
Supervised Learning Approaches for Language and Speaker

Recognition

A THESIS

SUBMITTED FOR THE DEGREE OF

Doctor of Philosophy

IN THE

Faculty of Engineering

BY

Shreyas Ramoji

Department of Electrical Engineering

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June, 2023

Declaration of Originality

I, Shreyas Ramoji, with SR No. 04-03-05-10-12-16-1-14119 hereby declare that the ma-

terial presented in the thesis titled

Supervised Learning Approaches for Language and Speaker Recognition

represents original work carried out by me in the Department of Electrical Engineering

at Indian Institute of Science during the years 2016-2022.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the thesis.

Advisor Name: Advisor Signature

1

© Shreyas Ramoji

June, 2023

All rights reserved

DEDICATED TO

My parents:

(Late) Sri. Ramoji G

and

Smt. Shashikala K N

for having supported me through thick and thin, instilling in me the

importance of honesty and dedication, and always wishing me the best.

Acknowledgements

I express my sincere gratitude to my Ph.D. advisor Dr. Sriram Ganapathy for giving me the

opportunity to work with him in the Learning and Extraction of Acoustic Patterns lab, and

for his invaluable guidance, support, and encouragement throughout my Ph.D. journey. He has

not only emphasized the importance of a healthy work-life balance, but has also been a role

model in this regard, by engaging in fitness activities like running and trekking while involving

the lab members as well. During the peak of the first wave of the COVID-19 pandemic, when

I got infected with my whole family, he helped all of us get admitted to the hospital. When I

lost my father during this time, he was highly empathetic, supportive, and gave me as much

time as I needed to get back on my feet. On the research front, he gave me enough freedom to

follow my interests and approach, while also providing necessary criticism and guidance when

required. I honestly believe it is very hard to find an advisor like Dr. Sriram Ganapathy and I

am happy to have had him as my mentor.

I thank my comprehensive examination panel members Prof. T. V. Sreenivas, Prof. P. S.

Sastry, and Dr. Aditya Gopalan for their appreciation and valuable suggestions towards my

work. I would also like to express my gratitude to all my course instructors. Their courses not

only provided me with technical knowledge in fundamental areas, but also shaped my critical

thinking skills as a researcher.

I sincerely thank Dr. Neeraj Sharma, Dr. Purvi Agrawal, and Akshara Soman for all

the technical discussions during the early days of my Ph.D. which have influenced my way of

i

Acknowledgements

thinking and approach to problem-solving, which were critical for shaping my thesis. They also

provided different perspectives on various problems and interpretations which were not only

invaluable to my doctoral research, but also to my overall abilities as a researcher.

At the start of my Ph.D. journey, I had no exposure to Python and shell scripting, and

I struggled to understand the implementations in the KALDI toolkit despite having a good

grasp of the underlying theories. I now consider myself an excellent programmer thanks to my

former lab mates Bharat Padi and Anand Mohan. I am deeply grateful to them for dedicating

a significant amount of time to assist me in getting started with the KALDI toolkit, shell

scripting, and python programming. They were instrumental in my growth as a programmer,

and I couldn’t have made this progress without their help.

I would like to specially thank all my co-authors of various papers for their contributions,

and my teammates in various Speaker and Language Recognition Challenges we participated

in: Bharath Padi, Vaishnavi Y, Anand Mohan, Satish Kumar, Anmol Bhatia, Bhargavaram

Mysore, Prachi Singh. Special thanks to Prashant Krishnan for helping me run countless

experiments with various hyperparameters and acoustic modeling. I sincerely thank Dr. Harish

Arsikere for being my mentor during this internship and helping me understand the challenges

in scaling speech recognition training to large datasets extending to millions of hours.

I thank all the present and past members of the LEAP Lab for their love and support, and

for all the memorable trips we had together that made this journey memorable. I also thank

my national and international colleagues with whom I had several valuable interactions during

the various conferences and workshops I have been to.

Last but not least, I would like to thank all my close friends and family for their love and

encouragement. I am forever grateful to my parents for their unwavering trust in me, and for

their abundant love and support in ways that can not truly be explained in words, without

which this thesis would not have been complete.

ii

Abstract

In the age of artificial intelligence, it is important for machines to figure out who is speaking

automatically and in what language - a task humans are naturally capable of. Developing

algorithms that automatically infer the speaker, language, or accent from a given speech segment

are challenging problems that have been researched for over three decades. The main aim of

this doctoral research was to explore and understand the shortcomings of existing approaches

to the problems and propose novel supervised approaches to overcome these shortcomings to

develop robust speaker and language recognition systems.

In the first part of this doctoral research, we developed a supervised version of a popular

embedding extraction approach called the i-vector, typically used as front-end embeddings for

speaker and language recognition. In this approach, a database of speech recordings (in the

form of a sequence of short-term feature vectors) is modeled with a Gaussian Mixture Model,

called the Universal Background Model (GMM-UBM). The deviation in the mean components

is captured in a lower dimensional latent space called the i-vector space using a factor analysis

framework. In our research, we proposed a fully supervised version of the i-vector model, where

each label class is associated with a Gaussian prior with a class-specific mean parameter. The

joint prior (marginalized over the sample space of classes) on the latent variable becomes a

GMM. The choice of the prior distribution is motivated by the Gaussian back-end, where the

conventional i-vectors for each language are modeled with a single Gaussian distribution. With

detailed data analysis and visualization, we show that the s-vector features yield representations

iii

Abstract

that succinctly capture the language (accent) label information, and do a significantly better job

distinguishing the various accents of the same language. We performed language recognition

experiments on the NIST Language Recognition Evaluation (LRE) 2017 challenge dataset,

which has test segments ranging from 3 to 30 seconds. With the s-vector framework, we

observed relative improvements between 8% to 20% in terms of the Bayesian detection cost

function, 4% to 24% in terms of EER, and 9% to 18% in terms of classification accuracy over

the conventional i-vector framework. We also performed language recognition experiments on

the RATS dataset and Mozilla CommonVoice dataset, and speaker classification experiments

using LibriSpeech, demonstrating similar improvements.

In the second part, we explored the problem of speaker verification, where a binary decision

has to be made on a test speech segment as to whether it is spoken by a target speaker or not,

based on a limited duration of enrollment speech. We proposed a neural network approach

for back-end modeling. The likelihood ratio score of the generative PLDA model was posed

as a discriminative similarity function, and the learnable parameters of the score function

are optimized using a verification cost, proposed to be an approximation of the minimum

detection cost function (DCF). The speaker recognition experiments using the NPLDA model

are performed on the speaker verification task in the VOiCES datasets and the SITW challenge

dataset. Further, we explore a fully neural approach where the neural model outputs the

verification score directly, given the acoustic feature inputs. This Siamese neural network

(E2E-NPLDA) model combines the embedding extraction and back-end modeling stages into a

single processing pipeline. The development of the single neural Siamese model allows the joint

optimization of all the modules using a verification cost. We provide a detailed analysis of the

influence of hyper-parameters, choice of loss functions, and data sampling strategies for training

these models. Several speaker recognition experiments were performed using Speakers in the

Wild (SITW), VOiCES, and NIST SRE datasets where the proposed NPLDA and E2E-NPLDA

models are shown to improve over the state-of-art significantly x-vector PLDA baseline system.

iv

Publications based on this Thesis

Peer-reviewed Journal Papers

1. S. Ramoji, S. Ganapathy, “Supervised I-vector modeling for language and accent recog-

nition,” Computer Speech & Language 60, (2020): p.101030.

2. S. Ramoji, P. Krishnan, S. Ganapathy, “PLDA inspired Siamese networks for speaker

verification,” Computer Speech & Language 76, (2022): p.101383.

Peer-reviewed Conference Papers

1. S. Ramoji, S. Ganapathy, “Supervised I-vector Modeling-Theory and Applications,” Proc.

Interspeech (2018): p.1091-1095.

2. S. Ramoji et. al., “The LEAP speaker recognition system for NIST SRE 2018 challenge,”

Proc. ICASSP (2019): p.5771-5775.

3. S. Ramoji, P. Krishnan, S. Ganapathy, “NPLDA: A Deep Neural PLDAModel for Speaker

Verification,” in Proc. Odyssey (2020): p.202-209.

4. S. Ramoji, P. Krishnan, S. Ganapathy, “LEAP System for SRE 2019 CTS Challenge -

Improvements and Error Analysis,” in Proc. Odyssey (2020): p.281-288.

5. S. Ramoji, P. Krishnan, S. Ganapathy, “Neural PLDA Modeling for End-to-End Speaker

Verification,” Proc. Interspeech (2020): p.4333-4337

v

Contents

Acknowledgements i

Abstract iii

Publications based on this Thesis v

Contents vi

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Speech - A multitude of information . 1

1.2 Speech Signal Processing . 2

1.2.1 Short-time Speech Processing . 3

1.2.2 Machine Learning for Speech Processing 3

1.2.2.1 Generative Models . 3

1.2.2.2 Discriminative Models . 4

1.3 Speaker & Language Recognition . 4

1.3.1 Problem statements . 4

1.3.2 Motivation and Applications . 6

vi

CONTENTS

1.4 An outline of contributions . 6

1.5 Thesis organization . 8

1.6 Chapter Summary . 9

2 Background Study - Setting the stage 11

2.1 Prior work on speaker and language recognition 11

2.1.1 Speaker Recognition . 11

2.1.2 Language Recognition . 12

2.2 Recent approaches to speaker and language recognition 14

2.3 An overview of Front-end Models . 15

2.3.1 The i-vector Model . 15

2.3.2 Neural Network Based Models . 16

2.3.2.1 d-vector Models . 16

2.3.2.2 X-vector Models . 16

2.3.2.3 Recurrent Models . 16

2.4 An overview of Back-End Models . 17

2.4.1 Probabilistic Linear Discriminant Analysis (PLDA) 17

2.4.2 Gaussian Back-End Models . 18

2.4.3 Support Vector Machines . 19

2.4.4 Logistic Regression and Neural Network Back-ends 19

2.5 Language and Accent Recognition . 20

2.5.1 Evaluation of Language and Accent Recognition Systems 20

2.5.1.1 Classification Accuracy . 21

2.5.1.2 Average Detection Cost . 21

2.5.1.3 Minimum detection cost . 22

2.5.2 Datasets . 22

2.5.2.1 The NIST Language Recognition Evaluation 2017 Datasets . . . 23

vii

CONTENTS

2.5.2.2 The Mozilla Common Voice Dataset 23

2.5.2.3 The DARPA RATS Dataset . 24

2.6 Speaker Recognition . 25

2.6.1 Evaluation of Speaker Recognition Systems 25

2.6.1.1 Classification Accuracy . 26

2.6.1.2 Equal Error Rate . 26

2.6.1.3 Detection Cost Functions . 26

2.6.1.4 Log-Likelihood Ratio Cost Function 27

2.6.2 Datasets . 28

2.6.2.1 The NIST Speaker Recognition Evaluation Datasets (1996-2019) 28

2.6.2.2 Comprehensive Switchboard Corpora 28

2.6.2.3 The Mixer 6 Corpus . 29

2.6.2.4 Speakers In The Wild (SITW) Dataset 29

2.6.2.5 VoxCeleb 1 and 2 Datasets . 29

2.6.2.6 VOiCES speaker recognition Dataset 29

2.7 Chapter Summary . 30

3 Supervised i-vector Modelling for Language Recognition 31

3.1 Introduction . 32

3.2 The mathematical framework of the i-vector model 35

3.2.1 Expectation (E) step: . 37

3.2.2 Maximization (M) step: . 38

3.2.3 Minimum Divergence Re-estimation . 38

3.3 The s-vector model . 39

3.3.1 EM Algorithm for Parameter Estimation 41

3.3.1.1 Expectation (E) step . 42

3.3.1.2 Maximization Step . 43

viii

CONTENTS

3.3.1.3 Minimum divergence re-estimation 44

3.3.2 S-vector extraction . 45

3.3.2.1 aMAP s-vectors . 46

3.3.2.2 PCA s-vectors . 46

3.3.2.3 Averaged label-conditioned s-vectors 46

3.3.2.4 Minimum mean-squared (MMSE) s-vectors 46

3.3.3 Re-weighting the priors . 48

3.4 Experiments and Results . 50

3.4.1 Performance Metrics . 50

3.4.2 Experiments conducted . 50

3.4.3 Results on NIST LRE experiments . 52

3.4.4 Results on the Mozilla CommonVoice Accent Recognition Task 53

3.4.5 Results on RATS Language Recognition Task 54

3.4.6 Computational Complexity . 55

3.5 Discussion . 55

3.5.1 Influence of the prior re-weighting factor λ 55

3.5.2 Comparison with other approaches . 57

3.5.3 Data Visualization . 59

3.5.4 Confusion Matrix Analysis . 61

3.5.5 Relationship to Prior Work . 62

3.5.6 Estimating the Prior Weight Using Posterior Covariance 64

3.5.7 Application to Closed Set Speaker Recognition 65

3.6 Chapter Summary . 66

4 Supervised Neural-Network Models for Speaker Verification 69

4.1 Introduction . 70

4.2 Related Prior Work . 72

ix

CONTENTS

4.3 An account of back-end models . 74

4.3.1 Generative Gaussian PLDA (GPLDA) 74

4.3.2 Discriminative PLDA (DPLDA) . 75

4.3.3 Pairwise Gaussian back-end (GB) . 76

4.4 The Neural PLDA (NPLDA) Approach . 76

4.4.1 Objective Functions for Neural ASV Models 78

4.4.1.1 Binary cross-entropy (BCE) and its weighted versions 78

4.4.1.2 Proposed soft detection cost . 79

4.4.2 The E2E-NPLDA model for speaker Verification 80

4.4.2.1 Brute force trial sampling . 81

4.4.2.2 Low memory trial sampling . 82

4.5 Experiments and Results . 83

4.5.1 Embedding extractors . 84

4.5.1.1 E-TDNN . 84

4.5.1.2 F-TDNN . 84

4.5.2 Experiments with the NPLDA Back-End and E2E-NPLDA Models . . . 85

4.6 Discussion . 88

4.6.1 Influence of training utterance duration 88

4.6.2 Comparison of data sampling algorithms for NPLDA 89

4.6.3 Comparison of loss functions for NPLDA 89

4.6.4 Comparison of Initialization Methods . 90

4.6.5 A comparative analysis between SoftDCF and WCllr losses 92

4.6.6 Visualization of x-vectors using tSNE . 98

4.6.7 Comparison with related works . 100

4.7 Chapter Summary . 101

x

CONTENTS

5 Summary and Future Perspectives 103

5.1 Key contributions of the thesis . 104

5.1.1 Supervised i-vector approach for Language Recognition 105

5.1.2 Supervised Neural Network models for Speaker Verification 106

5.2 Limitations of the work . 108

5.2.1 Supervised i-vector approach for Language Recognition 108

5.2.2 Supervised Neural Network models for Speaker Verification 109

5.3 Future directions . 109

5.3.1 Neural network approaches for language recognition 110

5.3.2 Neural generative models for language and accent recognition 110

5.3.3 Self-supervised Learning for speaker and language recognition 111

5.3.4 Architectures for speaker detection in conversational settings 112

Bibliography 123

xi

List of Figures

1.1 An illustration of the problem statements in speaker and language recognition. . 5

1.2 A summary of thesis contributions. 7

2.1 Illustration of speaker and language recognition systems 15

3.1 Illustration of the variation of prior distribution with varying λ. In this example,

the means of Gaussian mixtures m1, . . . ,m5 represent five language classes. . . 49

3.2 I-vector based language/accent recognition pipeline 51

3.3 Variation of Cprimary with λ for MMSE s-vectors on the NIST LRE development

dataset for each of the durations [3 sec, 10 sec, and 30 sec]. The dotted line

denotes the unsupervised i-vector baseline. 56

3.4 Variation of Cprimary with λ for the accent recognition task on the Mozilla Com-

monVoice Development Dataset. 57

3.5 t-SNE scatter plots of unsupervised i-vectors (left) and MMSE s-vectors with

λ = 3 (right) for the NIST LRE 2017 development dataset with 3 sec recordings.

The language clusters belong to Arabic, Chinese, English, Slavic and Iberian

(from top to bottom). 60

3.6 Row-normalized Confusion Matrices of i-vector system (left) and s-vector system

with λ = 3 (right) on the NIST LRE 2017 development dataset for the 3 sec

condition. 61

xii

LIST OF FIGURES

4.1 The E2E-NPLDA architecture for speaker verification. The network parameters

(shaded in blue) in the top (enrollment) and bottom panel (test) are shared. . . 77

4.2 DET plots for the various models using the FTDNN architecture on the SITW

evaluation set. 87

4.3 Plots of Cmin vs training epochs on SITW evaluation set for various models and

loss functions: (a) NPLDA models trained with softDCF and BCE for two types

of initialization - GPLDA initialization or random initialization, (b) NPLDA vs

E2E-NPLDA using soft detection loss with GPLDA initialization 92

4.4 The plots of f(si) and g(si) for the WCllr loss. The vertical dotted black line is

used to denote the threshold θ. For the purpose of illustration, these plots are

generated considering CFA = CMiss = 1, π = 0.05 as the evaluation parameters.

