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ABSTRACT

Automatic speech recognition (ASR) in far-field reverberant envi-
ronments, especially when involving natural conversational multi-
party speech conditions, is challenging even with the state-of-the-
art recognition methodologies. The two main issues are artifacts in
the signal due to reverberation and the presence of multiple speak-
ers. In this paper, we propose a three dimensional (3-D) convolu-
tional neural network (CNN) architecture for multi-channel far-field
ASR. This architecture processes time, frequency & channel dimen-
sions of the input spectrogram to learn representations using convo-
lutional layers. Experiments are performed on the REVERB chal-
lenge LVCSR task and the augmented multi-party (AMI) LVCSR
task using the array microphone recordings. The proposed method
shows improvements over the baseline system that uses beamform-
ing of the multi-channel audio along with a 2-D conventional CNN
framework (absolute improvements of 1.1 % over the beamformed
baseline system on AMI dataset).

Index Terms— Far-field speech recognition, 3D CNN model-
ing, Multi-party conversational speech.

1. INTRODUCTION

Multi-speaker conversations in far-field environments pose a signif-
icant challenge to automatic speech recognition systems even when
employing state-of-the-art speech recognition systems [1]. e.g. Ped-
dinti et al., [2] report a 75% rel. increase in word error rate (WER)
when signals from a far-field array microphone are used in place of
those from headset microphones in the ASR systems, both during
training and testing. This degradation could be primarily attributed
to reverberation and multi-speaker overlaps [3, 4]. The availability
of multi-channel signals can be leveraged for alleviating these issues.

Beamforming is a popular approach for multi-channel signal
based enhancement of speech [5, 6]. In this paper, we develop a
neural network architecture consisting of 3-D convolutional models
as a front-end for processing multi-channel speech. The spectro-
gram representation of speech is extracted from each channel inde-
pendently. The 3-D CNN is fed with three dimensional input repre-
sentation consisting of time, frequency and channel dimensions. The
feature maps from the initial CNN layers are then fed to time delay
neural network layers (TDNN) [7] followed by a final layers of se-
quence modeling with LSTM networks. The entire model is trained
using a sequence cost function with lattice free minimum mutual in-
formation (MMI) criterion [8].
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Experiments are primarily performed on the augmented multi-
party speech database [9]. In these experiments, the proposed
method improves the performance over a baseline system using a
2-D CNN-TDNN-LSTM architecture which uses either single chan-
nel speech or beamformed output of multi-channel speech as inputs.
This model was shown to provide the best reported results on the
single channel AMI LVCSR task [10]. We also contrast the per-
formance of the proposed approach in the case of a single speaker
setting (using the REVERB Challenge corpus [4]) with multi-party
conversations in AMI dataset.

The rest of the paper is organized as follows. Prior work is dis-
cussed in § 2, proposed architecture is discussed in § 3, experimen-
tal setup is described in § 4 and the results for multi-channel speech
recognition are reported in § 5. This is followed by a discussion § 6
and conclusion in § 7.

2. PRIOR WORK

Beamforming fundamentally relies on estimating the time delay be-
tween speech signals recorded from multiple channels, and design-
ing a spatial filter to perform a delay and sum operation for gener-
ating an enhanced single channel signal [11]. This can be used in
improving the downstream speech systems, including ASR. These
methods can also be modified for maximizing the likelihood [12].

With the advent of neural network based acoustic models multi-
channel acoustic models have also been explored. Recently Swieto-
janski ef al [13] proposed the use of features from each channel of
the multi-channel speech directly as input to a convolutional neu-
ral network based acoustic model. Here the neural network is seen
as a replacement for conventional beamformer. Joint training of a
more explicit beamformer with the neural network acoustic model
has been proposed by Xiao et al., [14]. Training of neural networks,
which operate on the raw signals and are optimized for the discrim-
inative cost function of the acoustic model, has also been recently
explored. These approaches are termed Neural Beamforming ap-
proaches as the neural network acoustic model subsumes the func-
tionality of the beamformer [15, 16, 17].

