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ABSTRACT

In this work, we propose a novel approach for multi-modal emotion
recognition from conversations using speech and text. The audio
representations are learned jointly with a learnable audio front-end
(LEAF) model feeding to a CNN based classifier. The text represen-
tations are derived from pre-trained bidirectional encoder representa-
tions from transformer (BERT) along with a gated recurrent network
(GRU). Both the textual and audio representations are separately
processed using a bidirectional GRU network with self-attention.
Further, the multi-modal information extraction is achieved using
a transformer that is input with the textual and audio embeddings at
the utterance level. The experiments are performed on the IEMO-
CAP database, where we show that the proposed framework im-
proves over the current state-of-the-art results under all the common
test settings. This is primarily due to the improved emotion recog-
nition performance achieved in the audio domain. Further, we also
show that the model is more robust to textual errors caused by an
automatic speech recognition (ASR) system.

Index Terms— Multi-modal emotion recognition, Transformer
networks, self-attention models, learnable front-end.

1. INTRODUCTION

With the growing demand for conversational agents and personal
assistants, automatic recognition of human emotion has emerged as
a key task in enabling enhanced user experience. Human emotion
recognition using multi-modal data of text, speech and video has
substantial impact on various applications like smartphones, wear-
able devices, smart speakers, driver monitoring in auto-motives,
mood analysis and mental health. This area of developing emotional
intelligence would allow machines to be more human-like in the
interactions [1].

The problem of emotion recognition is challenging primarily
due to the complex process of emotion that is highly personal. The
emotion in human interaction can be detected using facial expres-
sions [2], speech [3], gestures [4] and physiological signals like res-
piration [5]. Further, different modalities contain varying degrees of
information relating to emotion and hence, designing a joint multi-
modal approach to emotion recognition is considered to improve the
performance of these systems [6]. While the ability to perceive emo-
tions in a multi-modal way is required, it is also necessary to perceive
the emotions through each modality in a robust manner. In this pa-
per, we explore an emotion recognition task with audio and text.

The advances in deep learning have also benefited the emotion
recognition from speech [7], audio-visual emotion recognition [8] as
well as from joint text, speech and visual modalities [9]. For multi-
modal emotion recognition, logistic regression and support vector

machine classifiers were explored by Sikka et al. [10] and Castel-
lano et. al [11]. In these works, the datasets used were smaller (less
than 500 samples). The recent works use larger datasets with deep
learning methods. For example, the works by Yoon et al. [12] and
Lee et. al. [13] focus on speech and text based emotion recognition,
while Majumder et al. [14] explores emotion recognition using a tri-
modal fusion of text, speech and video features. The log-mel filter
bank features along with other acoustic indicators have been used
extensively in the works related to emotion recognition in speech
[15, 16, 17]. These features are knowledge driven, meaning that any
variability in the dataset will not play an explicit role in the feature
extracted from the audio files. This has motivated researchers to de-
velop audio feature extractors which are learnable [18, 19, 20].

In this work, we propose an approach to emotion recognition in
conversations, where we first extract learnable features from audio
and text using LEAF [19] and BERT [21] respectively. We propose a
method of information fusion across utterances with a self-attention
network for each of the two modalities. The two modalities are com-
bined in a multimodal transformer for superior classification using
the long term multi-modal context information. Our model is evalu-
ated on the widely used IEMOCAP dataset [22].

2. RELATED WORK

For audio emotion recognition, prosodic features have been inves-
tigated along with other acoustic features [23, 24]. Here, the mel
frequency cepstral coefficients (MFCC) have been used along with
pitch based features. The OpenSmile [25] is a widely used toolkit
for extracting the audio features and has been used in several works
like [15, 16]. Wu et. al [17] used a long term log-mel filter bank
feature of 250ms frame length in addition to the pitch features.

The feature extraction from text has seen considerable changes
in the past few years with the transfer learning ability of bidirec-
tional encoder representations from transformers (BERT) [21]. This
has been used for text feature extraction in [17]. In another work,
the convolutional neural networks trained on word2vec representa-
tions [26] has been used for text based emotion recognition [15, 16].
The global vectors for word representations (GloVe) based embed-
dings [27] have also been applied for emotion recognition by Tri-
pathi et. al. [28] and Pepino et. al [29].

The fusion of multi modal information had been achieved by
using Bidirectional LSTM (Bi-LSTM) networks in [30]. This has
been further improved upon by the Poria et. al. [15], where the
fusion is performed in a hierarchical manner. The use of attention
mechanisms for retaining the long term context has been explored in
[12, 13]. The architecture of self attentive networks has also been
applied in [17] for multi-modal emotion recognition.