Further, we assume a batch size of 100 with |T| = 10 and |N| = 90. We also

show the non-target score distribution in orange(on the left) and the target score

distribution in blue (on the right). 96

4.5 The plots of f(si) and g(si) for the softDCF loss. The vertical dotted black line

is used to denote the threshold θ. For the purpose of illustration, these plots are

generated considering CFA = CMiss = 1, π = 0.05 as the evaluation parameters.

Further, we assume a batch size of 100 with |T| = 10 and |N| = 90. We also

show the non-target score distribution in orange(on the left) and the target score

distribution in blue (on the right). 97

4.6 The tSNE visualization of 10 randomly selected female speakers from the Vox-

celeb development dataset for baseline x-vector embeddings and embeddings from

layer-12 of the proposed E2E-NPLDA system. The F-ratio of the 2-D t-SNE em-

beddings for the x-vector extractor and the E2E-NPLDA system are 8.7 and 15.4

respectively. 99

xiii

List of Tables

2.1 LRE 2017 training set : Target languages, language clusters, total number of

files per language and total duration. 23

2.2 The Mozilla CommonVoice dataset: Accents chosen, total number of files used

for training, development and testing and total duration. 24

3.1 Results on the NIST LRE 2017 development dataset for the i-vector and the

various s-vector approaches, using SVM back-end for scoring. 53

3.2 Results on the NIST LRE 2017 evaluation dataset for the i-vector and the various

s-vector approaches, using SVM back-end for scoring. 53

3.3 Results on accent recognition experiments with Mozilla CommonVoice Datasets

using Gaussian backend for scoring . 54

3.4 Results of the RATS Language identification task 54

3.5 Comparison of results of the MMSE s-vector using SVM back-end for scoring

with other approaches on the NIST LRE 2017 development dataset 58

3.6 Comparison of results of the MMSE s-vector using SVM back-end for scoring

with other approaches on the NIST LRE 2017 evaluation dataset 58

3.7 Results on NIST LRE 2017 evaluation dataset for two conditions where the λ is

fixed and when the λ is tied to the trace of the posterior covariance matrix. . . . 65

3.8 Performance in terms of equal error rate (EER) % for a closed set speaker recog-

nition experiment on the Librispeech dataset. 66

xiv

LIST OF TABLES

4.1 Description of the evaluation datasets and test conditions from SITW, VOiCES

and SRE18 VAST corpora. 83

4.2 Performance comparisons of baseline systems with the best performing NPLDA

and E2E-NPLDA models . 86

4.3 Performance on the evaluation datasets for different choice of training utterance

duration. Here, chunks refer to 5,10 and 20 second segments 89

4.4 Performance on the evaluation datasets for NPLDA model with different data

sampling strategies. 90

4.5 Comparison of NPLDA models for various loss functions 90

4.6 Comparison of NPLDA models for different initialization choices using the BCE

loss. 91

4.7 Comparison of the results using the FTDNN models trained on VoxCeleb-2

dataset. The models are tested with VoxCeleb-1 original test set and other

evaluation sets. The table also provides comparison with other published works. 101

xv

Chapter 1

Introduction

1.1 Speech - A multitude of information

Speech is a form of sound, made by the human vocal tract to communicate with each other. The

information communicated by human speech is not only limited to the meaning of the words,

phrases, or sentences spoken, but also contains cues about speaker, gender, age, emotion, and

health status. It also carries information about the language that is spoken, and also the

accent or dialect of the language, which reveals where the speaker originates from. All of this

information is entangled together, and humans are capable of disentangling and discerning most

of this information with varying levels of attention and effort.

Several linguists, mathematicians, physicists and engineers over the years have contributed

to the understanding of speech in various ways. While linguists have systematically studied

language and grammar, scientists have studied and modeled how sound is produced by the

vocal tract, and how each phoneme is articulated. The signal processing and machine learning

engineers have explored, and are continuing to explore various tools ranging from short-time

Fourier analysis to deep learning approaches to build practical speech information process-

ing systems like speech recognition systems, age and height estimation, emotion recognition,

speaker/language recognition and diarization systems, etc.

1

However, given the fact that all of these aforementioned aspects are entangled in a time-

varying, one dimensional continuous signal, it is challenging to build intelligent systems that

perform these tasks. When we train neural networks for one or more tasks, the linear and non-

linear operations performed by the various layers of the network transform the input speech to

a vector space which intends to capture the relevant information and suppress the irrelevant

information. For example, aspects such as speaker, content, emotion, age, etc are variables that

are irrelevant for a language or accent recognition system. However, in practice, it is impossible

to completely suppress all of the irrelevant information while preserving a fair amount of relevant

information. Despite all these challenges, there has been quite a lot of progress in the area, and

there still scope for more progress.

The focus of this thesis is on language and speaker recognition. These problems involve

designing systems that learn representations from digital audio signals that capture the lan-

guage or speaker information from speech recordings. Multiple speakers may speak the same

language with the same accent, and multilingual speakers can speak multiple languages in mul-

tiple accents, with essentially the same voice. The learned representations for a speaker or

language recognition systems should ideally capture only the speaker or language information

respectively, but in practice, they capture a lot of irrelevant information as well. In this thesis,

we report our efforts in designing and analysing systems for language and speaker recognition

using supervised learning approaches.

1.2 Speech Signal Processing

Speech is a continuous-time, one-dimensional real-valued signal, that is digitized to be stored

and processed using various digital processing approaches. In this section, we give a brief

overview of basic signal-processing approaches to extract representations to model speech in-

formation.

2

1.2.1 Short-time Speech Processing

Speech signals are quasi-stationary signals containing a sequence of basic stationary sound units

called phonemes, whose durations range from as low as 40 milliseconds to a few hundred mil-

liseconds [1]. To capture such transient information, speech is processed one short-time window

after another, with a fixed window length (20-40 milliseconds) and shift (10-20 milliseconds),

to extract a sequence of feature vectors that can be further modeled using various machine

learning models or neural networks.

Examples include short-time Fourier transform (STFT), log-magnitude STFT (spectro-

gram), Mel-spectrogram or Mel-filer-bank representations, Mel-frequency cepstral coefficients

(MFCC), Linear predictive coding coefficients (LP coefficients) which can be in the time domain

(TDLP), frequency domain (FDLP), or both (2D autoregressive features) [2, 3]. Recently, there

have also been successful efforts in processing windowed versions of the raw waveform directly

rather than using signal processing-based feature extraction methods [4].

1.2.2 Machine Learning for Speech Processing

Machine learning uses a wide variety of algorithms to model real-world signals to make useful

predictions. In this thesis, we explore machine learning approaches to infer or validate the

speaker or language from spoken audio in challenging environments. The short-time speech

representations discussed in section 1.2.1 serve as the starting point for machine learning models,

which can be broadly classified into generative and discriminative models.

1.2.2.1 Generative Models

Generative models are a class of machine learning algorithms that estimate the probability

distribution of speech representations. This could refer to the short-time speech features dis-

cussed in section 1.2.1 or segment-level representations derived from further processing of these

short-time features. This is usually done by choosing a family of probability distributions and

estimating its parameters using the available data.

3

Apart from the speech recordings, the datasets typically include additional information such

as the speaker and language labels for every recording. If we estimate the joint distribution

of the features and labels or the class conditional distributions for every class, we call it a

supervised generative model. If no label information is considered, we call it an unsupervised

generative model.

Examples of generative models include Gaussian mixture models (GMM), Hidden Markov

models (HMM), Probabilistic principal component analysis (PPCA), Probabilistic linear dis-

criminant analysis (PLDA), variational autoencoders (VAE), Generative adversarial networks

(GAN)), etc.

1.2.2.2 Discriminative Models

Discriminative models are a class of machine learning algorithms that learn to map the input

speech features or embeddings to the labels by directly modeling the posterior distribution of

the labels, or learning the boundaries between classes.

Examples of discriminative models include logistic regression, support vector machines

(SVM), decision trees and random forest classifiers, and neural network based models.

1.3 Speaker & Language Recognition

1.3.1 Problem statements

The problem statements in the area of speaker or language recognition can be posed in many

ways. This is illustrated in figure 1.1.

Classification and detection are fundamental problems of speaker and language recognition

that form the basis for more complex problems such as speaker and language diarization.

The classification problem assumes that a segment of speech recording belongs to exactly

one among N classes under consideration, whereas the detection problems do not make any such

assumptions. A test speech segment could also be a conversational audio containing multiple

4

Speaker and Language Recognition

Problem Statements

Classification Verification / Detection

Speaker

Classification

Language / Accent

Detection

Speaker

Verification

Language / Accent

Classification

Diarization

Language / Accent

Diarization

Speaker

Diarization

Figure 1.1: An illustration of the problem statements in speaker and language recognition.

speakers and/or multiple languages as well.

A classification system is trained using a dataset of speech recordings from the N speakers or

languages of interest. A language detection system requires a set of recordings that sufficiently

captures the vocabulary to model the target language, and speaker verification systems require

one or more example recordings of the target speaker, called enrollment recording.

In real conversations involving people from diverse backgrounds, code mixing and code

switching between multiple languages is common. In such scenarios, a more involved problem

called diarization is of current interest. It is the task predicting the speaker or language labels

as a function of time. Speaker diarization is the task of automatically determining who spoke

when in a multi speaker recording, and language diarization is the task of identifying what

language was spoken at what time in a multi-lingual recording.

In this thesis, we only deal with the fundamental problems of classification and detection.

5

1.3.2 Motivation and Applications

Algorithms for automatic speaker and language recognition have been extensively explored

and studied by researchers since the 1970s. Some noteworthy publications in spoken language

recognition are [5, 6], and in speaker recognition are [7, 8].

The most intuitive approach to language recognition is to use phoneme recognizers followed

by language (sequence) modeling [9, 10]. This approach uses a multilingual phoneme recognizer

to generate phoneme sequences which are converted to language model (n-gram) features for

classification. However, the success of this approach is dependent on the performance of the

phoneme decoder which is prone to noise. Moreover, the applicability of this approach is

limited to distinct languages, and would perform poorly on accent recognition tasks. Most of

the successful language recognition systems developed in the last two decades are similar to

speaker recognition models, which are based on gross utterance level statistics computed from

acoustic features. As a result, it has been a common practice to apply the algorithms and

techniques from the speaker recognition literature for language recognition and vice-versa.

Speaker and language recognition have important applications in call centers, helplines,

voice assistants, robotics, and also in security and defense applications. Moreover, to make

speech technology like conversational AI accessible to every corner of the world, we need to

explore methods to identify uncommon languages and dialects using limited training resources.

It is also required to build systems that are robust to artifacts such as background noise and

reverberation.

1.4 An outline of contributions

In this thesis, we present our efforts in exploring the shortcomings of existing approaches to

language and speaker recognition, and give a detailed account of our proposed novel supervised

approaches to develop robust language and speaker recognition systems. The contributions of

this thesis can be divided in two parts, as illustrated in figure 1.2.

6

Part 1 Part 2

Supervised i-vector modeling

Theory and Algorithm for

parameter estimation

Prior Re-weighting

Applications

Language (Accent)

Recognition

Speaker Recognition

Supervised Neural Network Models

for speaker verification

Architecture

Loss function

Neural PLDA

Backend

Siamese End-to-End

Models (SiamNN)

Analysis

NIST LRE 2017

Mozilla CommonVoice

RATS LID Task

Librispeech

Data Sampling Methods

Model initialization

Soft Detection Cost Function

Figure 1.2: A summary of thesis contributions.

In the first part of this doctoral research, we explore the state-of-the-art approach for lan-

guage recognition in 2016, based on the i-vector approach. We identify a key limitation of

this approach and propose a way to overcome the limitation by introducing the language label

information into the generative model, which we refer to as the s-vector model. We rework

the theory and derive the likelihood expressions for estimating the parameters of the s-vector

model. We also propose a prior re-weighting factor to improve the discriminative ability of the

model and study its influence. With several experiments on various datasets, we show that

the s-vector approach improves significantly over the i-vector baseline for language and accent

recognition tasks. The approach was also found to be effective for the speaker classification

task using the librispeech dataset.

In the second part of this doctoral research, we explore the x-vector approach for speaker

verification. A large neural network, designed by stacking time-delay neural network (TDNN)

layers followed by statistic pooling is trained with a speaker classification objective on a large

7

dataset with a few thousand speakers. Using this network, segment-level embeddings called

x-vectors are extracted, and a back-end generative model is trained for speaker verification.

We propose a discriminative back-end called the neural probabilistic linear discriminant anal-

ysis (NPLDA), an architecture inspired by the log-likelihood ratio expression of the popular

PLDA backend. We also propose a loss function based on the detection cost function (DCF)

which is the evaluation metric used in speaker recognition evaluations. Further, we extend the

approach to train the embedding extraction and the back-end in an end-to-end manner with

pairwise verification objectives. We analyse the influence of data sampling methods and model

initialization for various configurations. With various experiments on challenging datasets, we

show that our approach can result in highly robust speaker verification systems.

1.5 Thesis organization

In Chapter 2, we discuss the general framework for language and speaker recognition systems,

the similarity between approaches used for both problems, the performance metrics used to

evaluate systems, and give a detailed account of the datasets used for our experiments.

In chapter 3, we present our efforts in developing a supervised version of the i-vector

model [11], termed as s-vector. With a detailed account of the assumptions and hyperpa-

rameters, we re-derive the expectation-maximization algorithm for the s-vector parameter es-

timation. We show that the proposed s-vectors are more discriminative than the traditional

i-vectors for language and speaker recognition tasks using a variety of test datasets.

In chapter 4, we discuss our proposed neural network back-end architecture based on the

probabilistic linear discriminant analysis (PLDA) for speaker verification. We define and pro-

vide an analysis of our proposed loss function used for optimizing the network with back-

propagation algorithm. By discriminatively training the Neural PLDA back-end model, we

show that significant performance improvements can be achieved along with robustness across

several test datasets. Further, by combining the NPLDA back-end with the embedding extrac-

8

tor, we explore an end-to-end approach for speaker verification.

Finally, in chapter 5, we give a summary of the thesis, and identify some important research

directions that can be explored in the future.

1.6 Chapter Summary

In this chapter, we have defined the problem statements of interest and given a birds-eye view

of where the problem lies in the big picture of artificial intelligence, particularly dealing with

speech signals. We also give a broad level overview of the signal processing and machine learning

techniques used in the context of speaker and language recognition. The chapter outlined the

thesis contributions and discussed the organization of the rest of the thesis.

9

Chapter 2

Background Study - Setting the stage

2.1 Prior work on speaker and language recognition

In this section, we give a brief overview of some noteworthy approaches to speaker and language

recognition over the years.

2.1.1 Speaker Recognition

[Doddington et. al., 1985, OShaughnessy, 1986] - Speaker recognition by pattern

matching [12, 13]

These review papers present various approaches to speaker recognition by a computer that

were used till early 1990s. The techniques used a range of approaches like matching long-

term spectral envelopes of the test utterance with the reference, dynamic time warping (DTW)

aligned cepstral features for text dependent speaker recognition, and vector quantization to

name a few.

[Reynolds, 1992, 1995, 2000] - Gaussian Mixture Models [14, 15]

In these works, the authors model the MFCCs of the speech utterances of each speaker by

a Gaussian Mixture Model. The individual mixture components are interpreted as acoustic

units like vowels, fricatives, etc. Given a test utterance, likelihoods are computed against

11

each speaker model. For speaker classification, a maximum likelihood decision scheme was

employed. For speaker verification, log-likelihood ratio scores were computed for each speaker

model against the rest of the speaker models, followed by a Bayesian decision framework. Later,

the approach was modified to obtain speaker specific GMMs by adapting the parameters of a

universal background model. It was shown that the performance of this approach surpasses the

former one with individually trained GMMs.

[Kenny et. al., 2006] - Joint factor analysis (JFA) [16, 17]

In this research, the authors propose a factor analysis approach to jointly model the speaker

and session variability (a term denoting all of the phenomena which cause two recordings of

a given speaker to sound different from each other). The acoustic features of an utterance

are modeled using a generative model - a GMM whose means are adapted from a universal

background model (UBM), modified by latent speaker and channel factors with independent

Gaussian priors. This method along with probabilistic linear discriminant analysis (PLDA) [18]

laid the foundation for the i-vector model [11] that was shown to be effective for both speaker

and language recognition.

2.1.2 Language Recognition

[Nakagawa et. al., 1992] - Language identification by GMM and HMM [19]

In this work, the authors modeled the frame-level speech representations in four different ways.

In the first approach, the speech frames were vector quantized to obtain discrete representations

for each language, and decisions were made based on the vector quantization distortion from

various language models. This method assumes the source to be memoryless. In the second

approach, the sequences of vector-quantized representation were modeled using a hidden Markov

model (HMM) to capture the sequence information. In the third approach, a Gaussian Mixture

Model (GMM) was used to model the speech frames in the continuous domain, without applying

vector quantization. In the last approach, a continuous ergodic HMM was used.