In this paper, we develop a neural network architecture consist-
ing of 3-D convolutional models as a front-end for processing multi-
channel speech. 3-D CNN architectures have shown promising re-
sults in video signal based human action segmentation [18] and more
recently in the bio-medical imaging applications for lesion segmen-
tation [19].

3. PROPOSED 3-D CNN ARCHITECTURE

The block schematic of the proposed architecture is shown in Fig. 1.
The multi-channel recordings are converted into spectrogram repre-
sentation containing 40 bands of log-mel filtered filter bank energies
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Fig. 1. Block schematic of the proposed 3-D CNN based network architecture for AMI speech recognition.

sampled at every 25 ms of the audio file with a shift of 10 ms. The
multi-channel audio segments are stacked in a 3-D fashion and fed as
input to the neural network model. The neural network architecture
consists of convolutional layers which have 3-D kernel. The CNN
layers perform the following convolutional operation,

Ny Ny N,
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where K is the 3-D kernel, X is the input multi-channel spectro-
gram, Y is the output of the feature map and (N, N,, N.) rep-
resents the kernel size. The operation is performed without any
padding on the input spectrogram so that output dimensions are re-
duced in each convolutional operation. In our case, we perform two
layers of 3-D convolutions.

The feature maps generated by the CNN layers are flattened
along the frequency and channel dimensions, every time step, and
are fed to successive layers of time delay neural networks [7]. While
standard feed forward networks process the entire input contexts,
TDNN architecture captures narrow temporal context in the initial
layers and then approximates the wider temporal context in the final
layers. This has shown to improve the ASR performance for far-field
reverberant speech [20].

The higher TDNN layers are interleaved with the LSTM lay-
ers as a combination of these layers has been shown to be optimal
for low latency temporal context modeling [2]. The final output of
the TDNN-LSTM stack is mapped to the senone (context dependent
HMM state) targets using a fully connected layer.

4. EXPERIMENTAL SETUP

4.1. AMILVCSR task

The AMI meeting corpus [21] contains conversational speech with
the training and test configuration chosen similar to [22]. The train-
ing data corpus consist of about 100 hours of meetings recorded in
instrumented meeting rooms at three sites in the UK, the Nether-
lands, and Switzerland. Each meeting usually has four participants
and the language is English, albeit with a large proportion of non-
native speakers. The recording involves multiple parallel micro-
phones, including individual headset microphones (IHM), lapel mi-
crophones, and one or more microphone arrays. Every recording
used a primary 8-microphone uniform circular array (10 cm radius),
as well as a secondary array whose geometry varied between sites.
In this work we use the first three microphone recordings of the pri-
mary array for our single distant microphone (SDM) experiments.
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Fig. 2. Portion of meeting speech and corresponding spectrogram.
The speech regions with their labels and speaker index are high-
lighted.

A portion of the speech signal from the AMI corpus and the cor-
responding spectrogram is illustrated in Fig. 2. As seen here, the
spectrogram contains reverberation artifacts and there is substantial
amount of overlap speech (about 12 % of the recording duration con-
tains multi-talker speech). Also, the dataset consists of substantial
amounts short segments with large number of speaker turns.

We use the lattice-free maximum mutual information (LF-MMI)
cost function to train in a purely sequence discriminative training
approach [8]. The cost function is similar to connectionist temporal
classification (CTC) [23], however the lattice free MMI involves a
global normalization.

We use the Kaldi toolkit [24] to conduct our experiments. This
recipe follows the corpus release for the training and evaluation
splits. For training purposes we consider all segments (includ-
ing those with overlapped speech), and the WERs of the speech
recognition outputs are scored by the tool following the NIST RT
recommendations for scoring simultaneous speech’.