Fig. 1. Model Architecture - All blocks in green refer to trainable parts of the architecture.

3. PROPOSED APPROACH

A schematic of the major components of the model architecture is
shown in Fig. 1.

3.1. Audio Feature Extraction

The audio features are extracted using the learnable front-end for
audio classification (LEAF) [19] model, which learns the features
using components like filtering, pooling, compression and normal-
ization. Further, given the small footprint of the model, the learnable
front-end can be integrated into the larger emotion recognition net-
work and can be jointly learned. The LEAF model, employing 1-D
convolutional networks on the raw audio files, generates discrimi-
native spectrogram-like audio representations. The LEAF output is
used in a CNN network with average pooling followed by a fully
connected output layer. The LEAF-CNN network is jointly trained
with utterance level labels and the 100 dimensional features from the
subsequent fully connected layer are used as embeddings for each
audio utterance. For the subsequent part of the model, this LEAF-
CNN network is frozen, and the embeddings from this layer are used
as inputs.

3.2. Text Feature Extraction

We use the BERT based features for text representations [21]. After
each utterance text is passed through the BERT model, the last four
hidden layers from the encoder are spliced together. This constitutes
the BERT representations for each utterance. To add more context to
the representations, the BERT outputs are passed through a 2 layer
Bi-directional Gated Recurrent Unit (GRU) Model [31] with a hid-
den dimension of 100. The BERT-GRU model is jointly trained with
utterance level labels and the representations at the output side of
the GRU Model are considered as the utterance level text embed-
dings for the subsequent Bi-GRU with self-attention block. Like the
LEAF-CNN model for audio, the BERT-GRU network is frozen for
the subsequent parts of the model and the embeddings are used as
inputs for the subsequent layers.

3.3. Multi-utterance self-attention

There is an emotion label for each utterance in the conversation. The
objective then is to conditionally predict the output of embedding for
utterance u(t) using the embeddings from previous time instances,
u(t − 1), u(t − 2) and so on along with future time instances such
as u(t+ 1), u(t+ 2) and so on.

The addition of the contextual information proposed in this work
is inspired by Poria et. al. [15]. The Bi-GRU network with atten-
tion is input with the LEAF-CNN utterance embeddings for the au-
dio modality and the BERT-GRU utterance embeddings for the text.
The objective of the attention network is to incorporate the context
selectively from the previous and the future utterances to enable the
prediction of the emotion label in the current utterance.

Let the dimension of the input to the self-attention layer from
the Bi-GRU be (B × S × H). Here, B represents the batch size,
S represents the number of utterances in the conversation and H =
[Hf ;Hb] is the concatenation of the forward (Hf ) and backward
(Hb) output dimensions at the utterance level. For simplicity, a batch
size of 1 is assumed in these calculations. The matrix products will
be replaced by the tensor product when B > 1.

Let Of ∈ RS×Hf and Ob ∈ RS×Hb denote the outputs from
the BiGRU that is input to the self-attention network. Let the two
weight matrices, W a

f ∈ RHf×Hf and W a
b ,∈ RHb×Hb denote the

attention layer parameters. The attention in the forward direction is
computed as,

Af = (OfW
a
f )(OfW

a
f )

T (1)

Aij
f =

exp(Aij
f )∑S

j=1 exp(A
ij
f )
∀i, j ∈ {1, 2, . . . , S} (2)

Oa
f = AfOf (3)

The attention in the backward direction is identical. The Bi-GRU
with self-attention block is trained to jointly predict the label of all
the utterances in a video. This output, [Oa

f ;O
a
b ], is used as the em-

beddings for each utterance for the subsequent multimodal trans-
former. Like the feature extractors, the Bi-GRU with self-attention
network is frozen while training the subsequent multimodal trans-
former.



Model arch. Modality Acc. (%)
Bi-GRU w/o self attn. Audio 69.2± 0.7
Bi-GRU + self attn. Audio 73.8± 1.7

Bi-GRU w/o self attn. Text 76.3± 0.9
Bi-GRU + self attn. Text 79.1± 0.7

Hidden dim. Modality Acc. (%)
50 Audio 72.9± 1.9
100 Audio 73.8± 1.7
200 Audio 72.7± 2.6

50 Text 78.1± 0.4
100 Text 79.1± 0.7
200 Text 79.0± 0.5

Table 1. The results for different hidden dimension choices in Bi-
GRU network as well as the experiments with and without attention.