12

[Hazen, 1993, Zissman et. al., 1994, 1996] - Phoneme Recognition and Language

modeling (PRLM) [20, 21, 22]

All the models explored in these research works, use one or more phoneme recognizers followed

by n-gram language modeling of the target languages. There were three broad categories

of PRLM systems. The first category uses a single phoneme recognizer for training n-gram

language models using multiple target languages. When labelled data in multiple languages

were available, the approach was modified to include multiple phoneme recognizers in parallel.

The third category assumes that labelled datasets are available for the target languages, which

they used to train integrated acoustic and phonotactic models.

[Torres-Carrasquilo et. al., 2002] - Shifted delta cepstral features [23]

In this work, the authors compare two GMM based language identification algorithms. The first

approach utilizes GMMs trained on frame-level acoustic features which were used to compute

class conditional likelihood scores. In the second approach, the GMMs were used to tokenize

the frames, followed by a bank of n-gram language models. They showed that by using shifted

delta cepstral (SDC) features, these models achieve comparable performance to PRLM systems.

Since then, SDC features have been a popular choice for language recognition.

[Campbell et. al., 2004, 06, Van Leeuwen et. al., 2006] - Discriminative approaches

to language recognition [24, 25, 26]

Following the success of discriminative models such as support vector machines (SVM) and

multi-class logistic regression models for speaker recognition problems, these techniques were

borrowed and applied for language recognition. Sequence kernels were initially proposed in

[24] to handle sequences of SDC features. Later, SVMs were applied to the GMM-adapted

supervectors. The success of these approaches formed a bridge between speaker and language

recognition problems, and the trend of borrowing techniques from one to the other became a

common practice.

13

2.2 Recent approaches to speaker and language recogni-

tion

As discussed previously in section 2.1, some of the earliest speaker recognition approaches used

Gaussian Mixture Models (GMM) [14] or Joint Factor Analysis (JFA) [16] to compute the

likelihoods for a sequence of short-time acoustic features of the test utterances. For Language

recognition, sequence-based models such as Hidden Markov Models and n-gram models involv-

ing phoneme recognizers were used. The introduction of the total variability modeling approach

[11, 27] showed that obtaining fixed-dimensional representations (embeddings) from the speech

recordings as a front-end step, followed by a separate back-end model to compute the likelihoods

greatly improves the performance and robustness. Moreover, in situations where computational

resources are limited, such kind of a 2-stage approach greatly simplifies the implementation, as

the front-end embeddings of speech segments can be extracted and stored. It also allows us to

focus on one aspect of the model at a time. This two-stage pipeline of speaker and language

recognition is illustrated in figure 2.1.

The front-end embedding extractor can be based on a generative or a discriminative model.

These models can also be trained in supervised, unsupervised, or self-supervised frameworks.

The back-end model depends on the problem statement and the evaluation criteria. For lan-

guage recognition, the back-end computes log-likelihood scores for all the languages (or accents)

considered. For speaker verification, the back-end model computes a log-likelihood ratio of the

target and non-target hypotheses.

This section gives a brief overview of the various front-end and back-end models that have

been widely used and studied in the literature.

14

…

Short-time feature extraction

…

Embedding

extractor

Language

Recognition

Backend

Speaker

Verification

Backend

Enrollment

speaker

embedding(s)

Scores

(log-likelihoods)

Score

(log-likelihood

ratio)Test segment

embedding

Short-time

features

Speech

signal

Segment-level

embedding

Test segment

embedding

Front-end Back-end

Figure 2.1: Illustration of speaker and language recognition systems

2.3 An overview of Front-end Models

2.3.1 The i-vector Model

One of the earliest approaches to front-end embedding extraction is the i-vector model [11, 27].

The short-time acoustic features of the speech utterances in a large dataset are modeled using

a Gaussian Mixture Model - Universal Background Model (GMM-UBM). The GMM-UBM pa-

rameters (mean components) are adapted to fit a speech utterance. The difference between the

GMM-UBM means and the adapted means is assumed to be generated in a lower dimensional

space with a Gaussian prior. Estimating the latent variables in this lower dimensional space

gives a fixed dimensional representation for each utterance called an i-vector. These i-vectors

represent the total variability of a speach utterance from the GMM-UBM, arising due to various

factors such as speaker, language, etc. The i-vectors are extracted and further processed using

a back-end model trained for speaker or language recognition.

15

2.3.2 Neural Network Based Models

As neural networks became popular, over the last decade, researchers explored various architec-

tures that could capture the speaker or language information of speech utterances of arbitrary

duration in emeddings of fixed dimensions. In this section, we discuss a few approaches in the

literature.

2.3.2.1 d-vector Models

One of the earliest neural network based models that was used for text-dependent speaker

verification is the d-vector model [28]. In this approach, a feed-forward DNN is trained to

classify speakers at the frame level. The average of the speaker features from the last hidden

layer of the DNN is called the d-vector. The approach was later modified and adopted for

text-independent speaker recognition [29] and also for language recognition [30].

2.3.2.2 X-vector Models

Snyder et. al [31, 32] proposed a neural network architecture involving a time-delay neural

network (TDNN) architecture followed by a segment-level statistics temporal pooling layer

where the mean and standard deviations along the time dimension are computed and stacked

as a single vector. The temporal pooling layer is followed by fully connected layers and an

output softmax layer to learn a classification objective. Embeddings can be chosen from any

one of the segment-level hidden layers, typically called x-vectors. Various modifications to the

architecture include the factorized TDNN [33], self-attention weighted statistics pooling [34],

and residual networks (ResNet) [35].

2.3.2.3 Recurrent Models

For language identification, it is advantageous to capture the sequence information in the em-

beddings. With this motivation, there have been attempts to use recurrent architectures like

Long Short Term Memory (LSTM) [36, 37], Bidirectional LSTM (Bi-LSTM) and Gated Re-

16

current Units (GRU) [38]. Incorporating recurrent layers into TDNN based speaker embedding

extractors have been explored in [39, 40].

2.4 An overview of Back-End Models

A back-end model is a generative or discriminative model of the embeddings coming from the

front-end model. It is used to compute the log-likelihoods or the log-likelihood ratio scores

required to make a decision. Typically, the embeddings are processed with operations such

as centering (mean subtraction), whitening (covariance normalization), within-class covari-

ance normalization, unit length normalization, and dimensionality reduction using standard

approaches such as the principle component analysis (PCA) or linear discriminant analysis

(LDA). This is followed by one of the following backend models.

2.4.1 Probabilistic Linear Discriminant Analysis (PLDA)

The PLDA [18, 41] is a generative model where the embeddings are factored into class-specific

and channel/session-specific components. The model lets us compute the likelihood of embed-

dings given the class, making it a useful tool for class inference, classification, and clustering

problems.

If the jth embedding of class i is denoted as xij, the PLDA generative process is given by

xij = µ+ Fhi +Gwij + ϵij (2.1)

where µ is the mean, F and G are the class and channel subspace matrices respectively, hi ∼

N(0, I) and wij ∼ N(0, I) are latent variables representing the class and channel respectively,

and ϵij ∼ N(0,Σ) is a residual term. Fhi is the speaker factor that is shared by all the

embeddings of speaker i, and Gwij is the channel factor that captures the within speaker

variability.

Given a pair of speech embeddings x(e) and x(t), the log-likelihood ratio (LLR) for speaker

17

verification is expressed as follows:

LLR = log
p(x(e),x(t)|Ht)

p(x(e),x(t)|Hnt)
= log

∫
p(we|h)p(wt|h)p(h)dh∫

p(we|he)p(he)dhe

∫
p(wt|ht)p(ht)dht

(2.2)

Variants of the PLDA with a student’s t distribution as a prior instead of the standard

normal prior were also proposed in [42].

2.4.2 Gaussian Back-End Models

The Gaussian Back-end is a generative model that considers the embeddings of each class l as

a Gaussian Distribution with a class-specific mean and covariance matrix: N(µl,Σl). For a test

embedding, the log-likelihood for each class can be computed as

Ll = p(x|l) = −1

2
(x− µl)

⊺
Σ

−1

l (x− µl)−
1

2
log |Σl|+ c (2.3)

where c is the constant factor. In some cases, certain other constraints are imposed while

estimating the class-specific Gaussian parameters. For example, in [43], a shared covariance

matrix Σl = Σ ∀ l (the within-class covariance matrix) is used for language recognition.

For speaker verification problems, where the log-likelihood ratio has to be computed for a

pair of utterances, the enrollment and test embeddings (xe and xt) are centered and concate-

nated as:

x =

(
xe

xt

)
(2.4)

The concatenated embeddings belonging to the target and non-target hypotheses are modeled

as Gaussian distributions N(µt,Σt) and N(µnt,Σnt) respectively, and the log-likelihood ratio

for a test trial is computed as:

LLR = −(x− µt)
⊺
Σ

−1

t (x− µt) + (x− µnt)
⊺
Σ

−1

nt (x− µnt) (2.5)

18

2.4.3 Support Vector Machines

A support vector Machine is a discriminative two-class classifier construced from sums of kernel

functions as

f(x) =
∑
i

aitiK(x,xi) + bi (2.6)

where ti ∈ {−1, 1} are the target values corresponding to the two classes, xi is a subset of the

training set called the support vectors that are obtained by an optimization process.

The kernel function K is constrained to have certain properties such that it can be expressed

as an inner product

K(x,y) = ϕ(x)
⊺
ϕ(y) (2.7)

where ϕ is a non-linear mapping from the embedding space to a higher dimensional space.

For speaker verification, the concatenated vectors of the enrollment and test embeddings are

used to train a pair-wise SVM [44]. For speaker or language classification problems, one-versus-

rest SVMs are trained for every class, whose outputs are processed to obtain log-likelihoods.

2.4.4 Logistic Regression and Neural Network Back-ends

Logistic regression is a discriminative model that linearly transforms the embeddings followed

by a logistic function to estimate the posterior probabilities of every class. Deep neural network

back-ends with various architectures involving fully connected layers and choices of non-linear

activations are used to apply non-linear transformations to allow the classes to be well separated.

The parameters of the neural network are learnt via gradient descent of a discriminative loss

function, using the backpropagation algorithm.

19

2.5 Language and Accent Recognition

The problem of language recognition involves the development of algorithms that automatically

infer the language and aspects of language, such as the dialect and accent from a given speech

recording. The dialect is a particular and unique form of the language that includes general

vocabulary and grammar. In contrast, accent refers to how the people of a region or a social

group pronounce the words of the language. Such pronunciation could also be influenced by

the native language of the speaker, such as Tamil accented Kannada.

To set the stage for the language recognition experiments, we begin by discussing the moti-

vation, some evaluation metrics for the language recognition problems, and popular approaches

in the literature for language recognition.

2.5.1 Evaluation of Language and Accent Recognition Systems

As introduced in section 1.3.1, we can view the problem of language recognition as a classifi-

cation of a detection problem. Based on the nature of the requirement, one can decide on the

metrics to evaluate the systems. The most common evaluation metrics are discussed in this

section.

In terms of the conditional probability density for the observed data (O) given a target

language model (Li), the log-likelihood score (li) is defined as:

li = log(O|Li) (2.8)

For language classification, we employ either a maximum likelihood decision rule or a max-

imum aposteriori decision rule to decide a test utterance as belonging to one out of the NL

language or accent classes.

For language detection, the decision is made by applying a threshold to the log-likelihood

ratios of each language. If a LID system outputs a vector of the log-likelihood scores for the NL

20

languages/accents under consideration, we compute the log-likelihood ratio for every language

Li as

LLR(O,Li) = log
P (O|Li)

P (O|Not Li)
= − log

[
1

Nl − 1

∑
j ̸=i

exp(lj − li)

]
(2.9)

The evaluation metrics for language detection are defined as functions of the log-likelihood ratio

scores.

2.5.1.1 Classification Accuracy

Classification accuracy is the simplest evaluation metric for any classification problems, such

as speaker and language classification. It is defined as the percentage of correct predictions to

the total test examples evaluated.

2.5.1.2 Average Detection Cost

The average detection cost is an evaluation metric for language detection, and is used as the

primary metric for the NIST Language Recognition Evaluations [45]. It is based on the Bayes

risk which is defined for a pair of target and non target languages (LT and LN) as:

C(LT ,LN)(θ) = CMissPTargetP
(LT)
Miss(θ) + CFA(1− PTarget)P

(LT ,LN)
FA (θ) (2.10)

where CMiss and CFA are the predetermined application dependent costs for missed detection

and false alarm respectively, PTarget is the apriori probability of the specified target language.

P
(LT)
Miss is the probability of missing detection of the target language, and P

(LT ,LN)
FA is the prob-

ability of falsely detecting an example of language LN as the target language LT , obtained by

applying a decision threshold of θ to the log-likelihood ratios.

For better interpretability, the cost function is normalized by the best cost obtained by

21

always rejecting the test audio. This yields:

C
(LT ,LN)
Norm (θ) = P

(LT)
Miss(θ) + βP

(LT ,LN)
FA (θ) (2.11)

where β is defined as

β =
CFA(1− PTarget)

CMissPTarget

(2.12)

The average Bayes risk for a set of NL languages or accents is defined as

Cavg(θ) =
1

NL

{∑
LT

P
(LT)
Miss(θ) +

β

NL − 1

∑
LT

∑
LN

P
(LT ,LN)
FA (θ)

}
(2.13)

The theoretical optimal average detection cost is obtained by applying a threshold of log β

to the log-likelihood ratio scores. We refer to this as simply Cavg.

2.5.1.3 Minimum detection cost

The minimum detection cost is computed by the thresholds that minimize the average detection

cost function.

minCavg = min
θ1,...,θNL

1

NL

{∑
LT

P
(LT)
Miss(θLT

) +
β

NL − 1

∑
LT

∑
LN

P
(LT ,LN)
FA (θLT

)

}
(2.14)

If the system outputs well represent log-likelihoods, the minCavg will be very close to the actual

Cavg computed using the threshold of log β to the LLRs.

2.5.2 Datasets

In this section, we give an account of the datasets we used for our Language Recognition

experiments.

22

Table 2.1: LRE 2017 training set : Target languages, language clusters, total number of files
per language and total duration.

Cluster Target Languages #files
Total Duration

(hours)

Arabic

Egyptian Arabic (ara-arz) 440 190.9
Iraqi Arabic (ara-acm) 1406 130.8
Levantine Arabic (ara-apc) 3509 440.7
Maghrebi Arabic (ara-ary) 919 81.8

Chinese
Mandarin (zho-cmn) 3331 379.4
Min Nan (zho-nan) 95 13.3

English
British English (eng-gbr) 98 4.8
General American English (eng-usg) 2448 327.7

Slavic
Polish (qsl-pol) 587 59.3
Russian (qsl-rus) 1221 69.5

Iberian

Caribbean Spanish (spa-car) 688 166.3
European Spanish (spa-eur) 121 24.7
Latin American Spanish (spa-lac) 898 175.9
Brazilian Portuguese (por-brz) 444 4.1

2.5.2.1 The NIST Language Recognition Evaluation 2017 Datasets

The training dataset consisted of 16, 205 files from 14 closely related languages and dialects

grouped into five clusters. The details of the dataset mentioning the number of files and total

duration for each language are given in Table 2.1. The total duration of the train files is about

2069 hours.

The development dataset has 3661 files, and the evaluation dataset has 25451 files. Both

dev and eval datasets contain files of duration 3, 10 and 30 seconds from the MLS14 corpus. We

trained all the systems using only the LRE 2017 train dataset (LDC2017E22), and we report

the performances on the development and evaluation datasets (LDC2017E23).

2.5.2.2 The Mozilla Common Voice Dataset

The Mozilla Common Voice is a corpus of speech data read by users [46] based upon text

from a number of public domain sources like blog posts, old books, movies, and other public

23

Table 2.2: The Mozilla CommonVoice dataset: Accents chosen, total number of files used for
training, development and testing and total duration.

Accent
#files

Total Duration
(mins)

Train Dev Test Train Dev Test

African 926 98 196 61 7.61 14.8
Australian 4182 104 196 239 6.83 12.6
Canada 3778 104 202 229 8.02 14.5
England 15266 96 202 868 6.48 14.2
Indian 4366 103 201 259 7.32 13.8
Ireland 679 102 200 38 6.65 19.3

NewZealand 886 101 204 50 6.68 13.3
Scotland 1323 95 201 75 6.06 13.0
USA 31966 103 198 1845 6.96 13.2

speech corpora. Its primary purpose is to enable the training and testing of automatic speech

recognition (ASR) systems. The dataset contains several different accents of English with a

total of approximately 64k speech files (sentences) along with the accent labels (Table 2.2).

The average duration per file was 3.5 seconds.

The accents with less than 1 hour were discarded, and 9 accents of English were used in

training/test. For this purpose, approximately 100 files from each accent were selected randomly

for the development set, and approximately 200 files from each accent were selected randomly

for the evaluation set. The remaining files were used for training the accent recognition systems.

