatenative
V3 Vector Concatenative
V4 Vector Additive

3. Experiments and results

We consider evaluation of the proposed language model using
two datasets, (i) Switchboard (SWB) telephone conversation
dataset (300 hour subset) [10], and (ii)) AMI meeting dataset
[11]. The CRNNLM is trained separately for each dataset, and
uses the same architecture. The number of training conversa-
tions is 2405 and 130, for the Switchboard and AMI datasets
respectively. Further, we augment the training set with 11699
Fisher conversation transcripts [15] for both the setups. The to-
tal number of training sentences is 3M, 2.5M for the Switch-
board and AMI setups respectively. The evaluation set con-
sists of 40 conversations in Switchboard and 10 conversations in
AMI dataset. The training set is divided into 50 subsets with ap-
proximately equal number of conversations. The LM is trained
with cross entropy loss using Adam optimizer [16]. The ini-
tial learning rate is chosen to be 0.01, and decreased with a
constant decay coefficient of 0.99 after every subset (starting
from 20" subset). The batch size is chosen to be 32 samples.
The length of input training examples is restricted to a maxi-
mum of 16 words, and the context example length is not con-
strained. A {2 regularization with a weight of 107" is applied
to all the weights in the architecture, and dropout regulariza-
tion with p = 0.2 is used for the LSTM layer outputs. The
CRNNLM is trained using the PyTorch toolkit [17].

We explore four variants of the CRNNLM architecture,
which are summarized in Table 1. We also compare CRNNLM
with the trigram LM, RNNLM implemented using standard
Kaldi (Kaldi-RNNLM) recipe, and the session level language
model (SessionLM) proposed in [9]. For the SessionLM, we
choose three hidden layers as in [9], but with 256 units each,
and the embedding used to encode the word inputs is trained
jointly with the LM. We consider the variant of SessionLM in
[9] without the speaker change and speaker overlap informa-
tion, and the network is trained similar to CRNNLM. During
training words from previous 10 sentences are used as session
history and during evaluation all the past sentences in the con-
versation are used as session history.

3.1. Discussion and analysis

First, we investigate the importance of context embedding,
using the CRNNLM architecture V3 trained on Switchboard
dataset. Fig. 3 shows the average relevance weight 3; for 5
different test utterances. A higher value indicates the network
is giving importance to the context embedding. We see that, on
an average, a higher weight is given to the context embedding
in the prediction of the first few words of the current utterance,
and the context becomes less relevant gradually. Also, there is a
difference across the utterances, indicating that the context em-
bedding can be more relevant in certain local context scenarios.
To explore this further, we study the perplexity of the prediction
of first word in the utterance.

Figure 4(a) shows a comparison of the probability density
function (PDF) of the first word perplexity (FWP). We see that,
the PDF is shifted towards zero, indicating better first word pre-
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Figure 4: Comparison of the PDF (kernel density estimate) of
first word perplexity, i.e., 1/ P(word| < s >) for all utterances
in the evaluation set of Switchboard dataset.

diction using CRNNLM and SessionL.M compared to trigram or
Kaldi-RNNLM. The min value of FWP for trigram and Kaldi-
RNNLM is found to be 8 and 9.43 respectively, but CRNNLM
(network V3) predicts words with a higher probability in certain
contexts, and the min FWP is 1.08

Fig. 5 shows the cross relation weights o of eqn. (4)
for the sentence “We were looking at the Saturn S L two”,
which was part of a Switchboard conversation. For the pre-
diction of first word (“We”), i.e., for < s > as input, a rel-
atively higher weight is given to the last word in the context
input, indicating that the network is trying to ensure continuity
across the sentences. Att = 3, ‘< s > We were’ is given
as input, a higher weight is given to the word ‘looking’ in the
context input which is also the correct next word; and in the
next time step, the weight is high for the ‘more’, which corre-
sponds to the sub-sequence ‘looking more’ in the context input.
For the subsequent time steps, the weights are spread across all
words with relatively higher weights for the words { ‘Honda’,
‘Civic’,‘Saturns’,‘Car’ }, indicating the computation of an aver-
age embedding with a preference to the macro topic of the con-
versation. Overall, we observe that, the CRNNLM approach
promotes continuity across utterances, and gives higher impor-
tance to sub-sequences from context input to improve the next
word prediction.

We study the LM performance using perplexity measure.
Table 2 shows the LM perplexity on the evaluation set. We
see that, neural LMs (CRNNLMSs, Kaldi-RNNLM and Ses-
sionLM [9]) show significant improvement in perplexity com-
pared to the trigram LM. The performance of CRNNLM is bet-
ter than the Kaldi-RNNLM and the SessionLM [9]. Comparing
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Figure 5: Cross relation weights o, (eqn. (4)) computed in the
CRNNLM architecture V3. The x-axis corresponds to the words
in context utterances: <So what did you buy> <I bought a
ninety two Honda Civic. I was looking more for a smaller type
car so it was between the the Honda Civic and the Saturns>,
and the y-axis corresponds to the words in current input utter-
ance: <We were looking at the Saturn S L two>. Utterances in
the context are from both the speakers.