3.4. Multi-modal Transformer

The Bi-GRU with attention generates utterance level representations
for both the speech and text. These embeddings are spliced. The
transformer encoder [32] is employed for the fusion of the audio and
text information for improved emotion recognition. It is hypothe-
sized that the transformer with self attention layers is able to handle
long-term dependencies and to combine the modalities more effec-
tively than the LSTM or GRU models. Our implementation of entire
model is publicly available.1

4. EXPERIMENTS AND RESULTS

4.1. Dataset

The experiments reported in this work use the IEMOCAP [22]
database. The dataset has a total of 151 video recordings divided
into 5 sessions. Each session has a separate pair of a male and
female actors conversing with each other. Every video is separated
into individual utterances, all of which are labelled by human anno-
tators as belonging to one of the 10 emotions - angry, happy, sad,
neutral, frustrated, excited, fearful, surprised, disgusted or “other”.
However, keeping in line with previous works [15, 17], we have used
5 label categories in our task, namely, angry, happy, sad, neutral and
excited. Further, the happy and excited classes are merged. Thus we
have a total of 5531 utterances from the four emotion labels (happy
1636, angry 1103, sad 1084, neutral 1708). All the utterances have
the transcriptions along with the audio files.

4.2. Choice of hyper-parameters

As the proposed model contains three components, namely, the fea-
ture extractors (BERT-GRU for text and LEAF-CNN for audio), the
bidirectional GRU blocks and the transformer, choice of the hyper-
parameters for each of them plays a role in the performance of the
overall model. These parameters are chosen based on the perfor-
mance of each of the three parts with Session 5 as the test set and
Session 1 as the validation set. All the experiments reported in this
work use 10 random weight initialization choices. The mean per-
formance and the standard deviation using the random initializations
are reported in all the experiments below.

The LEAF-CNN model for the audio classifier is memory inten-
sive in its basic implementation. In order to circumvent this issue,

1https://github.com/iiscleap/multimodal_emotion_
recognition

# of layers Hidden dim. Acc (%)
2 60 83.6± 0.4
2 120 83.5± 0.5
2 240 83.8± 0.3
3 60 83.8± 0.7
3 120 83.8± 0.7%
3 240 83.2± 0.6%
4 60 83.8± 0.6%
4 120 83.6± 0.7%
4 240 83.0± 0.7%

Table 2. The results with different hyper-parameter choices in the
multi-modal transformer.

the stride length of the LEAF features is increased to 30ms instead
of the default value of 10ms. The LEAF-CNN feature extractor is
trained with a batch size of 16 and a learning rate of 1× 10−5. The
dimension of the audio representation from the CNN classifier was
checked for 3 different values of 50, 100 and 200. Based on the per-
formance on the validation data, the audio representation dimension
from the LEAF-CNN classifier was fixed at 100.

Similarly, the BERT-GRU model for the text feature extractor is
trained with a batch size of 32 and an identical learning rate. For this
utterance level embedding extractor, the dimension of 200 is found
to give the best accuracy on the validation set.

The Bi-GRU with self-attention, for both text and audio, is
trained with a batch size of 32 and learning rate of 1 × 10−3. The
accuracy for both the modalities with hidden dimensions of 50, 100
and 200 as well as the configuration with and without self-attention
in the BiGRU layers is shown in Table 1. The best performance
is achieved for a hidden dimension of 100. The self attention in
the Bi-GRU network was found to be essential for the improved
performance of the overall model. This was consistent for both the
text and the audio modality.

The final part of the model, namely the multi-modal transformer,
is trained with a batch size of 32 and a learning rate of 1 × 10−4.
Several experiments are carried out with different combinations of
number of hidden layers and hidden layer dimensions as shown in
Table 2. The variation of the results with the number of attention
heads was found to be negligible and hence it was fixed at 12. The
final multi-modal transformer configuration is chosen to have a hid-
den layer dimension of 120, with 12 attention heads and 3 hidden
layers.

4.3. Evaluation setting

4.3.1. Five fold validation (CV-5)

In this setting, the models are trained on four sessions and are vali-
dated on the fifth. The average validation accuracy is calculated over
the five sessions. It is to be noted that, since our model contains three
parts, namely, feature extractors, Bi-GRU with self-attention models
and the transformer, it is necessary to create 5 separate models for
each of the three stages to avoid any leakage of test data in the train-
ing data. Further to alleviate the effects of randomness, our models
are run for 10 different initializations and the average and standard
deviation of our results are reported. The results on 5-fold setting
are reported in Table 3.