2.5.2.3 The DARPA RATS Dataset

The DARPA Robust Automatic Transcription of Speech (RATS) [47] program targets the

development of speech systems operating on highly distorted speech recorded over “degraded”

radio channels. The data used here consists of recordings obtained from re-transmitting a

clean signal over eight different radio channel types, where each channel introduces a unique

degradation mode specific to the device and modulation characteristics [47]. For the language

24

identification (LID) task, the performance is degraded due to the short segment duration of

the speech recordings in addition to the significant amount of channel noise [48]. The training

data for the RATS experiments consist of 20000 recordings (about 1600 hours of audio) from

five target languages (Arabic, Pashto, Dari, Farsi and Urdu) as well as from several other

non-target languages. The development and the evaluation data consists of 5663 and 14757

recordings respectively, from the noisy channels.

For our language recognition experiments, we extract 3 sec, 10 sec and 30 sec chunks from

the full length evaluation files to create an identical test scenario as the NIST SRE dataset.

2.6 Speaker Recognition

The key challenges in speaker verification that degrade the performance of these systems are

language mismatch in the two trials that constitute the pair, shorter duration of the recordings,

and noise/reverberation artifacts. In the recent past, several challenges have been organized for

benchmarking the progress of speaker verification technology in these scenarios. The prominent

ones include the NIST speaker recognition Evaluation (SRE) challenges [49],[50], the short

duration speaker verification challenge (SDSVC) [51], the speakers in the wild (SITW) challenge

[52], and the VOiCES challenge [53].

2.6.1 Evaluation of Speaker Recognition Systems

For speaker classification with NS target speakers, we employ either a maximum likelihood

decision rule or a maximum aposteriori decision rule to decide a test utterance as belonging to

one out of the NS speakers.

For open set speaker verification or detection, we utilize example recordings of a target

speaker called the enrollment recordings to model the target speaker hypothesis Ht (a given

test segment is spoken by the target speaker) and the null hypothesis Hnt (the test segment

is not spoken by the target speaker). Given a test speech segment, speaker verification is

essentially a hypothesis testing task intended to infer whether the test segment is spoken by

25

the enrolled speaker (Ht) or a different speaker (Hnt). Equivalently, the target and non-target

hypotheses can be stated as:

• Ht: The given two speech segments Xe and Xt are spoken by the same speaker.

• Hnt: The given two speech segments Xe and Xt are spoken by two different speakers.

Speaker Verification systems compute a log-likelihood ratio (score) for a trial (pair of speech

utterances Xe, Xt), to which a threshold is applied to make a decision.

LLR(Xe, Xt) = log
P (Xe, Xt|Ht)

P (Xe, Xt|Hnt)
(2.15)

The evaluation metrics discussed for the verification problems are defined as functions of the

log likelihood ratios.

2.6.1.1 Classification Accuracy

Speaker classification accuracy is defined in a similar manner as in language classification. In

this case, it is the ratio of the number of test examples for which the speaker is correctly

predicted to the total number of test examples.

2.6.1.2 Equal Error Rate

Equal error rate is the location on the Detection Error Trade-off curve where the false alarm

rate (PFA) and missed detection rate (Pmiss) become equal.

2.6.1.3 Detection Cost Functions

The detection cost function (DCF) is an evaluation metric for detection and verification prob-

lems, mainly used in speaker recognition challenges such as NIST SRE. It is based on the Bayes

risk, which is defined as

CDet(θ) = CMissPTargetPMiss(θ) + CFA(1− PTarget)PFA(θ) (2.16)

26

where CMiss and CFA are the costs assigned to the missed detection and false alarm events

respectively, PTarget is the apriori probability of observing a target trial, PMiss and PFA are the

miss-rate and false alarm probabilities obtained by applying a decision threshold of θ on the

log-likelihood ratio scores.

For interpretability, the cost function is normalized by the best cost obtained by always

rejecting the test segments (CMissPTarget). This yields:

CNorm(θ) = PMiss(θ) + β PFA(θ) (2.17)

where β is defined as

β =
CFA(1− PTarget)

CMissPTarget

(2.18)

The theoretical optimal threshold to minimize the Bayes risk is log β. This is often referred to

as the actual detection cost or actDCF in speaker verification literature.

However, in practice, the true minimum of the detection cost function is not obtained at

the threshold of log β. The minimum detection cost (minDCF or CMin) can be computed

numerically as

CMin = min
θ

PMiss(θ) + β PFA(θ) (2.19)

2.6.1.4 Log-Likelihood Ratio Cost Function

An ideal speaker verification system that outputs true log-likelihood ratios will have an appli-

cation independent quality, which means it would give optimal performance for a wide range of

choices for CMiss, CFA and PTarget (applications). In practice, speaker verification systems are

usually designed with a specific application in mind (Fixed values of CMiss, CFA and PTarget)

to obtain better discriminability for that application. The detection cost functions discussed

27

above measure the discriminability of the system, but not how well the output scores represent

log-likelihood ratios (calibration of the system). Brummer et.al. [54] proposed an information

theoretic evaluation metric that quantifies both the discriminability of the system as well the

calibration. This is called the log-likelihood ratio cost function and is defined as:

LGBCE =
1

2 log 2

{
1

|T|
∑
i∈T

log(1 + e−si) +
1

|N|
∑
i∈N

log(1 + esi)

}
(2.20)

2.6.2 Datasets

In this section, we give an account of the datasets used for speaker recognition experiments as

reported in this thesis.

2.6.2.1 The NIST Speaker Recognition Evaluation Datasets (1996-2019)

The NIST Speaker Recognition Evaluation datasets consist of conversational telephone speech

(CTS) data collected from a variety of handsets and mobile devices (PSTN and VoIP) and

interview recordings from participants both within and outside the United States of America,

for evaluating and benchmarking speaker verification systems. These datasets consist of con-

versations in multiple languages and also English spoken by several non-native speakers. In

addition to conversational telephone speech, the development and evaluation sets from NIST

SRE 2018 included audio from video (AFV) from the VAST corpus that contained speech ex-

tracted from open-source media (videos). The CTS data has a sampling rate of 8kHz and the

AfV has a sampling rate of 44KHz, which is down-sampled to the desired sampling rate in our

experiments depending on the model.

2.6.2.2 Comprehensive Switchboard Corpora

The Comprehensive Switchboard Corpora includes Switchboard-1, Switchboard-2 (Phases 1-3),

and Switchboard Cellular datasets collected by Texas Instruments under DARPA sponsorship

and the Linguistic Data Consortium (LDC). These datasets contain telephone conversations

28

carried out in the English language by hundreds of volunteers on specific topics. The data is

collected in a similar fashion as the NIST SRE datasets.

2.6.2.3 The Mixer 6 Corpus

The Mixer 6 Corpus is another dataset of telephone and interview recordings in American

English collected by the LDC for the purpose of speaker recognition research.

2.6.2.4 Speakers In The Wild (SITW) Dataset

The Speakers in the Wild (SITW) speaker recognition database contains hand-annotated speech

samples from open-source media for the purpose of benchmarking text-independent speaker

recognition technology on single and multi-speaker audio acquired across unconstrained or

”wild” conditions. In particular, the dataset consists of recordings from 299 speakers that were

extracted from various open-source media.

2.6.2.5 VoxCeleb 1 and 2 Datasets

The Visual Geometry Group (VGG) from the University of Oxford developed a large-scale

open source speech database by extracting speech from YouTube videos of various celebrities

across the world, covering various scenarios and a diverse set of channel conditions. This was

done in two parts. VoxCeleb-1 contains 1251 speakers, and VoxCeleb-2 contains 6112 speakers.

Furthermore, both these datasets are split into development and test portions for speaker

verification.

2.6.2.6 VOiCES speaker recognition Dataset

The VOiCES corpus [53] was developed to promote speech and signal processing research of

speech recorded by far-field microphones in noisy room conditions. This was done by creating

challenging natural scenarios where background noise played in conjunction with foreground

speech selected from the LibriSpeech corpus were played and recorded by distant microphones

in furnished rooms. Multiple sessions were recorded in each room to accommodate for all

foreground speech-background noise combinations. The audio was recorded using twelve mi-

29

crophones placed throughout the room, resulting in 120 hours of audio per microphone.

2.7 Chapter Summary

In this chapter, we deep dive into the problems of speaker and language recognition, draw a

parallel between the various approaches used in the literature so far highlighting the similarity.

We give a skeletal view of the various components of speaker and language recognition systems,

and divide the implementation into two parts: front-end and back-end. We give examples of

the various approaches used for embedding extraction and the back-end systems.

We then expand on how the speaker and language recognition systems are evaluated, define

the various evaluation metrics, and also give an account of the datasets used in our experiments.

30

Chapter 3

Supervised i-vector Modelling for

Language Recognition

Before the widespread adoption of deep learning approaches, a factor analysis based modeling

was used to represent a variable length speech utterance in the form of a fixed dimensional vector

(termed as i-vector). This approach has been prominently used for many tasks like speaker

recognition, language recognition and speech recognition. The conventional i-vector approach

to speaker and language recognition constitutes an unsupervised learning paradigm where a

variable length speech utterance is converted into a fixed dimensional feature vector (termed as

i-vector). The i-vector approach belongs to the broader family of factor analysis models where

the utterance level adapted means of a Gaussian Mixture Model - Universal Background Model

(GMM-UBM) are assumed to lie in a low rank subspace. The latent variables in the low rank

model are assumed to have a standard Gaussian prior distribution. In the first phase of this

doctoral research, we reworked the theory of i-vector modeling in a supervised framework, where

the class labels (like language or accent) of the speech recordings are introduced directly into the

i-vector model using a mixture Gaussian prior. In this chapter, we provide the mathematical

formulation of the supervised i-vector (s-vector) model, and framework for s-vector extraction

31

using the minimum mean squared error estimation (MMSE) approach. A detailed analysis

of the s-vector model is given, and contrasted with the traditional i-vector framework. The

proposed model is used for language recognition tasks using the NIST Language Recognition

Evaluation (LRE) 2017 dataset as well as an accent recognition task using the Mozilla common

voices dataset. In these experiments, we show that the s-vector model provides significant

improvements over the conventional i-vector model (relative improvements of up to 24% for the

NIST LRE task in terms of primary detection cost metric).

3.1 Introduction

In the last decade, one of the most popular approach for language (accent) and speaker recog-

nition consisted of modeling a database of speech recordings (in the form of a sequence of

short-term feature vectors) with a Gaussian Mixture Model - Universal Background Model

(GMM-UBM) [14, 15]. The initial approaches for speaker recognition using log-likelihood scores

were replaced with the factor analysis models [16], where the adapted Gaussian mean compo-

nents (spliced as a single high dimensional vector called the supervector) are expressed as a

sum of speaker and session factors. The parameters in this model were derived using a maxi-

mum likelihood (ML) framework with an iterative expectation maximization (EM) approach.

The approach of joint factor analysis (JFA) was further simplified by total variability modeling

(i-vector modeling), where all variabilities were captured by a single fixed dimensional latent

vector [27]. With a prior of standard normal distribution (having zero mean and identity co-

variance), the latent variables were called i-vectors. The i-vector features, extracted using an

EM framework with a maximum likelihood objective, were used for further processing. For ex-

ample, the speaker verification systems use a probabilistic linear discriminant analysis (PLDA)

[41] to model channel variability [55]. The language (accent) recognition systems with i-vectors

used a cosine based scoring [56] or a support vector machine (SVM) model for language clas-

sification [24]. A modification of the prior density was attempted in [57], however the changes

32

to standard normal prior did not show consistent improvements. The baseline system for the

NIST LRE 2017 evaluations [58] used the i-vector features with length normalization [59] and

linear discriminant analysis [56] followed by a SVM classifier.

In the last decade, there have been attempts to incorporate i-vector features for speaker

adaptation [60] in speech recognition systems. The replacement of GMM-UBM with a deep

neural network (DNN) acoustic model, for computing the statistics for i-vector extraction has

shown improvements in speaker/language recognition tasks [61, 62]. While normalization meth-

ods like length normalization have been proposed in the post processing of the i-vectors [59],

all the efforts outlined above use the unsupervised ML framework for the training the i-vector

models.

In this chapter, we give a detailed account of our fully supervised version of the i-vector

model that was published in [63, 64], where each label class is associated with a Gaussian prior

with a class-specific mean parameter. The joint prior (marginalized over the sample space of

classes) on the latent variable is a GMM. In this chapter, we give a detailed account of the

EM algorithm for this choice of prior. Specifically, we show that the GMM forms a conjugate

prior for this framework (given the statistics, the posterior distribution of the latent vectors is

also a GMM). This choice of prior is motivated by the use of a Gaussian back-end approach

[43], where the conventional i-vectors for each language are modeled with a single Gaussian

distribution. In the proposed model, the posterior distribution of the i-vectors is a GMM.

Thus, the maximum aposteriori (MAP) estimates are not very useful for the multi-modal GMM

posterior distribution. We resort to the minimum mean square error (MMSE) estimate of the

latent variables, which we refer as the supervised i-vector (s-vector) for a given test recording.

Furthermore, the use of class dependent prior also allows us to weigh the importance of the

prior with a factor (the belief on the prior can be varied based on the duration of the recording).

With detailed data analysis and visualization, we show that the s-vector features yield

representations that succinctly capture the language (accent) label information. We also show

33

that the conventional i-vectors are a special case of the more generic s-vectors proposed in this

work, where all the label information is assumed to belong to one class.

The proposed s-vectors are used for a language recognition task in the LRE 2017 dataset.

We use the same setup as in the baseline i-vector system [58], except for the replacement of the

unsupervised i-vectors with the s-vectors. The subsequent steps, including the SVM training

for language classification, are also performed in a similar fashion for all the systems. In our ex-

periments comparing the supervised and unsupervised i-vector features, the proposed approach

provides significant improvements in LRE task (relative improvements of up to 24% in terms

of the primary cost metric). We also show that the proposed approach yields consistent gains

for RATS language recognition experiments [47] on short-duration conditions, and the Mozilla

CommonVoices dataset [46] involving short-duration utterances of accented English speech. We

also experiment with the s-vector approach for speaker classification, which typically contains

a larger number of classes than in language recognition. Using one-hundred speakers from the

Librispeech dataset, we demonstrate that the s-vector approach improves the performance of

speaker classification over the i-vector baseline.

The rest of the chapter is organized as follows. In Sec. 3.3, we provide the mathematical

derivation of the proposed supervised EM framework for s-vector model parameter estimation.

We emphasize primarily the difference in the formulation compared to the traditional i-vectors.

The minimum divergence re-estimation step is also discussed here. In Sec. 3.3.2, we derive

the expressions for s-vector extraction for a given test utterance. The language recognition

experiments are reported in Sec. 3.4. A detailed discussion of the results with confusion matrices

and data visualization is provided in Sec. 3.5, along with a discussion of the application to

speaker recognition in Sec. 3.5.7. This is followed by a brief summary in Sec. 3.6.

34

3.2 The mathematical framework of the i-vector model

We provide the mathematical derivation of the conventional i-vector modeling [16]. This is

required as the s-vector modeling is built on this model. The notations used here follow those

from the work of Kenny and Dehak et. al. [16, 27].

Given a dataset of S recordings, let X(s) = [x1, . . . ,xH(s)] denote the sequence of F

dimensional front-end feature vectors, where H(s) is the number of frames in recording s.

Let Λ = {πc,µc,Σc}Cc=1 denote the parameters of a C component Gaussian Mixture Model

- Universal Background Model (GMM-UBM). The UBM mean supervector is denoted by

M 0 = [µ1

⊺
, . . . ,µc

⊺
]
⊺
. It is assumed that for each recording s, an adapted mean supervec-

tor M (s) was used to generate X(s) = [x1, . . . ,xH(s)]. The i-vector model (also known as the

total variability model) is a generative model for M (s) and is given by

M(s) = M 0 + Ty(s) (3.1)

where T is a matrix of dimension CF × R called the total variability matrix, and y(s) is a

latent vector of dimension R × 1. A standard normal distribution is used as the prior density

for y(s). The i-vector of recording s is defined as the MAP estimate of y(s) given X(s). The

Baum-Welch statistics of recording s for mixture c are given by

Nc(s) =

H(s)∑
i=1

pΛ(c | xi) (3.2)

FX,c(s) =

H(s)∑
i=1

pΛ(c | xi)(xi − µc) (3.3)

SXX,c(s) =

H(s)∑
i=1

pΛ(c | xi)(xi − µc)(xi − µc)
⊺

(3.4)

The BW statistics are sufficient statictics for estimation of the model parameters. In matrix

35

form, the zeroth and first order statistics are written as:

N(s) =

N1(s)I 0

. . .

0 NC(s)I

 , FX(s) =

FX,1(s)

...