A HMM-GMM system is used to generate numerator lattices
for LF-MMI training and also for cross-entropy regularization. The
training and decoding closely follows the one described in [25]. We
use the speed-perturbation technique [26] for data augmentation with
3-way speed perturbation. The log-mel features are also appended
with iVectors to perform instantaneous adaptation of the neural net-
work [27]. The WER results are reported after 4-gram LM re-scoring
of lattices generated using a trigram LM. All the neural network
models in AMI corpus use 40 dimensional log-mel filter bank en-

Thttp://nist.gov/speech/tests/rt/2009



Table 1. Word error rate (%) on REVERB Challenge corpus for sim-
ulated (S) and naturally reverberant conditions (R) on development
(dt) and evaluation (et) datasets.Here BF corresponds to beamform-

ing.

Model S-dt | S-et | R-dt | R-et
DNN-Single-Chn. 12.7 | 13.6 | 31.8 | 37.5
CNN2D-Single-Chn 11.3 | 11.4 | 26.8 | 29.6
CNN2D-Multi-BF 9.7 100 | 248 | 264
CNN2D-Multi-BF + Dropout || 10.7 | 11.5 | 26.7 | 27.5
CNN3D-Multi 9.8 103 | 26.7 | 284
CNN3D-Multi + Dropout 9.1 9.8 | 24.6 | 25.8

ergy features which are processed with segment level mean variance
normalization. The ground truth speech activity detection (SAD) is
assumed and the i-vectors of 100 dimensions are also used concate-
nated with the input features.

4.2. Reverb Challenge LVCSR task

To understand the impact of the proposed architecture in the single
speaker setting we use the REVERB challenge [28] LVCSR task.
A major deviation in this setup compared to the AMI LVCSR task
is that we report the results on cross-entropy trained systems as the
LF-MMI cost function has not been shown to be very effective for
low resource LVCSR tasks [8]. Further in these experiments, we use
only the CNN front-end followed by feed forward layers (without
the TDNN and LSTM layers described in Fig.1).

The REVERB challenge [28] corpus uses the WSJCAMO
database for training. This database consists of 7861 recordings
of read speech from 92 training speakers, 1488 recordings from 20
development test (dt) speakers and 2178 recordings from two sets of
14 evaluation test (et) speakers, with each speaker providing about
90 utterances. These recordings were carried out with two sets of
microphone- head mounted as well as desk microphone positioned
about half meter from the speaker’s head.

The database consists of three subsets: training data set (Train) -
for multi condition training using simulated reverb data, a simulated
test dataset (Sim) and a naturally reverberant recording of the test
dataset (Real). Once again the Kaldi toolkit [24] is used for the data
preprocessing and the Keras [29] tool is used for training the acoustic
model.

The features are the 23 dimensional log-mel filterbank energies
which are mean and variance normalized. A context of 21 frames
is used for generating the time-frequency representation used at the
input of the CNN. For the multi-channel experiments, we use 3 chan-
nels from the array microphone recordings.

5. RESULTS

The summary of the results for various speech recognition exper-
iments in the REVERB Challenge corpus are reported in Table 1.
The CNN based architecture provides significant improvements over
the DNN model for the single channel case. Here, the CNN2D ar-
chitecture consist of 4 convolutional layers (2 layers of 256 filters
and 2 layer of 128 filters each with a 3 x 3 kernel and max pool-
ing after the second and fourth layer) and 2 dense (feed-forward)
layers. The beamformed approach using the single channel CNN-
2D architecture (beamformed with the 3 channels which are also
used in the CNN3D architecture) further improves the performance

over the single channel case. In the REVERB challenge dataset,
the beamforming is more effective as each recording contains only
one speaker (one source). Thus, the assumptions made in delay-sum
based enhancement [11] are valid as the evaluation was done with
static location of the speakers.

The multi-channel CNN architecture (CNN3D) improves sig-
nificantly over the single channel set up. The best performance ob-
tained for the multi-channel CNN3D experiments are reported here.
We have used two layers of convolutional 3D filters of kernel size
(3x3x2) with 256 filters followed by max-pooling and another 2
layers of 128 filters along with max-pooling. The convolutional lay-
ers are followed with 2 dense layers of 1024 dimensions. While
training the models, we have observed an overfitting trend where the
training and validation accuracies for frame level senone targets are
drastically different. In order to circumvent this issue, we have used
a regularization approach using dropout [31]. The dropout scheme
provides significant improvements to the CNN3D architecture and
the CNN3D outperforms the best beamforming system (average rel-
ative improvements of 2.2 % over the CNN2D-Beamform baseline).