4.3.2. Ten fold Cross Validation results (CV-10)

In this test setting, leave-one-speaker-out cross validation is per-
formed, in which our models are trained on 9 speakers and tested

https://github.com/iiscleap/multimodal_emotion_recognition
https://github.com/iiscleap/multimodal_emotion_recognition


Setting Modality Acc. (%)
CV 5 Text 75.1± 0.2
CV 5 Audio 70.0± 0.3
CV 5 Text + Audio 78.9± 0.2

CV 10 Text 78.7± 0.2
CV 10 Audio 73.8± 0.4
CV 10 Text + Audio 82.2± 0.3

Session 5 Text 79.1± 0.7
Session 5 Audio 73.8± 1.7
Session 5 Text + Audio 83.8± 0.7

Table 3. The results for different evaluation settings for the proposed
model.

System Test Setting Acc. (%)
Wu et al. [17] CV-5 63.5

This work CV-5 74.9
This work CV-10 76.2
This work Session 5 77.3

Table 4. The results of the emotion recognition systems evaluated
with ASR transcripts instead of the reference text.

on the 10th. As in the case of five-fold cross validation, the 10 dif-
ferent models in this case are trained and tested. The results with
this setting are reported in Table 3. The trends seen for the CV-5
condition is also similar to the CV-10 results.

4.3.3. Session 5 as test

The results with Session 5 as the test session are also provided. For
this, one of the other 4 sessions is randomly chosen for validation
(which in our case was Session 1). The results averaged over 10
different initializations are reported in Table 3.

4.4. Evaluation with ASR generated transcripts

Deep learning models using speech and text for emotion recognition
are trained with the audio files along with their text transcriptions
provided in datasets. In practice, we rarely encounter audio with
transcriptions. This test setting, when a model is trained with pro-
vided transcripts and tested on ASR outputs, tests the robustness of
the model to the noise in the text modality. For obtaining the ASR
transcripts, we use the Google Speech to Text2 on IEMOCAP audio
files. The results under this test setting are shown in Table 4. The
results show that, even with the ASR output, the performance of the
model does not degrade drastically under all the three test settings. A
considerable improvement is seen in the performance of our model
over the results reported in [17] under the CV-5 testing strategy (rel-
ative improvement of 31%).

5. DISCUSSIONS

The results from other recent works on this dataset are mentioned
in Table 5. Our proposed model achieves a better accuracy than the
previous works in the literature under all the three test settings re-
ported. While there are improvements on all evaluation settings, the
performance on the held-out speaker (CV-10) improves the state-of-
art results (Wu et al. [17]) by a relative margin of 18 %. Further, in
the audio modality alone, the proposed approach yields an accuracy

2https://cloud.google.com/speech-to-text

System Test Setting Modality Acc. (%)
Poria et al. [15] Session 5 T, A, V 76.1
Wu et al. [17] Session 5 T, A 83.2

This work Session 5 T, A 83.8

Yoon et al. [33] CV-5 T,A 71.8
Wu et al. [17] CV-5 A 61.3
Wu et al. [17] CV-5 T, A 78.4

This work CV-5 T, A 78.9

Poria et al. [34] CV-10 T, A, V 76.1
Yoon et al. [12] CV-10 T, A 77.6

Li et al. [35] CV-10 T,A 79.2
Wu et al. [17] CV-10 T, A 78.3

This work CV-10 T, A 82.2

Table 5. Comparison with other works under the three different test
settings. We note that for [17] and [12], we compare our results with
the unweighted accuracy.

of 70% in CV-5 condition (Table 3), while the state-of-art system
on audio modality achieves an accuracy of 61.3% (Table 5). Thus,
the major improvements from this work are primarily in the audio
domain. The robustness of the model to noise in text modality, as
shown in Table 4, further establishes the improvement in the perfor-
mance using only the speech inputs.
The accuracy gain can be attributed to a number of factors in the
proposed system. The learnable front-end features from LEAF en-
able the model to capture local time-frequency patterns of audio.
The combination of GRU with attention in the Bi-GRU layer helps
the model to describe the long-term information in the audio sig-
nal. Further, the multi-modal transformer helps the fusion of the
text and audio modalities and allows the improvements observed in
the audio domain to enhance the multi-modal emotion recognition
performance.