FX,C(s)

where I is an identity matrix of size F×F . In [65], it was shown that the log-likelihood function

of the frame-level features of recording s is

log pT (X(s) | y(s)) = G(s) +HT (s,y(s)) (3.5)

where G(s) =
∑C

c=1 Nc(s) log
(
(2π)−

F
2 |Σc|−

1
2

)
− 1

2
tr
(
Σ

−1
SXX(s)

)
is a term independent of T

and y(s). Hence it will not play a role in estimating T and y(s). The second term is

HT (s,y(s)) = y(s)
⊺
T

⊺
Σ

−1

FX(s)−
1

2
y(s)

⊺
T

⊺
Σ

−1

N(s)Ty(s) (3.6)

Using the Bayes’ formula, it can be shown that the aposteriori density function of y(s) given

X(s) is Gaussian with covariance L(s)
−1

and mean L(s)
−1
T

⊺
Σ

−1
FX(s) [27] where

L(s) = I + T
⊺
Σ

−1

N(s)T (3.7)

The proofs for the likelihood function and the posterior can be found in [65]. For easy reference,

we also present the proofs in Appendix 5.3.4. Estimating T by maximum likelihood is done

using the Expectation-Maximization (EM) algorithm [66].

36

3.2.1 Expectation (E) step:

The Q function is given by:

Q
(
T | T (t)

)
=

S∑
s=1

Ey(s)|X(s),T (t) log pT (X(s),y(s))

=
S∑

s=1

Ey(s)|X(s),T (t) log pT (X(s) | y(s))

+
S∑

s=1

Ey(s)|X(s),T (t) log p(y(s)) (3.8)

The second term is independent of T and doesn’t play a role in the M-Step, and hence it can

be ignored. Substituting for the likelihood term from Eq (3.5), ignoring the irrelevant terms

and simplifying yields:

Q
(
T | T (t)

)
=

S∑
s=1

[
tr

{
T

⊺
Σ

−1

FX(s)ŷ
(t)(s)

⊺

}
− 1

2
tr

{
Σ

−1

N(s)TE(t)
yy (s)T

⊺

}]
(3.9)

where

L(t)(s) = I + T (t)⊺Σ
−1

N(s)T (t) (3.10)

ŷ(t)(s) = L(t)(s)
−1

T (t)⊺Σ
−1

FX(s) (3.11)

E(t)
yy (s) = L(t)(s)

−1

+ ŷ(t)(s)ŷ(t)(s)
⊺

(3.12)

The E-step can be summarized as computing the quantities in Eq (3.10 - 3.12). The vector

ŷ(t)(s) is the MAP estimate of the latent variable computed using the total variability matrix

T (t), which is usually called as the i-vector.

37

3.2.2 Maximization (M) step:

The update equation for the matrix T is obtained by maximizing the Q function w.r.t T .

T (t+1) = argmax
T

Q
(
T | T (t)

)
(3.13)

Differentiating Eq (3.9), equating it to zero and simplifying yields the system of linear

equations in every row of T (t+1):

S∑
s=1

N(s)T (t+1)
(
L(t)(s)

−1

+ ŷ(t)(s)ŷ(t)(s)
⊺
)
=

S∑
s=1

FX(s)ŷ
(t)(s)

⊺
(3.14)

T (t+1) is obtained by solving the above systems of linear equations.

3.2.3 Minimum Divergence Re-estimation

For i-vector modeling, another update step called the minimum divergence re-estimation of the

T matrix is done after every M-step to ensure that the model is consistent with the prior on

the latent variable y. Assume that the current estimate T results in i-vector estimates with

covariance Kyy instead of identity covariance, the TVM equation can be written as

M (s) = M 0 + Ty(s) (3.15)

= M 0 + TK
1
2
yy︸ ︷︷ ︸

T ′

(
K

− 1
2

yy y(s)
)

︸ ︷︷ ︸
y′(s)

(3.16)

Hence, by making the modifications T ′ ← TK
1
2
yy and y′(s) ← K

− 1
2

yy y(s), and re-estimating

{ml}Ll=1 using y′(s), the KL divergence of the distribution of i-vectors using updated model

38

from the prior on y(s) will be minimized. The quantity Kyy is computed as

Kyy =
1

S

S∑
s=1

Ey(s)|X(s),T

[
y(s)y(s)

⊺]
(3.17)

It can be shown that by making these updates, the total data log likelihood also improves [16].

S∑
s=1

log pT ′(X(s)) ≥
S∑

s=1

log pT (X(s)) (3.18)

3.3 The s-vector model

The i-vector model that is popularly used in speaker and language recognition is outlined in

3.2. We follow notations similar to the conventional i-vectors to derive the s-vector features. In

the traditional i-vector approach, the Total Variability Model (TVM) (Eq. (3.1)) together with

the Gaussian Mixture Model - Universal Background Model (GMM-UBM) constitute a latent

variable based generative model for the short-time sequence of features. In the s-vector model,

we incorporate the class label information in this generative modeling framework. We denote

the feature sequence of recording s by

X(s) = {x1(s), . . .xH(s)(s)} (3.19)

where H(s) denotes the length of recording s. The corresponding label is denoted as l(s). Note

that the values of l(s) are discrete (l(s) = 1, ..., L), where L denotes the total number of classes.

The adapted means of the GMM-UBM are modeled as:

M(s) = M 0 + Ty(s) (3.20)

39

where M(s), M 0 and T are similar to the definitions used in the conventional i-vector model

(Eq. 3.1). Though this equation is identical to the conventional i-vector model, the key difference

is that the latent vector y(s) depends on the class label l(s). The prior on y(s) conditioned on

the class l is modeled as a Gaussian with mean ml, and a shared, identity covariance matrix

for all classes l ∈ {1, . . . , L}, i.e.,

p(y(s)|l(s) = l) ∼ N(y(s);ml, I) (3.21)

For recordings without a known label, the prior distribution is then a Gaussian mixture

model,

p(y(s)) =
L∑
l=1

p(l)N(y |ml, I) (3.22)

By parameterizing the class conditioned means m1, . . . ,mL along with the other model pa-

rameters, we make use of the labels of the train recordings to estimate the model parameters,

thereby introducing supervision. If ml = 0 is set for all l ∈ {1, . . . , L}, the proposed model

reverts back to the standard i-vector model. In the s-vector model, we make the following

statistical assumptions:

1. The apriori probability of observing label l is uniform, i.e., p(l) = 1
L
∀l ∈ {1, . . . , L}

2. Given the latent variable y(s), X(s) is conditionally independent on the class label l(s)

pT (X(s) | y(s), l(s)) = pT (X(s) | y(s)) (3.23)

While the full covariance model for each label class is feasible in the proposed framework,

the shared covariance model allows for simplicity in model estimation (and greatly reduces the

memory requirements). As some of the classes have a very small number of recordings, the class

conditioned covariance matrices may not be well estimated (for example, the language classes

40

like British-English in the NIST LRE 2017 dataset have a very small number of recordings). The

popularly used Gaussian backend model [43] for log likelihood computation also doesn’t model

the covariance of each class separately. The reason for using an Identity covariance matrix is

because a model with a shared covariance matrix W can be converted to an equivalent model

with identity covariance matrix by the following transformation:

M (s) = M 0 + Ty(s)

= M 0 + TW
1
2W− 1

2y(s)

= M 0 + T ′y′(s)

where y′ follows a GMM distribution with Identity mixture covariances. This is achieved

through the minimum divergence re-estimation procedure in each iteration (3.2.3). A similar

approach has been used in the conventional i-vector framework where a standard Gaussian

distribution with identity covariance is used instead of a model with full covariance.

We derive the steps involved in the estimation of s-vector model parameters in the following

subsection.

3.3.1 EM Algorithm for Parameter Estimation

The class conditioned means m1, . . . ,mL can be parameterized along with the matrix T . The

set of parameters of the s-vector model to be estimated are denoted as,

Θ = {T,m1, . . . ,mL}. (3.24)

The likelihood function of Θ in terms of X(s), l(s) and y(s) is

pΘ(X(s),y(s), l(s)) = pΘ(X(s),y(s) | l(s))p(l(s)) (3.25)

=
1

L
pΘ(X(s) | y(s))pΘ(y(s) | l(s))

41

The complete data log-likelihood is

S∑
s=1

logpΘ(X(s),y(s), l(s))

= S log
1

L
+

S∑
s=1

log pΘ(X(s) | y(s)) +
S∑

s=1

log pΘ(y(s) | l(s)) (3.26)

Here, the middle term pΘ(X(s) | y(s)) is identical to that of Eq. (3.5). The aposteriori density

function of y(s) given X(s) and l(s) is Gaussian with covariance L
−1
(s) and mean given by

L
−1
(s)
{
ml(s) + T

⊺
Σ

−1
FX(s)

}
, where L(s) is same as in Eq. (3.7). This result is obtained by

applying the Bayes’ formula as shown in Appendix 5.3.4.

The EM algorithm (supervised EM) is used to solve for the parameters Θ = {T,m1, . . . ,mL}

which maximize the joint likelihood function
S∑

s=1

log pΘ(X(s), l(s)).

3.3.1.1 Expectation (E) step

In the expectation step, we obtain an expression for the Q function, defined in terms of X(s)

and l(s) as

Q
(
Θ |Θ(t)

)
=

S∑
s=1

Ey(s)|X(s),l(s),Θ(t) log pΘ(X(s), l(s),y(s))

=
S∑

s=1

Ey(s)|X(s),Θ(t) log pΘ(X(s) | y(s))

+
S∑

s=1

Ey(s)|X(s),Θ(t) log p(y(s) | l(s)) (3.27)

Here, we have used the independence assumption (Eq 3.23). The term S log 1
L
has been ignored

here, as it is independent of the model parameters and does not play a role in the EM algorithm.

Substituting the required terms from Eq (3.5, 3.22 & 3.26) and simplifying by ignoring the

42

constant terms gives

Q
(
Θ|Θ(t)

)
=

S∑
s=1

[
tr

{
T

⊺
Σ

−1

FX(s)ŷ
(t)
l(s)(s)

⊺

}
− 1

2
tr

{
Σ

−1

N(s)TE
(t)
yy,l(s)(s)T

⊺

}]

+
L∑
l=1

S∑
s=1
l(s)=l

(
ŷ
(t)
l(s)(s)

⊺
ml −

1

2
ml

⊺
ml

)
(3.28)

For each recording s, using the parameter estimates Θ(t) at iteration t, we compute the

following quantities

EΘ(t) [y(s) |X(s), l(s)] = ŷ
(t)
l(s)(s) = L(t)(s)

−1
{
ml(s) + T (t)⊺Σ

−1

FX(s)
}

(3.29)

EΘ(t)

[
y(s)y(s)

⊺ |X(s), l(s)
]
= E

(t)
yy,l(s)(s) = L(t)(s)

−1

+ ŷ
(t)
l(s)(s)ŷ

(t)
l(s)(s)

⊺
(3.30)

where FX(s) and N(s) are the Baum-Welch statistics in matrix form (defined in 3.2) and

L(t)(s) = I + T (t)⊺Σ
−1
N(s)T (t)

3.3.1.2 Maximization Step

The update equation for the matrix T is obtained by maximizing the Q function w.r.t T .

T (t+1) = argmax
T

Q
(
Θ |Θ(t)

)
(3.31)

As the Q function is convex in T , partially differentiating Eq (3.9) w.r.t T , equating it to

zero and simplifying yields the system of linear equations in every row of T (t+1):

S∑
s=1

N(s)T (t+1)E
(t)
yy,l(s)(s) =

S∑
s=1

FX(s)ŷ
(t)(s)

⊺
(3.32)

T (t+1) is obtained by solving the above systems of linear equations. The update equation for

43

the T matrix is

T (t+1)
c =

(
S∑

s=1

Nc(s)E
(t)
yy,l(s)(s)

)−1 (
S∑

s=1

FX,c(s)ŷ
(t)
l(s)(s)

⊺

)
(3.33)

where Tc is the sub-matrix of T corresponding to cth mixture of GMM-UBM.

Similarly, the update equations for the class conditioned means are obtained by partially

differentiating Eq (3.9) w.r.t ml, equating it to zero and solving for ml. This yields the update

equations:

m
(t+1)
l =

1

Sl

S∑
s=1
l(s)=l

ŷ
(t)
l(s)(s) (3.34)

where Sl is the number of training recordings with class label l.

The update equation for the T matrix is numerically identical to the update equations of

the conventional i-vector model. However, the difference is in how the quantities ŷ
(t)
l(s)(s) and

E
(t)
yy,l(s)(s) are computed in the E-step (equations 3.29 and 3.30). The term m

(t)
l(s) is introduced

in the s-vector model, which is different for each class l and updated in every EM iteration,

allowing extra degrees of freedom for the model such that the latent vectors for each class are

confined to a Gaussian distribution around the class center. Setting m
(t)
l(s) to zero for all classes

and not having it gives us the conventional i-vector model. Here the latent vectors are forced

to confine to a standard normal distribution irrespective of the class. Hence, we rely on the

inherent differences in the acoustic feature frames between each language to be encoded in the

latent i-vector space, rather than explicitly forcing it.

3.3.1.3 Minimum divergence re-estimation

The idea of minimum divergence estimation [16] is to model the T matrix in such a way as to

force the empirical distribution to conform to the GMM prior as assumed. Specifically, it is

required that the class conditioned covariances are shared among all classes and equal to the

44

identity matrix. We require the within class covariance matrix to be identity. The minimum

divergence update equation is given by T (t) ←− T (t)L, where LL
⊺
is the Cholesky decomposition

of the within-class covariance matrix Kyy, given below as,

Kyy =
1

S

S∑
s=1

Ey(s)|X(s),l(s),T

[
(y(s)−ml(s))(y(s)−ml(s))

⊺]
(3.35)

=
1

S

S∑
s=1

Ey(s)|X(s),l(s),T

[
y(s)y(s)

⊺− y(s)ml(s)
⊺−ml(s)y(s)

⊺
+ml(s)ml(s)

⊺]
(3.36)

Expanding and simplifying using the parameters at time step t,

K(t)
yy =

1

S

S∑
s=1

(
L(t)(s)

−1

+ ŷ
(t)
l(s)(s)ŷ

(t)
l(s)(s)

⊺

− ŷ
(t)
l(s)(s)m

(t)
l(s)

⊺ −m
(t)
l(s)ŷ

(t)
l(s)(s)

⊺
+m

(t)
l(s)m

(t)
l(s)

⊺
)

(3.37)

3.3.2 S-vector extraction

The conventional i-vectors are simply the maximum aposteriori (MAP) estimates of y(s) given

the Baum-Welch statistics N(s) and FX(s). In the proposed model, for an unlabeled test

recording, the posterior distribution of y(s) turns out to be a GMM (similar to the prior). This

model belongs to the broad class of Bayesian models with conjugate prior (The conventional

i-vector model is also a conjugate prior Bayesian model, where the prior and posterior are

Gaussian distributed). The posterior distribution of y(s) is given by

p(y(s) |X(s)) =
L∑
l=1

p(l |X(s)) p(y(s) |X(s), l) (3.38)

For the i-vector model, the posterior distribution of y(s) is Gaussian, and the i-vector is defined

as the MAP estimate (mode of the posterior distribution), which is also equal to its mean

(MMSE estimate). Unlike the i-vector case, the posterior distribution of y(s) in the s-vector

45

model is multimodal in nature, and hence, there is no one obvious way to use define the s-vector.

We explore multiple methods for deriving s-vector representations from this model as follows.

3.3.2.1 aMAP s-vectors

Due to the fact that exact mode of a GMM does not have a closed-form expression, and must be

obtained by iterative numerical methods, finding the MAP estimate is numerically expensive.

The label conditioned yl vector corresponding to the class with the largest language posterior

may be a close approximation of the MAP estimate, which we define as approximate MAP

(aMAP) s-vectors.

3.3.2.2 PCA s-vectors

The first approach we tried is to splice all the label-conditioned MAP estimates to form the

recording level representation that can be further dimensionality reduced using principal com-

ponent analysis (PCA) [67].

3.3.2.3 Averaged label-conditioned s-vectors

The second approach is to compute a raw average of the individual label-conditioned MAP

estimates.

3.3.2.4 Minimum mean-squared (MMSE) s-vectors

In the third approach, we use the minimum mean-square-error (MMSE) estimate of y(s). The

MMSE estimate (s-vector) is defined by the posterior mean of y(s), given the input features

X(s). It is computed using the following expression:

ŷMMSE(s) = E(y(s) |X(s))

=
L∑
l=1

p(l |X(s))ŷl(s) (3.39)

46

We refer to ŷl(s) as a class conditioned s-vector (conditioned on class l) and it is given by

ŷl(s) =
(
I + T

⊺
Σ

−1

N(s)T
)−1 (

ml + T
⊺
Σ

−1

FX(s)
)

(3.40)

and the posteriors p(l |X(s)) are calculated from the class conditioned likelihoods pΘ(X(s) | l).

The expressions for language posteriors p(l|X(s) are given below.