Table 2: LM Perplexity of various models compared with base-
line system

Perplexity
Net SWB | AMI
trigram 112.32 | 124.05

Kaldi-RNNLM | 93.00 | 100.22
SessionLM [9] | 61.94 79.28

\4! 63.60 | 72.99
V2 58.69 73.45
V3 58.10 | 71.64
V4 57.88 | 73.72

architecture V1 with V2-V4, we see that relevance weighting
improves the LM perplexity. The feature augmentation method
(concatenative or additive), and the relevance weighting scheme
(coarse or fine) are found to have a minor effect on perplexity.

3.2. ASR Experiments

The acoustic model (AM) is trained using the Kaldi “chain”
recipe [18] with LF-MMI [19] as the minimization objective.
A Bi-LSTM architecture' is used for the AM for Switchboard
dataset, and a TDNN based architecture 2 is used for the AMI
dataset. We consider experimentation using the individual head
microphone (IHM) subset of the AMI dataset. A trigram lan-
guage model, built on the training transcripts is used to per-
form first pass decoding to generate decoder lattices. The neural
LMs are then used to rescore the N-best hypothesis list obtained
from these lattices. The utterances are processed sequentially in
CRNNLM and SessionLLM [9] rescoring. To rescore a given ut-
terance hypotheses, a set of past ¢ decoded utterances are given
as context input in CRNNLM.

First, we study the effect of the number N of alternate hy-
potheses considered for rescoring. Table 3(a) shows the WER
as a function of N. The WER is found to decrease with increase
in V. The effect of the number c of context utterances on WER
is shown in table 3(b). The CRNNLM is trained with ¢ = 2 and
it is varied during evaluation. We see that, a context of 3 utter-
ances is sufficient and longer context does not necessarily result
in WER improvement. This may be attributed to the local na-

IKALDI-ROOT/egs/swbd/s5c/local/chain/tuning/run_blstm_6k.sh
2K ALDI-ROOT/egs/ami/s5b/local/chain/tuning/run_tdnn_1j.sh

Table 3: Effect of (a) number of alternate hypotheses (N ), and
(b) length of context c, on the ASR performance (WER %).

(a) WERvs N (c=2) (b) WER vs c (/N = 100)

N | SWB | AMI ¢ | SWB | AMI
20 135 | 19.0 1 132 | 187
30 135 | 19.0 2 132 | 18.6
50 133 | 18.8 3 13.1 | 18.6
70 133 | 187 4 | 131 | 185
100 | 13.2 | 18.6 5 13.1 | 185

Table 4: ASR performance for different LMs and CRNNLM
variants, context c = 3 and N = 100.

WER %
M SWB [ AMI
First pass
trigram [ 16.0 [ 20.6
Second pass (trigram + )

Kaldi-RNNLM 13.8 19.2

SessionL.M [9] 13.4 19.0

V1 13.4 18.6

V2 13.1 18.7

V3 13.1 18.6

V4 13.1 18.6
Third pass (trigram + Kaldi-RNNLM + )

V3 [ 12.6 [ 18.2

ture of the context embedding, which promotes repeated word
sequences and continuity across utterances. Hence, we consider
N =100 and ¢ = 3 for the following ASR experiments.

The WER obtained using the different CRNNLM variants
is shown in Table 4. Rescoring using Kaldi-RNNLM is found
to give an absolute improvement of upto 2.2% compared to tri-
gram LM, and using SessionLM gives upto 2.6% in WER. The
CRNNLMs are found to result in better WER than other mod-
els for both the datasets. Comparing V2-V4 with V1, we see
that, relevance weighting of the context embedding helps in im-
proving the WER. The architectures V2-V4 have similar per-
formance for N = 100, but for smaller N we observed V3 to
have slightly better performance. We see that CRNNLM perfor-
mance is better for all values of ¢, compared to Kaldi-RNNLM
(no context), indicating the usefulness of the local context in-
formation. Table 4 also shows that CRNNLM rescoring of the
N-best list generated using Kaldi-RNNLM (last row) improves
the WER by absolute 1 — 1.2% compared to Kaldi-RNNLM.

4. Summary

In this paper, the use of conversation context from past utter-
ances is shown to improve the LM and ASR transcription per-
formance. The cross attention like architecture is found to ex-
tract local context features and also improve the next word pre-
diction near the start of the sentence. The relevance weighting
of the context features is also important and useful in improving
the LM performance. An absolute improvement of 1 — 1.2% in
WER is obtained on two different types of conversations, tele-
phone and multi-party meetings.
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