6. CONCLUSION

In this paper, a hierarchical information fusion architecture has been
proposed for conversational multimodal emotion recognition. Our
proposed architecture improves the representation of utterance level
speech and text at each stage of information fusion, first by jointly
learning the representations and then, by employing self-attention
over other utterances in the recording. A transformer is used for
effective multimodal fusion of the two modalities. Our proposed
model achieves state-of-the-art performance on the IEMOCAP
dataset under all the three test settings reported in literature. Further,
the model is shown to be robust to textual errors in ASR transcripts.
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“Physiological signals and their use in augmenting emotion
recognition for human–machine interaction,” in Emotion-
oriented systems, pp. 133–159. Springer, 2011.

[6] Soujanya Poria, Erik Cambria, Rajiv Bajpai, and Amir Hus-
sain, “A review of affective computing: From unimodal anal-
ysis to multimodal fusion,” Information Fusion, vol. 37, pp.
98–125, 2017.

[7] Haytham M Fayek, Margaret Lech, and Lawrence Cavedon,
“Evaluating deep learning architectures for speech emotion
recognition,” Neural Networks, vol. 92, pp. 60–68, 2017.

[8] Yelin Kim, Honglak Lee, and Emily Mower Provost, “Deep
learning for robust feature generation in audiovisual emotion
recognition,” in ICASSP. IEEE, 2013, pp. 3687–3691.

[9] Trisha Mittal, Uttaran Bhattacharya, Rohan Chandra, Aniket
Bera, and Dinesh Manocha, “M3er: Multiplicative multimodal
emotion recognition using facial, textual, and speech cues,” in
AAAI, 2020, vol. 34, pp. 1359–1367.

[10] Karan Sikka, Karmen Dykstra, et al., “Multiple kernel learning
for emotion recognition in the wild,” in Proceedings of the 15th
ACM on International conference on multimodal interaction,
2013, pp. 517–524.

[11] Ginevra Castellano, Loic Kessous, and George Caridakis,
“Emotion recognition through multiple modalities: face, body
gesture, speech,” in Affect and emotion in human-computer
interaction, pp. 92–103. Springer, 2008.

[12] Seunghyun Yoon, Seokhyun Byun, Subhadeep Dey, and Ky-
omin Jung, “Speech emotion recognition using multi-hop at-
tention mechanism,” in ICASSP. IEEE, 2019, pp. 2822–2826.

[13] Woo Yong Choi, Kyu Ye Song, and Chan Woo Lee, “Convolu-
tional attention networks for multimodal emotion recognition
from speech and text data,” in Proceedings of grand challenge
and workshop on human multimodal language (Challenge-
HML), 2018, pp. 28–34.

[14] Navonil Majumder, Devamanyu Hazarika, Alexander Gel-
bukh, Erik Cambria, and Soujanya Poria, “Multimodal sen-
timent analysis using hierarchical fusion with context model-
ing,” Knowledge-based systems, vol. 161, pp. 124–133, 2018.

[15] Soujanya Poria, Erik Cambria, et al., “Context-dependent sen-
timent analysis in user-generated videos,” in Proceedings of
the 55th annual meeting of the association for computational
linguistics (volume 1: Long papers), 2017, pp. 873–883.

[16] Zexu Pan, Zhaojie Luo, Jichen Yang, and Haizhou Li, “Multi-
modal attention for speech emotion recognition,” arXiv
preprint arXiv:2009.04107, 2020.

[17] Wen Wu, Chao Zhang, and Philip C Woodland, “Emotion
recognition by fusing time synchronous and time asynchronous
representations,” in ICASSP. IEEE, 2021, pp. 6269–6273.

[18] Mirco Ravanelli and Yoshua Bengio, “Speaker recognition
from raw waveform with sincnet,” in SLT. IEEE, 2018, pp.
1021–1028.

[19] Neil Zeghidour, Olivier Teboul, Félix de Chaumont Quitry, and
Marco Tagliasacchi, “LEAF: A learnable frontend for audio
classification,” arXiv preprint arXiv:2101.08596, 2021.

[20] Debottam Dutta, Purvi Agrawal, and Sriram Ganapathy,
“A multi-head relevance weighting framework for learn-
ing raw waveform audio representations,” arXiv preprint
arXiv:2107.14793, 2021.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[22] Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe
Kazemzadeh, Emily Mower, Samuel Kim, Jeannette N
Chang, Sungbok Lee, and Shrikanth S Narayanan, “IEMO-
CAP: Interactive emotional dyadic motion capture database,”
Language resources and evaluation, vol. 42, no. 4, pp.
335–359, 2008.

[23] Iker Luengo, Eva Navas, Inmaculada Hernáez, and Jon
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