The log likelihood of X(s) for class l can be by marginalizing over the distribution of y(s)

as follows:

log p(X(s) | l) = log

∫
<y(s)>

p(X(s),y(s) | l(s)) dy(s) (3.41)

= log

∫
<y(s)>

p(X(s) | y(s), l(s)) p(y(s) | l(s)) dy(s) (3.42)

= log

∫
<y(s)>

p(X(s) | y(s)) p(y(s) | l(s)) dy(s) (3.43)

The l(s) term vanishes due to the independence assumption (Eq 3.23). Substituting for the

log-likelihood from Eq. (3.5) and the expression for the class conditioned prior of y(s), we get

log p(X(s) | l) = log

∫
<y(s)>

e(G(s)+HT (s,y(s)) 1

(2π)
R
2

e−
1
2
(y(s)−ml)

⊺
(y(s)−ml)dy(s) (3.44)

The integral term can be simplified by separating out the terms independent of y(s). As

HT (s,y(s)) is a quadratic function in y(s), the argument of the integral has a Gaussian form

in y(s). Solving for the integral and simplifying, we get

log p(X(s) | l) = G(s)− 1

2
ml

⊺
ml −

1

2
log |L(s)|

+
1

2
(ml + T

⊺
Σ

−1

FX(s))
⊺
L(s)

−1

(ml + T
⊺
Σ

−1

FX(s)) (3.45)

47

The intermediate steps involved in solving the integral term in Eq. 3.44 to obtain Eq. 3.45 is

given in Appendix 5.3.4. The class posteriors p(l|X(s)) can be calculated using the Bayes’

formula, and terms G(s) and −1
2
log |L(s)| are independent of l and can be ignored while

calculating the language posteriors.

As shown in the experiments, the MMSE-based s-vectors perform the best when the pos-

teriors, p(l |X(s)), are well estimated. Setting p(l |X(s)) = 1 for the true class l and 0 for

the other classes (true label based one-hot encoding) gives us the oracle s-vectors (cheat ex-

periment). Using the oracle s-vectors, we are able to show the performance upper-bounds of

the proposed s-vector model. On the other hand, the worst case situation would be when the

class posterior distribution is assumed to be uniform (p(l|X(s)) = 1
L
), we obtain the average

s-vectors mentioned in Sec. 3.3.2.3.

3.3.3 Re-weighting the priors

Although the proposed model incorporates label information, the algorithm only tries to max-

imize the joint likelihood. This does not ensure that the model is discriminative. In an at-

tempt to make the proposed model more discriminative, the class conditioned prior covariance

(Eq (3.21)) can be scaled by a factor 1
λ
, where λ ≥ 1. The covariance matrix is a measure of the

spread of a vector distribution around its mean. Scaling down the covariance matrix reduces

this spread by forcing the vectors to be closer to the mean. When the class means are fixed,

but the shared(identity) covariance matrix is scaled down, the separation between the classes

is forced to increase.

Using the modified prior distribution, it can be shown that the E-step will be modified as

follows:

L(t)(s) = λI + T (t)⊺Σ
−1

N(s)T (t) (3.46)

ŷ
(t)
l(s)(s) = L(t)(s)

−1
(
λm

(t)
l(s) + T (t)⊺Σ

−1

FX(s)
)

(3.47)

48

Figure 3.1: Illustration of the variation of prior distribution with varying λ. In this example,
the means of Gaussian mixtures m1, . . . ,m5 represent five language classes.

With a prior re-weighting factor of λ, the class conditioned s-vector of Eq.(3.40) will be

modified as

ŷl(s) =
(
λI + T

⊺
Σ

−1

N(s)T
)−1 (

λml + T
⊺
Σ

−1

FX(s)
)

(3.48)

Figure 1 highlights the effect of λ on the prior density. When the value of λ is increased,

the GMM means are unchanged, and the mixture component covariance around the means

is reduced by a factor of 1
λ
. This forces the latent variables to be more concise around the

language means, thereby enhancing the model’s discriminative ability. However, when a high

value of λ is chosen (and in noisy conditions), the embedding could be more concise around the

wrong language class mean. Thus, we find that for shorter durations (and in noisy conditions),

a lower value of λ is preferred, while for longer durations in cleaner conditions (like in NIST

LRE 2017), a higher value of λ improves the LID performance. By using the hyper-parameter

λ, we can control the degree of confidence on the prior distribution.

49

3.4 Experiments and Results

We demonstrate the advantages of the s-vector model by applying it to language and accent

recognition problems using the NIST LRE 2017 dataset [58] and the Mozilla CommonVoice

dataset [46] respectively.

3.4.1 Performance Metrics

We use three different metrics for evaluating the language and accent recognition tasks. The

first two metrics, namely the NIST LRE 2017 primary detection cost (Cprimary) and the equal

error rate (EER) report the performance on a language detection setting. For this purpose,

likelihood ratios are computed for each language versus the rest, and a threshold of β is applied

to obtain the false alarm (PFA) and miss (PMiss) probabilities. The NIST LRE 2017 primary

cost metric (CPrimary) is defined as:

CPrimary =
Cavg(β1 = 1) + Cavg(β2 = 9)

2
(3.49)

where Cavg is the average detection cost over all languages defined in Eq. 2.13.

The equal error rate (EER) is the PFA (or PMiss) computed at the threshold where PFA

and PMiss become equal. The classification accuracy is used to report the performance in a

language identification setting (closed set language classification).

3.4.2 Experiments conducted

We performed three sets of language recognition experiments, based on three different datasets:

The NIST LRE 2017 dataset, RATS language identification dataset and the Mozilla Common-

Voice dataset. Each of these datasets have a train, validation and test partition. The validation

and test partitions are further divided into 3, 10 and 30 seconds groups based on their duration.

Figure 3.2 depicts the pipeline of the baseline i-vector language/accent recognition system that

50

Figure 3.2: I-vector based language/accent recognition pipeline

uses bottleneck features from a DNN acoustic model. In our experiments involving s-vectors,

all the components in this pipeline remain the same as the baseline, except for the T matrix

training and s-vector extraction steps (described in Sec. 3.3.2).

A deep neural network (DNN) based acoustic model trained on switchboard and Fisher cor-

pora for an automatic speech recognition (ASR) task was used to extract frame level bottleneck

features of 80 dimensions as a front end. Speech activity detection (SAD) is applied to retain

only the voiced frames. We use the implementation of Sohn’s statistical model based VAD

from the Voicebox toolkit [68]. A GMM-UBM of 2048 mixtures is trained using the bottleneck

features of the training set. For the total variability training with random initialization, the

T matrix is estimated using the EM algorithm for 6 iterations. We set the i-vector/s-vector

dimension to 500.

Following the i-vector/s-vector extraction, the representations are centered, within class

covariance normalized [56], and dimensionality reduced with LDA to L− 1 dimensions (L = 14

for the NIST LRE 2017 and 9 for the Mozilla accent recognition task). We then use two different

back-end models for obtaining the language log-likelihood scores, namely the Gaussian back-end

(GB) [43] and Support Vector Machines (SVM) [24] with radial basis function (RBF) kernel.

51

3.4.3 Results on NIST LRE experiments

In Tables 3.1 and 3.2, we report the Cprimary, EER, and classification accuracies for the baseline

systems, namely the unsupervised i-vectors systems, and our various s-vector systems. As noted

previously, the oracle s-vectors (cheat) and the average s-vectors represent performance bounds.

For the MMSE s-vectors, we experimented with various value of λ, to see how Cprimary varies

with λ for the development dataset, for each duration (3 sec, 10 sec and 30 sec) separately. The

value of λ that gave the best performance on the development set was then used to compare

our s-vector systems with the baseline on the evaluation set.

On the NIST LRE evaluation dataset, the proposed MMSE s-vector improves over the

baseline relatively by [19%, 20%, 8%] in terms of Cprimary, [16%, 24%, 4%] in terms of EER,

and [16%, 18%, 9%] in terms of accuracy for [3 sec, 10 sec, 30 sec] durations.

The aMAP s-vectors (defined in Sec. 3.3.2.1) perform poorly when compared to the i-vector

baseline approach, particularly for the 3 sec condition. For longer durations, the difference

in performance is minimal. In terms of overall performance, the aMAP s-vectors perform

marginally worse than the baseline i-vector approach. This may be because the errors in the

estimated posteriors introduce noise in the s-vectors used for back-end training, as well as

during inference.

The PCA s-vectors (defined in Sec. 3.3.2.2) also performs worse on the 3 sec condition than

the i-vector baseline. However, for the 10 sec and 30 sec condition, it is at least as good or

better than the i-vector baseline. However, the PCA s-vectors perform better than the aMAP

s-vectors on average.

The MMSE approach utilizes a full Bayesian estimation of the embedding vector. It is

more elegant mathematically while it also simplifies the computation over the PCA method.

As seen in Table 3.1 and Table 3.2, the MMSE s-vector approach performs significantly better

than both aMAP and PCA s-vectors on both the development and evaluation datasets. The

average s-vectors and oracle s-vectors represent two extreme cases of the weighted average of

52

Table 3.1: Results on the NIST LRE 2017 development dataset for the i-vector and the various
s-vector approaches, using SVM back-end for scoring.

Dev Performances : 100Cprimary [EER (%)] {Accuracy(%)}

Model config. 3 sec 10 sec 30 sec

Unsupervised i-vector [58] 52.7 [16.6] {51.8} 27.1 [7.5] {74.0} 13.1 [3.6] {87.8}
aMAP s-vector 57.1 [17.9] {50.4} 27.6 [7.7] {74.0} 13.2 [3.7] {87.7}
Average s-vector 47.8 [14.3] {56.3} 22.4 [6.2] {78.3} 12.2 [3.3] {88.0}
PCA s-vector [63] 57.6 [18.2] {50.4} 27.0 [7.4] {74.6} 12.1 [3.4] {88.2}
MMSE s-vector 44.4 [14.7] {63.5} 19.5 [5.9] {83.7} 11.7 [3.4] {89.4}

Oracle s-vector (cheat) 13.0 [3.9] {88.3} 5.6 [1.7] {94.4} 5.0 [1.1] {94.9}

Table 3.2: Results on the NIST LRE 2017 evaluation dataset for the i-vector and the various
s-vector approaches, using SVM back-end for scoring.

Eval Performances : 100Cprimary [EER (%)] {Accuracy(%)}

Model config. 3 sec 10 sec 30 sec

Unsupervised i-vector [58] 53.6 [16.1] {53.8} 29.9 [8.6] {72.4} 16.7 [3.9] {83.0}
aMAP s-vector 58.4 [18.0] {51.5} 30.1 [8.5] {72.7} 16.2 [3.9] {83.7}
Average s-vector 49.7 [13.9] {58.5] 27.0 [7.0] {75.3} 15.7 [3.7] {84.0}
PCA s-vector [63] 58.2 [17.7] {54.1} 30.5 [8.2] {73.7} 15.8 [3.8] {83.9}
MMSE s-vector 43.7 [13.5] {61.2} 23.7 [6.5] {77.4} 15.4 [3.8] {84.5}

Oracle s-vector (cheat) 12.6 [3.6] {86.9} 6.5 [1.6] {92.9} 5.7 [1.4] {93.6}

label-conditioned s-vectors. It is interesting to note that although the raw average s-vector

approach utilizes uniform weighting, it still outperforms the baseline i-vector model, and also

the aMap and PCA s-vectors.

3.4.4 Results on the Mozilla CommonVoice Accent Recognition Task

The following figure shows the variation of Cprimary with λ for MMSE s-vectors on the devel-

opment dataset using GB classifiers. In this case, the MMSE s-vector (λ = 7) gave the best

performance on the development data. This configuration is used on the evaluation set and the

results are reported in Table 3.3. On the evaluation dataset, the proposed s-vectors provide

only moderate improvements (over the baseline), with average relative improvements of 2% in

53

Table 3.3: Results on accent recognition experiments with Mozilla CommonVoice Datasets
using Gaussian backend for scoring

Model config.
Eval Performances:

100Cprimary [EER (%)] {Accuracy (%)}

Unsupervised i-vector [58] 77.2 [21.2] {52.5}
Average s-vector 75.9 [20.7] {53.3}
MMSE s-vector 76.0 [20.7] {53.2}

Oracle s-vector (cheat) 61.5 [15.3] {62.2}

Table 3.4: Results of the RATS Language identification task

Performances : 100Cprimary [EER (%)] {Accuracy(%)}

Model config. 3 sec 10 sec 30 sec

Dev.

Unsup. i-vector [58] 94.0 [26.3] {66.1} 63.8 [17.6] {77.1} 40.5 [10.9] {86.9}
MMSE s-vector 86.7 [25.2] {70.2} 59.5 [16.6] {80.2} 41.3 [11.3] {87.5}

Eval

Unsup. i-vector [58] 89.0 [25.1] {64.8} 63.0 [17.9] {76.2} 40.3 [11.6] {85.7}
MMSE s-vector 79.5 [22.5] {65.8} 56.3 [16.3] {77.5} 39.5 [11.4] {85.4}

terms of Cprimary, 2.4% in terms of EER, and 4% in terms of accuracy. As the recordings are

very short in duration and the accent classes are highly overlapping, the posterior distribution

is not well estimated. Hence, the average s-vector also performs as well as the MMSE s-vector

for this task.

3.4.5 Results on RATS Language Recognition Task

The RATS LID results are reported in Table 3.4. The RATS dataset involves language recog-

nition on 5 target languages along with several other imposter classes. The proposed s-vector

approaches show consistent improvements over the baseline system on short duration conditions

(3 sec and 10 sec) over the baseline i-vector approach. For example, on the RATS evaluation

set for the 3 sec and 10 sec condition, the proposed s-vector approach improves the baseline

system by about 11 % relative in terms of Cprimary metric. These results are also consistent

54

with the NIST LRE 2017 results.

3.4.6 Computational Complexity

With R being the dimension of the i-vectors/s-vectors and if L labels are included in the

model, the complexity of both i-vector and s-vector extraction is of order O(R3). The s-

vector extraction involves an additional step of computing the posterior probability p(l |X)

and the language specific posterior mean for each langauge l. Both of these steps are of the

order O(RL). In order to analyze the computation time, 50 files of 30 sec duration from the

NIST LRE task were selected and their i-vectors and s-vectors were extracted sequentially in

a single threaded mode on an Intel CPU with 256 GB of RAM. The feature extraction and

zeroth/first order statistic computation was performed as a pre-processing step before the i-

vector/s-vector estimation. The total computation time for 50 recordings was about 24 sec

and 28 sec respectively for the i-vector and s-vector estimation procedure. Thus, the s-vector

estimation involves 15 % more computation time than the i-vector estimation. However, we find

that the effect of this increased computation impacts the overall processing pipeline involving

voice activity detection, feature extraction, embedding estimation and SVM scoring by only

about 2 % relative.

3.5 Discussion

3.5.1 Influence of the prior re-weighting factor λ

Figure 3.3 shows the variation of Cprimary with λ for MMSE s-vector systems on the NIST LRE

2017 development dataset. As seen in the figure, the optimal choice of λ was 3, 5 and 7 for 3

sec, 10 sec, and 30 sec conditions respectively. These configurations are used on the evaluation

dataset.

For the NIST LRE task, the s-vectors show significant improvement over the i-vector baseline

on the development data for most choices of λ (Figure 3.3). As seen in Figure 3.1, increasing

55

Figure 3.3: Variation of Cprimary with λ for MMSE s-vectors on the NIST LRE development
dataset for each of the durations [3 sec, 10 sec, and 30 sec]. The dotted line denotes the
unsupervised i-vector baseline.

the value of λ improves the belief on the class distribution chosen by the posterior (p(l|X(s)))

(the Gaussian clusters are more concise around the mean in Figure 3.1). For short-duration

conditions (3 sec), the posterior distribution p(l|X(s)) is not well estimated and has errors.

Hence, increasing the value of λ makes the distribution concise on poorly estimated posteriors

which degrades the performance. On the other hand, for the longer duration condition of 30

sec, as the posterior p(l|X(s)) is well estimated, having a concise distribution (by increasing

the value of λ) improves the performance. Thus, there is a trade-off in the choice of λ that can

provide the optimal performance based on the duration of the utterance. For shorter duration

utterances like 3 sec, the best performance is achieved at λ = 3, for moderately long duration

56

Figure 3.4: Variation of Cprimary with λ for the accent recognition task on the Mozilla Com-
monVoice Development Dataset.

utterances (10 sec), the best performance is achieved by using λ = 5, and for long recordings

of 30 sec, the best choice is λ = 7. Also, the relative improvements for the proposed s-vector

approach over the conventional i-vector system are more significant on the 3 sec and 10 sec

conditions, which are more challenging.

The variation of Cprimary with λ for the Mozilla CommonVoice accent recognition task, using

the development dataset is shown in Fig. 3.4. As the average duration of files in this dataset

is 3.5 seconds, we do not categorize this analysis into multiple duration bins like in the case of

NIST LRE 2017. For this dataset, λ = 7 was found to be optimal.