The results for baseline experiments on the AMI corpus using
the SDM recordings (single channel) are reported in Table 3 where
the results are reported separately for development and evaluation
meetings. The results of the baseline AMI system using HMM-
GMM is reported in the first row. The HMM-GMM system is trained
with linear discriminant analysis (LDA) - maximum likelihood lin-
ear transform (MLLT) approach [24] followed by a speaker adaptive
training. A similar ASR system was built on the IHM recordings
and alignments obtained from IHM setup (using force alignment)
are used as labels for neural network models on the SDM data. The
next two results reported in Table 3 are the TDNN based ASR sys-
tem with four hidden layers trained with cross-entropy cost function
and the sequence cost function respectively. As seen here, the per-
formance is significantly improved using a TDNN acoustic model
over the HMM-GMM system. The sequence cost function further
improves the WER.All further experiments use the sequence train-
ing cost function.

A similar pipeline with CNN 2D (5 layers) followed by 2 layers
of TDNN is reported next. All the CNN layers have 64 filters and
the TDNN layers have 512 dimensions. The use of CNN front-end
results in decrease in performance compared to the TDNN archi-
tecture. The last result in Table 3 reports the performance of the
CNN2D-TDNN-LSTM setup. In this set up, two CNN layers with
256 and 128 filters respectively are used for the generating the front-
end features maps. This is followed by 2 layers of TDNN architec-
ture with 1024 dimensions and 3 layers of LSTM architecture with
1024 LSTM cells in each layer. As seen in this table, the addition of
the LSTM layers provides significant improvements to the CNN2D-
TDNN model as well as the baseline TDNN model (average relative
improvements of about 11% over the TDNN model and about 15
% over the CNN2D-TDNN model). The single channel SDM re-
sults from two recent efforts using attention LSTM [30] as well as
bidirectional LSTM with TDNN front-end [2] are also added to this
table for reference.

The multi-channel experiments using the CNN3D-TDNN-
LSTM model are reported in Table 2. Here, we use the first three
recordings of the array microphone as input representation to the
CNN3D model. Various choices of input filter sizes, weight sharing
and pooling are experimented for the 3-D CNN architecture front-
end. The rest of model architecture containing 2 layers of 1024
dimensions of TDNN layers and 3 LSTM layers each with 1024
cells is used as before. As seen in Table 2, increasing the number
of input filters (each filter has a fixed kernel size of (3 x 3 X 1))



Table 2. Word error rate (%) on AMI corpus for multi-channel SDM experiments using CNN3D-TDNN-LSTM architecture with various

choices of model parameters.

Model Dev. | Eval

Layer1-(64 Filt.) Layer2-(32 Filt.) 348 | 374

Layer1-(96 Filt.) Layer2-(32 Filt.) 345 | 37.2

Layer1-(128 Filt.) Layer2-(64 Filt.) 344 | 374

Layer1-(256 Filt.) Layer2-(128 Filt.) 349 | 379

Layer1-(256 Filt.) Layer2-(128 Filt.) + Reg. 32.7 | 35.7
Layer1-(256 Filt.) Layer2-(128 Filt.) + Reg. and Sharing 32.6 | 354
Layer1-(256 Filt.) Layer2-(128 Filt.) + Reg., Sharing and Avg. pool || 32.6 | 35.7
Layer1-(384 Filt.) Layer2-(192 Filt.) + Reg. and Sharing 32.7 | 357

Table 3. Word error rate (%) on AMI corpus for single channel SDM
experiments.