3.5.2 Comparison with other approaches

In the initial phase of this doctoral research [63], we had proposed to use an external model

such as a neural network trained with categorical cross-entropy objective, in order to extract the

language posteriors p(l |X(s)). We trained a fully connected feed-forward neural network with

two hidden layers of 512 dimensions and ReLU non-linearities and a 14-dimensional softmax

output layer (same specifications as “System B” in [69]). We utilized the outputs from this

model as approximations to the posteriors p(l |X(s)). The embeddings extracted using these

posteriors are referred to as “Approx. MMSE s-vectors” in Tables 3.5 and 3.6. While this

57

Table 3.5: Comparison of results of the MMSE s-vector using SVM back-end for scoring with
other approaches on the NIST LRE 2017 development dataset

Dev Performances : 100Cprimary [EER (%)] {Accuracy(%)}

Model config. 3 sec 10 sec 30 sec

Unsupervised i-vector [58] 52.7 [16.6] {51.8} 27.1 [7.5] {74.0} 13.1 [3.6] {87.8}
Sup. i-vector [70] 47.2 [15.1] {61.1} 20.2 [5.7] {80.9} 14.8 [4.1] {85.1}

Simplified Sup. i-vector [70] 58.2 [19.6] {47.8} 27.3 [7.8] {73.6} 13.4 [3.7] {87.7}
LSTM [71] 53.7 [15.39] {52.7} 33.8 [9.7] {69.2} 32.0 [8.81] {70.9}
HGRU [72] 53.1 [15.09] {57.5} 27.6 [6.6] {76.9} 25.5 [6.1] {78.6}

Approx. MMSE s-vector [63] 51.1 [15.3] {54.1} 23.9 [6.1] {77.4} 12.1 [3.3] {88.3}
MMSE s-vector 44.4 [14.7] {63.5} 19.5 [5.9] {83.7} 11.7 [3.4] {89.4}

Table 3.6: Comparison of results of the MMSE s-vector using SVM back-end for scoring with
other approaches on the NIST LRE 2017 evaluation dataset

Eval Performances : 100Cprimary [EER (%)] {Accuracy(%)}

Model config. 3 sec 10 sec 30 sec

Unsupervised i-vector [58] 53.6 [16.1] {53.8} 29.9 [8.6] {72.4} 16.7 [3.9] {83.0}
Sup. i-vector [70] 46.1 [14.7] {59.6} 25.6 [7.3] {76.4} 19.9 [5.1] {80.9}

Simplified Sup. i-vector [70] 57.2 [19.1] {49.8} 29.8 [8.4] {71.4} 16.7 [4.1] {82.8}
LSTM [71] 55.2 [15.4] {54.7} 35.4 [8.7] {72.1} 28.1 [7.3] {76.1}
HGRU [72] 55.4 [15.3] {55.1} 32.3 [7.5] {74.1} 23.3 [4.9] {83.0}

Approx. MMSE s-vector [63] 52.2 [14.6] {56.8} 27.8 [7.1] {74.7} 15.8 [3.6] {84.0}
MMSE s-vector 43.7 [13.5] {61.2} 23.7 [6.5] {77.4} 15.4 [3.8] {84.5}

approach provides better performance than the PCA s-vectors, the exact expressions of label

posteriors for MMSE s-vectors perform significantly better over all other configurations and

across all durations.

We also compare the performance of the proposed s-vectors with supervised i-vectors and

simplified supervised i-vectors introduced in [70] (Table 3.5, 3.6). This previous approach of

using language labels fails to statistically model the label distribution as the label information

(in the form of one-hot encoded vectors) is appended to the adapted means of the GMM

(without any change in the i-vector modeling framework). In the proposed work, the labels

are handled as discrete symbols, and the label information impacts the choice of the prior

58

distribution in the EM framework. The results indicate that the proposed approach of using

labels is superior to the previous work [70] for all durations.

The results for neural network approaches for language recognition in NIST LRE 2017

development and evaluation data [71, 73, 72] are also reported in Table 3.2). The long short

term memory (LSTM) recurrent neural network (RNN) based LID system [71, 73] uses an end-

to-end LSTM model for language recognition. An end-to-end hierarchical model for language

recognition [72] using gated recurrent units (GRU) improved the LSTM-based model for longer

duration speech recordings. Both these models, use the same training and test data compared

to the proposed s-vector model. As seen in Table 3.5 and Table 3.6, the s-vector model improves

over the baseline neural network models in all test duration conditions.

3.5.3 Data Visualization

In order to analyze the improvements obtained using the proposed approach, we use a data

visualization approach using the t-distributed stochastic neighborhood embedding (tSNE) [74].

The tSNE is an unsupervised dimensionality reduction method that preserves the local neigh-

borhood of the data space in the lower dimensional subspace. We perform tSNE dimensionality

reduction to two dimensions on the unsupervised i-vectors and the proposed s-vectors (on the

NIST LRE 2017 development set for 3 sec recordings). The two-dimensional scatter plot is

separately shown for each of the five language clusters (Arabic, Chinese, English, Slavic, and

Iberian). This is because most of the confusion in language classification happens within the

broad language cluster. The tSNE plots are shown in Figure 3.5. As seen here, for most of the

language clusters, the s-vectors have a reduced within-class variance in the cluster distribution.

For English and Chinese languages, the between-class separability is also improved for the pro-

posed s-vectors. The tSNE plots illustrate that the s-vectors provide representations that are

better suited for language recognition compared to the unsupervised i-vectors.

59

Figure 3.5: t-SNE scatter plots of unsupervised i-vectors (left) and MMSE s-vectors with λ = 3
(right) for the NIST LRE 2017 development dataset with 3 sec recordings. The language
clusters belong to Arabic, Chinese, English, Slavic and Iberian (from top to bottom).

60

Figure 3.6: Row-normalized Confusion Matrices of i-vector system (left) and s-vector system
with λ = 3 (right) on the NIST LRE 2017 development dataset for the 3 sec condition.

3.5.4 Confusion Matrix Analysis

The row-normalized confusion matrix plots for 3 sec recordings in the NIST LRE 2017 devel-

opment set are shown in Figure 3.6. The ideal confusion matrix plot is an identity matrix

where all the non-diagonal entries are zeros and the matrix is diagonally dominant. The con-

fusion matrix plot of the baseline system (left side plot) indicates that for many languages like

eng-gbr, ara-arz, and spa-eur, the diagonal entries are not the highest in the row (indicating

that the majority of the examples of the particular language class are confused as another class

within the same broad language cluster). While this issue persists for the ara-arz class in the

proposed s-vector model (right side plot), all the other language classes have the desired diag-

onal dominance. In particular, the two language clusters that showed a good class separation

in the tSNE plots (Figure 3.5) for the s-vector model (eng-usg versus eng-gbr and zho-cmn

versus zho-nan) also showed significantly reduced confusions (Figure 3.6). Part of the degrada-

tion of the baseline system on these dialects of English and Chinese language cluster may be

attributed to the highly imbalanced training data for these languages (Table 2.1). Thus, the

confusion plots highlight that the proposed model not only improves the overall performance,

61

but is able to improve the class-specific performances on challenging cases where the training

data is somewhat limited.

3.5.5 Relationship to Prior Work

The idea behind the s-vector model is very similar to the PLDA and JFA models [16, 18], in

the sense that all of these are supervised generative models. All three of these models can

be viewed as a 2-step generative process. In the first step, a class-specific latent vector v

(speaker/language factor) is drawn according to some distribution, and in the second step, the

utterance-specific latent vector representing an example of the class is drawn from a normal

distribution centered at v, which encodes the class information. In the case of PLDA and JFA,

the class-specific latent vector is modeled as a Gaussian distribution, whereas in the s-vector

model, the class-specific vectors are assumed to come from a finite set {m1, . . . ,ml}. However,

there is a key difference in the roles these models play in speaker and language recognition

literature. The PLDA and JFA models are typically used in speaker verification to obtain the

verification scores (Log-likelihood ratios) for a pair of recordings, whereas the s-vector model

is proposed as a better embedding extractor than the i-vector model, particularly for language

recognition.

The s-vector model is based on MMSE estimation of latent representations that have a GMM

prior density in the total-variability factor analysis model. In the original i-vector model [11], a

standard Gaussian density is used. The motivation of standard Gaussian density in the factor

model is two fold - i) the Gaussian prior density results in a conjugate prior where the posterior

density is also Gaussian distributed, ii) the MAP estimate is simply the posterior mean and that

allows efficient estimation of latent representation for speaker/language recognition. However,

the standard i-vector model is unsupervised and does not use the language labels of the training

dataset even when they are available, for the language recognition task. The proposed approach

overcomes this limitation by using a GMM prior density for the latent representation. The

mixture components correspond to the target language classes. Comparing with the standard

62

i-vector model, the proposed approach also yields a conjugate posterior density. However, the

simple MAP estimation is no longer feasible and the more involved minimum-mean square

error (MMSE) estimate is required to obtain the latent s-vector representations. Thus, with

moderate increase in computational complexity, we show that the proposed approach is able to

efficiently incorporate the label information in the training data for the embedding extractor.

A noteworthy attempt to utilize supervision in the i-vector model was made in [70], where the

label information (in the form of one-hot encoding or mean speaker embedding) are appended

with the adapted supervector, followed by the factor analysis model. The label regression loss

and the supervector reconstruction error are jointly minimized to train the model. The i-vectors

extracted from this model are also found to be more discriminative than the conventional i-

vector model.

The use of GMM prior density has been attempted in the past in [57, 75, 76]. While the

modeling strategy in these works is similar to the proposed approach, they make approximations

to simplify the posterior estimation that defy the underlying Bayesian factor analysis model

assumptions. In [57], the authors use the GMM prior density with each mixture component

corresponding to one of the language class labels, similar to the proposed approach. The

posterior density of the latent variable is written as,

p(y(s)|X(s)) =
L∑
l=1

p(y(s), l|X(s)) (3.50)

=
L∑
l=1

p(l|X(s))p(y(s)|l)

However, the authors make an approximation by setting p(l|X(s)) to p(l), which is the prior

probability of the language label [57]. Strictly speaking, this violates the Bayesian posterior

probability model. The resulting embedding used in [57] (E(y(s)|X(s)) with this approximation

is not the MMSE estimate of the latent vector. In our work, we derive the exact expression for

p(l|X(s)) under the specific case, where the prior covariances of each class (mixture component)

63

are shared and equal to 1
λ
I (Eq. 3.45). Then, we proceed to use the posterior to find the MMSE

estimate E(y(s)|X(s)).

The methods developed in [75, 76], use a GMM prior density on the latent representations

where the mixture components correspond to phonetic groups. The authors use an external

phonetic recognizer (Hungarian phoneme recognition system) to obtain frame-level phoneme

posteriors. These frame level posteriors are converted to utterance-level posteriors using an

accumulation of frame level posterior statistics. In our approach, we do not employ an external

model for posterior estimation as they are directly obtained from the s-vector model itself. In

addition, the proposed approach has utterance level language labels which is different from the

frame level phoneme labels used in [75, 76]. Hence, there is no approximation needed to convert

posterior information from frame level to utterance level.

3.5.6 Estimating the Prior Weight Using Posterior Covariance

In the language recognition experiments reported in Table 3.5 and Table 3.6, the hyper-

parameter λ that controls the weighting of the prior (covariance matrix of the prior density

is 1
λ
I) is chosen based on the performance on the development data. In a subsequent analysis,

we attempt the estimation of the hyper-parameter λ as a function of the trace of the posterior

covariance (I + T
⊺
Σ

−1
N(s)T)

−1

. The diagonal entries of the posterior covariance matrix con-

tain the variances along each dimension. Hence, its trace serves as a measure of uncertainty of

y(s). Intuitively, lower uncertainty is associated with a higher level of confidence in the data.

As we saw that a higher value of lambda is beneficial for cases with higher uncertainty, such

as in shorter and noisy recordings, allowing λ to vary with the posterior covariance may be a

reasonable experiment to try. We also note that the posterior covariance matrices of longer

recordings typically have a smaller trace, implying lower uncertainty. As N(s) contains the

frame counts for each GMM component, its entries are directly proportional to the test utter-

ance duration. The approach of tying the λ value to the posterior covariance is partly motivated

by previous efforts on uncertainty propagation in factor analysis [77].

64

Table 3.7: Results on NIST LRE 2017 evaluation dataset for two conditions where the λ is
fixed and when the λ is tied to the trace of the posterior covariance matrix.

Performances : 100Cprimary [EER (%)] {Accuracy(%)}

Model config. 3 sec 10 sec 30 sec

MMSE s-vector (λ fixed) 43.7 [13.5] {61.2} 23.7 [6.5] {77.4} 15.4 [3.8] {84.5}
MMSE s-vector (λ tied) 43.6 [13.8] {61.5} 24.7 [6.8] {77.2} 15.5 [3.9] {84.5}

We use a second-order polynomial (obtained using the development set) to find the value

of λ for each utterance. Note that, the prior-weighting changes for each utterance in this case

and it is tied to the posterior covariance, unlike the fixed choice of λ per duration used in the

previous experiments.

Table 3.7 compares the results on NIST LRE 2017 evaluation dataset for the two cases 1)

with fixed λ that is duration specific, 2) with utterance level choice of λ that is tied to the trace

of the posterior covariance matrix. As seen in this Table, the language recognition performance

is similar in both cases indicating that prior density covariance parameter λ can be chosen

based on the statistics of the data for each utterance.

3.5.7 Application to Closed Set Speaker Recognition

One of the potential drawbacks of the proposed approach is the reliance on the supervised

labels in the embedding extraction. For language recognition tasks, the number of class labels

are typically small thereby allowing the modeling of each language class with a GMM com-

ponent. In tasks such as speaker recognition, where i-vector approaches are dominantly used,

the number of class labels (speakers) can be significantly high. In order to test the limits of

the proposed approach for cases with large number of classes, we perform a closed set speaker

recognition task on the Librispeech dataset [78]. Here, we train a background model and the

total variability matrix from a set of background speakers (from the Librispeech dataset). We

created three test sets consisting of variable number of speakers (50, 100 and 200). A multi-class

65

Table 3.8: Performance in terms of equal error rate (EER) % for a closed set speaker recognition
experiment on the Librispeech dataset.

Model config. 50 spk. 100 spk. 200 spk.

Unsup. i-vector 0.122 0.156 0.215
MMSE s-vector 0.122 0.158 0.218

SVM is used as back-end model for speaker classification. The i-vector/s-vector embeddings

are used in these experiments and the performance is measured in terms of equal error rate

(EER). Table 3.8 reports the results for speaker recognition experiment on Librispeech dataset.

As seen in Table 3.8, the s-vector system did not improve over the i-vector approach in the

closed set speaker recognition task. However, even with 200 speaker classes, the performance of

the proposed s-vector model does not degrade compared to the i-vector approach. One poten-

tial future research direction for speaker verification would be to use an unsupervised speaker

clustering approach to generate the label classes for the s-vector model. This may reduce the

number of classes while still preserving the speaker discriminability used in the s-vector model.

3.6 Chapter Summary

In this chapter, we began by giving a detailed mathematical account of the popular i-vector

approach, which was the state-of-the-art in speaker and language recognition. We then modified

the prior distribution of the latent variables to introduce label information into the model, to

make it supervised. We derived the expectation-maximization (EM) algorithm to estimate

the model parameters of the proposed s-vector model. We introduced a hyperparameter to

re-weight the prior covariances of each class, to make the model more discriminative.

With several experiments using the NIST LRE 2017 datasets, we showed that the pro-

posed s-vector model performs much better than the conventional i-vector model. With data

visualization techniques and confusion matrices, we showed that the s-vectors perform well

in distinguishing between accents of a common language cluster. We also analysed how the

66

hyperparameters influence the performance and how to appropriately choose them.

67

Chapter 4

Supervised Neural-Network Models for

Speaker Verification

The deep learning methodologies in state-of-the-art speaker recognition systems are predom-

inantly limited to the extraction of recording level embeddings. This is usually followed by

generative modeling of the embeddings to output the verification score. In this chapter, we give

an account of a neural network based pairwise discriminative back-end inspired by the PLDA

model [79], followed by an end-to-end approach where the neural model outputs the verification

score directly, given the acoustic feature inputs [80, 81]. These models, termed as E2E-NPLDA,

combines the embedding extraction and back-end modeling into a single processing pipeline.

The back-end modeling is achieved using a neural approach to PLDA modeling, called neu-

ral probabilistic linear discriminant analysis (NPLDA). In the NPLDA model, the verification

score is computed as a discriminative similarity function. The development of the single neural

E2E-NPLDA model allows the joint optimization of all the modules using a verification cost.

Several speaker recognition experiments are performed using SITW, VOiCES, and NIST SRE

datasets, where the proposed E2E-NPLDA model is shown to significantly improve over the

state-of-art x-vector PLDA baseline system (relative improvements of up to 35 % in the pri-

69

mary cost metric). We also provide a detailed analysis of the influence of hyper-parameters,

choice of loss functions, and data sampling strategies for training the model. In particular, we

highlight that the proposed soft detection cost function based fine-tuning improves over other

loss functions considered.