Model Dev. | Eval
HMM-GMM (LDA-MLLT-SAT) || 59.5 | 64.0
TDNN (CE) 41.7 | 46.7

TDNN (Seq.) 40.2 | 44.1
CNN2D-TDNN (Seq.) 41.8 | 46.7
CNN2D-TDNN-LSTM (Seq.) 36.0 | 39.0
Attention-LSTM [30] 41.3 | 45.8
TDNN-LSTM [2] 374 | 404

showed an over fitting trend compared to the single channel CNN2D
case with similar number of filters. In order to circumvent this
issue, we used a regularization approach [32] consisting of deriva-
tive truncation and shrinkage. This way of regularization helps to
avoid overfitting and allows the models to be trained with same the
number of filters as the single channel case. We also see minor im-
provements by sharing the weights across the channels. The use of
average pooling across channels in the CNN layer did not improve
the performance any further. The results reported for AMI single
channel (Table 3) as well as three channel results using CNN3D
model (Table 4) are the best published results for this task to the best
of our knowledge.

The results reported in Table 4 compares the performance of
the best single channel system (CNN2D-TDNN-LSTM) trained on
channel 1 as well as the delay-sum beamformed output [11] and the
CNN3D-TDNN-LSTM model’. The beamforming was done on the
same 3 channels used in the multi-channel ASR experiments using
the approach described in [11]. The proposed approach improves
over the beamforming method (absolute improvements of 1.3 % on
dev meetings and 0.8 % on the eval meetings over the best beam-
formed model).

6. DISCUSSION

The beamforming methods optimize the signal enhancement prob-
lem by delay-sum operations (spatial filtering). The acoustic model-
ing in speech recognition predicts the senone classes and optimizes
a sequence training cost function. As seen in various speech recog-
nition experiments in this paper, there are substantial advantages in
combining the two steps by using joint CNN3D framework.

The previous efforts on CNN with multi-channel framework
[13] use separate kernels on each channel which get merged in the

2The implementation of the proposed model can be found in
hitps : //github.com/vijayaditya/kaldi/tree/3d-cnn

Table 4. Word error rate (%) in AMI corpus for multi-channel SDM
experiments using proposed approach and baseline beamformed [11]
approach

Model Dev. | Eval
CNN2D-TDNN-LSTM (single) 36.0 | 39.0
CNN2D-TDNN-LSTM (multi beamformed) || 33.9 | 36.2
CNN3D-TDNN-LSTM (multi) 32.6 | 354

network. The proposed approach uses 3D framework to capture the
time-frequency-channel correlations. In comparison with the raw-
waveform based beamforming efforts [15], the proposed approach
is more robust to speaker and source location changes. While raw
waveform based approaches have the advantage of using the signal
phase information for multi-channel combination, the regions of
speaker changes causes degradation which could potentially impede
the performance. Also, the model proposed in [15] attempts to
summarize the spatial dimension in the first layer of the network
where as the proposed approach preserves the space dimension deep
in CNN architecture (until the feed-forward/TDNN layers). Hence,
we hypothesize that proposed model may be more suitable for ASR
applications on natural multi-speaker conversations.

7. SUMMARY AND FUTURE WORK

In this paper, we have proposed a three dimensional neural network
consisting of convolutional layers followed by LSTM layers. The 3D
CNN architecture receives input from time-frequency-channel di-
mensions of the input multi-channel speech. Various speech recogni-
tion experiments were performed in the REVERB challenge dataset
as well as the AMI speech recognition database. The main finding
is that while the beamforming approach of speech enhancement is
effective in simple settings involving single speaker recordings (as
seen in REVERB challenge corpus), the proposed approach of 3D
CNN architecture improves noticeably over the beamforming meth-
ods on REVER challenge corpus and the multi-party conversational
settings. The promising results motivate us to further pursue novel
modeling methods for multi-channel speech recognition involving
spatial recurrence in LSTM models. The current way of combin-
ing the channels uses a time resolution of 10 ms in the spectrogram
representations which can be improved by having a higher tempo-
ral granularity (frames taken below 10 ms). The higher temporal
sampling rate could allow the model to have more spatial resolu-
tion and improve the 3D structure of the data. In addition, the AMI
database contains 8 parallel microphones which could potentially al-
low greater flexibility in the 3D modeling.
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