4.1 Introduction

The recent developments in the field of speaker and language recognition have mirrored the

advancement in deep learning to derive speaker embeddings from time-delay neural networks

(TDNN). The TDNN models are trained using large amounts of data on a speaker discrimina-

tion task and consist of a layer that generates recording level embeddings called x-vectors [32].

The x-vector embeddings have shown promising improvements over the i-vector embeddings

for many speaker recognition tasks [82]. The embeddings, like i-vectors/x-vectors, are com-

monly processed with various transformations such as linear discriminant analysis (LDA) [27],

unit length normalization [59] and within-class covariance normalization (WCCN) [83]. The

transformed vectors are further modeled using the probabilistic linear discriminant analysis

(PLDA) [42]. The PLDA model, typically formulated using Gaussian assumptions, computes

a log-likelihood ratio from a pair of enrollment and test embeddings. The state-of-art systems

use a neural model to extract x-vector embeddings of fixed dimension followed by a generative

Gaussian PLDA back-end model [32].

First, we describe our proposed a neural approach to PLDAmodeling [79, 80]. This approach

consists of a back-end modeling framework that integrates pre-processing and scoring, called

NPLDA. The advantages of a neural back-end are twofold.

• The neural back-end model can be directly optimized for the detection cost function

(DCF) which is used as the performance metric in speaker verification systems. This is

in contrast to the multitude of optimization functions in LDA, WCCN, and PLDA in the

state-of-art systems.

70

• The neural back-end model will allow the integration of the front-end neural embedding

extractor with the back-end model to form a single deep neural model for ASV system

design. The joint training of this fully neural model will further allow the embedding

extractor to be optimized with a verification cost function as opposed to the classification

cost used in current embedding extractors [32].

Further, we extend our efforts on NPLDA to develop a single end-to-end Siamese neural

network model (E2E-NPLDA). The builds on the advantages mentioned above to construct

a neural network model consisting of two parallel threads of processing - one for enrollment

utterance and the other for the test utterance. These threads share the weights and combine

the embedding extraction and pre-processing steps. The final outputs from the two processing

threads are used in a quadratic score function emulating the PLDA score computation. We use

an approximation to the minimum detection cost (CMin or minDCF) [84] to optimize the E2E-

NPLDA model. Thus, the E2E-NPLDA framework offers an elegant processing pipeline where

the input acoustic features of the enrollment and test recordings are fed to the model which

outputs the verification score. We also provide a comprehensive analysis of the initialization

aspects of the E2E-NPLDA model, the choice of cost function used in the optimization, data

sampling strategies in training the model, and the computational efficiency of the model.

The rest of the chapter is organized as follows. The related prior work is discussed in

Section 4.2. The back-end modeling approaches are detailed in Section 4.3. The Neural PLDA

back-end is introduced in Section 4.4. The cost functions that are plausible in neural ASV

systems are described in Section 4.4.1. The approach to end-to-end neural modeling using

Siamese neural network architecture (E2E-NPLDA) is discussed in Section 4.4.2. Section 4.5

reports the experiments and results. Section 4.6 presents various model considerations and

their impact on the performance. This is followed by a summary of the work in Section 4.7.

71

4.2 Related Prior Work

The pairwise generative and discriminative modeling approaches to ASV back-end design were

investigated by Cumani et. al. [44, 85, 86]. The discriminative version of PLDA with logis-

tic regression and support vector machine (SVM) kernels was explored by Burget et. al. [55].

In SRE experiments, the discriminative PLDA (DPLDA) was seen to over-fit on the training

speakers [87]. For deriving speaker embeddings, Ferrer et. al. [88] explored the regulariza-

tion of embedding extractor networks using GB. Similarly, Mingote et. al. [89] proposed an

approximate DCF metric for text-dependent speaker verification.

The earliest work on end-to-end Siamese modeling for signature verification used time-delay

neural network models was proposed by Bromley et. al [90]. Heigold et.al. [91] proposed an

end-to-end text-dependent speaker verification system using LSTM architecture to derive em-

beddings of enrollment and test segments, followed by cosine similarity scoring. The model is

trained by minimizing the binary cross-entropy (BCE). Zhang et. al. [92] proposed a siamese

network with sequence to sequence attention mechanism to achieve text-dependent speaker

verification. Wan et. al. [93] explored a generalized end-to-end loss by minimizing the cen-

troid means of within speaker distances while maximizing across speaker distances. Snyder

et. al. [31] proposed the use of a network-in-network based Siamese end-to-end architecture

for text-independent speaker verification. For the ASV training with a few thousand speakers

(5 − 15k speakers), the i-vector baseline was consistently better than the E2E approach [31],

whereas, with a large number of training speakers (102k speakers), the proposed neural ASV

approach outperformed the i-vector baseline. Rohdin et. al. [94] developed the joint modeling

of the PLDA scoring with the i-vector extraction using a deep neural network architecture. In

another E2E effort, the use of triplet loss was explored by Zhang et. al. [95]. An unsupervised

approach to train Siamese networks for speaker verification using triplet loss was proposed by

Khan et. al. [96]. In spite of these efforts, the state-of-the-art ASV system uses the x-vector

72

embeddings, followed by pre-processing of the embeddings and the generative Gaussian PLDA

back-end model to generate the verification score [32].

During the same time as we published the work detailed in this chapter, several other

publications closely related to this work were also published. In the following paragraphs, we

briefly discuss some of these publications and connect them to our contributions in this chapter.

[Chung et. al., 2020] - Metric learning for ASV [97]] - In this paper, the authors

showed that metric learning objectives for open-set speaker verification can generate results

that are comparable to, and in some cases even outperform the traditional approach of using

classification objectives to obtain embeddings. Unlike classification objectives, metric learning

objectives are functions of similarity distance measures between pairs of embeddings. These

metric learning objectives allow speaker verification systems to be trained end-to-end, and the

similarity measure can directly act as a verification score without having to train a separate

back-end model. The loss functions we use for our neural network approaches also fall under

the category of metric learning.

[Ferrer et. al., 2020-2022] - Condition aware discriminative back-end for speaker

verification [98, 99, 100]] - In this series of publications, Ferrer et. al. propose a very similar

approach to our Neural PLDA. Just like our approach, they too, implement the PLDA log-

likelihood score in a neural network architecture and optimize the parameters using the binary

cross-entropy loss function. However, their main objective is not to improve the discriminative

performance but to achieve robust calibration across several conditions. In their initial work

[98, 99], they achieve this by augmenting the neural PLDA loss function with another branch

that estimates the calibration parameters to scale and shift the raw scores output by the Neural

PLDA module. In their latest publication [100], they call their back-end model discriminative

condition aware PLDA (DCA-PLDA), where they augment another branch to the existing

pipeline to use the duration information to perform duration-dependent calibration, apart from

the side information dependent calibration discussed in their previous publications [98, 99].

73

4.3 An account of back-end models

The back-end modeling of speaker embeddings typically involves centering, dimensionality re-

duction using LDA, and length normalization as pre-processing steps. In this section, we

present the key mathematical details of popular methods used for back-end modeling of the pre-

processed embeddings for speaker verification. These include the generative Gaussian PLDA

modeling [42, 101], discriminative PLDA modeling in SVM framework [55], the pairwise Gaus-

sian back-end model [44]. These models serve as baselines for our experiments.

4.3.1 Generative Gaussian PLDA (GPLDA)

The GPLDA model on the embeddings (x-vector with post-processing) for a recording is given

by,

ηr = Φw + ϵr (4.1)

Here, w is the latent speaker vector having a standard Gaussian prior density, ηr is the x-vector

embedding after post-processing, Φ is the speaker variability matrix and ϵr is the residual vector

having a Gaussian prior density with zero mean and covariance denoted as Σ, that models the

within speaker covariance. The across-speaker covariance is given by Σac = ΦΦ
⊺
, and the total

covariance is given by Σtot = ΦΦ
⊺
+Σ.

If enrollment and test x-vectors (after post-processing) are denoted as ηe and ηt respectively

[59], the GPLDA score (log-likelihood ratio) is defined as,

l(ηe,ηt) = log
p(ηe,ηt|Ht)

p(ηe,ηt|Hnt)
= logN

((
ηe

ηt

)
;

(
0
0

)
,

(
Σtot Σac

Σac Σtot

))
− logN

((
ηe

ηt

)
;

(
0
0

)
,

(
Σtot 0
0 Σtot

))
(4.2)

where Ht and Ht are the target and non-target hypotheses respectively. Substituting for the

Gaussian density expressions and expanding, the log-likelihood ratio evaluates to a quadratic

74

function of ηe and ηt, as follows:

l(ηe,ηt) = ηe

⊺
Qηe + ηt

⊺
Qηt + 2ηe

⊺
Pηt + const (4.3)

where,

Q = Σ−1
tot − (Σtot −ΣacΣ

−1
totΣac)

−1 (4.4)

P = Σ−1
totΣac(Σtot −ΣacΣ

−1
totΣac)

−1 (4.5)

4.3.2 Discriminative PLDA (DPLDA)

The discriminative PLDA [55] uses the expanded vector φ(ηe,ηt), where (ηe,ηt) are enrollment

and test embeddings.

φ(ηe,ηt) =

1

vec(ηe + ηt)

vec(ηeηt

⊺
+ ηtηe

⊺
)

vec(ηeηe

⊺
+ ηtηt

⊺
)

(4.6)

Here, “vec” corresponds to the operation of vectorizing (flatenning) a 2-D matrix into a single

column vector. Using the expanded vector, the PLDA score is computed as,

s = ω
⊺
φ(ηe,ηt) (4.7)

The weight vector ω is trained using SVM with a quadratic kernel. The verification score on

the test trials is generated as the inner product of the weight vector ω with the expanded

vector φ. For an embedding dimension of N , the dimension of ϕ is 2N2 + N + 1. This large

dimensionality of ϕ is one of the most crucial drawbacks of the DPLDA model which is overcome

75

by the quadratic layer implementation of the proposed NPLDA back-end.

4.3.3 Pairwise Gaussian back-end (GB)

In this modeling, two Gaussian distributions (mean and covariance matrices) are learned from

the training data corresponding to target trial condition and non-target trial condition. The

Gaussian distributions learned from the training are used to generate a likelihood ratio score

on the given test trial. The ratio of the log-likelihood (target likelihood to non-target likelihood

ratio) is used as the final score from the model. Given a trial of enrollment and test embeddings

ηe and ηt, the pairwise GB [102, 86] models the concatenated vector of enrollment and test

embeddings, η = [ηe

⊺
ηt

⊺
]
⊺
as a Gaussian distribution with parameters (µt,Σt) for target trials,

and (µnt,Σnt) for non-target trials.

The log-likelihood ratio score (l) for a trial (η = [ηe

⊺
ηt

⊺
]
⊺
) is computed as,

l = (η − µnt)
⊺
Σ

−1

nt (η − µnt)− (η − µt)
⊺
Σ

−1

t (η − µt) (4.8)

4.4 The Neural PLDA (NPLDA) Approach

The neural PLDA (NPLDA) is our novel approach to converting the probabilistic linear dis-

criminant analysis (PLDA) back-end to a neural network model. Fig. 4.1 shows a Siamese

neural network architecture depicting a shared embedding extractor for the enrollment and

test branches with the NPLDA back-end. While the embedding extractors can have any ar-

chitecture, in this thesis, we restrict ourselves to two popular neural network architectures,

namely, the E-TDNN and F-TDNN. Recently, several advances in the architecture front have

been used for speaker verification, such as residual networks [97] and ECAPA-TDNN [103], and

the NPLDA approach can be extended to these architectures as well.

In the GPLDA approach, the standard operations that are done on the speaker embeddings

are centering, dimensionality reduction with linear discriminant analysis (LDA), and unit length

76

+

Figure 4.1: The E2E-NPLDA architecture for speaker verification. The network parameters
(shaded in blue) in the top (enrollment) and bottom panel (test) are shared.

normalization [59]. These operations are performed in the first layer of the NPLDA model by

posing the centering and LDA as an affine transformation followed by the length normalization

non-linearity. Note that the length normalization is a smooth differentiable non-linearity that

is typically used with cosine similarity losses in neural networks.

The second layer of the NPLDA model replicates the quadratic score computation in PLDA.

The PLDA log-likelihood score given in Eq. (4.2) is implemented as a quadratic neural layer.

The Kaldi implementation of PLDA applies a linear transformation that centers the embed-

dings (after unit length normalization) and simultaneously diagonalizes the within and between

class covariance matrices [59, 104]. This is replicated as the affine layer after the unit length

normalization layer. The NPLDA model parameters are learned in a backpropagation setting

with a suitable loss function. In order to train the NPLDA model for speaker verification, pairs

of x-vector embeddings representing target (from the same speaker) and non-target hypotheses

(from different speakers) are sampled in batches.

In the following section, we discuss various objective function choices for training neural

77

ASV models. Apart from the quadratic score functions, these objective functions can also be

applied to other similarity or distance metrics, such as the cosine similarity or L2 distance

between embeddings.

4.4.1 Objective Functions for Neural ASV Models

4.4.1.1 Binary cross-entropy (BCE) and its weighted versions

A generalized version of the popular BCE loss can be obtained by scaling the terms correspond-

ing to the target and non-target hypotheses with weights λ1 and λ2 respectively. This can be

expressed as

LGBCE = λ1

∑
i∈T

log(1 + e−(si−θ)) + λ2

∑
i∈N

log(1 + e(si−θ)) (4.9)

Here, si is the output of the model (score) for trial i, θ is the threshold applied, T and N are

the sets of indices corresponding to target and non-target trials respectively.

• Vanilla BCE loss: The simple BCE loss is a special case of this generalized version

where λ1 = λ2, and θ = 0. This is used in Heigold et. al. [91] Wan et. al. [93].

• Log-likelihood ratio cost (Cllr): The log-likelihood ratio cost function (Cllr) is a

proper scoring rule typically used as a metric to evaluate the discrimination as well as

calibration capabilities of a speaker verification system [54]. It is also a special case of

, where λ1 = 1
|T| and λ2 = 1

|N| . A scaled version of the Cllr metric was used as the loss

function in Snyder et. al. [31].

• Prior weighted Cllr (WCllr): The standard objective used in likelihood ratio calibra-

tion is a prior weighted version of Cllr [105]. This loss function is used for optimizing the

back-end in Ferrer et. al. [98, 99]. Here, λ1 =
CMissπ

|T| , λ2 =
CFA(1−π)

|N| , and θ = log CMiss(1−π)
CFAπ

,

where π is the prior probability of target trials, and CMiss and CFA are the Bayesian

detection costs associated with the miss and false alarms respectively.

78

4.4.1.2 Proposed soft detection cost

In ASV systems, the normalized detection cost function (DCF) [84] is :

CNorm(β, θ) = PMiss(θ) + βPFA(θ) (4.10)

where β is defined as

β =
CFA(1− π)

CMissπ
(4.11)

and θ is the threshold value on the score. The cost associated with a miss and false alarms are

CMiss and CFA respectively, and the prior probability of target trials is denoted as π.

The probability of miss/false-alarms is computed by applying the threshold θ to the score

si.

PMiss(θ) =
1

|T|
∑
i∈T

1(si < θ) ; PFA(θ) =
1

|N|
∑
i∈N

1(si ≥ θ) (4.12)

Here, 1 is the indicator function, T denotes the set of target trials, and N denotes the set

of non-target trials.

The minimum detection cost (Cmin or minDCF) is achieved at the threshold where the DCF

is at the minimum value.

CMin = minDCF = min
θ

CNorm(β, θ) (4.13)

The optimization using Eq. (4.10) is infeasible due to the step discontinuity in the indicator

function 1. We propose a differentiable approximation of the normalized detection cost using

a warped sigmoid function.

79

We define the soft detection cost function (SoftDCF) as:

C
(soft)
Norm(β, θ) = P soft

Miss(θ) + βP soft
FA (θ) (4.14)

Here, the soft probabilities of miss and false-alarm are computed as:

P
(soft)
Miss (θ) =

1

T

∑
i∈T

[1− σ(α(si − θ))] ; P
(soft)
FA (θ) =

1

N

∑
i∈N

σ(α(si − θ)) (4.15)

A large value for α, would make the warping function closely approximate the true detection

cost function for a wide range of thresholds. In our experiments, we choose α = 15. Further,

the threshold θ is also considered as a model parameter.

With the neural models for embedding extraction and back-end, we explore the construc-

tion of a Siamese neural network model that can be input with the acoustic features to directly

generate the verification score. The key advantage of such an approach will be the joint opti-

mization of all the parameters of the network using a speaker verification cost. Further, this

approach would also build upon the prior research advancements made in the field on embed-

ding extraction, pre-processing of embeddings, and the PLDA modeling for verification score.

We call the proposed family of models E2E-NPLDA. The proposed E2E-NPLDA architecture

is shown in Fig. 4.1. The early layers of the model are identical to the embedding extraction

framework while the later layers implement the back-end score modeling.

4.4.2 The E2E-NPLDA model for speaker Verification

The learnable parameters in the top panel (enrollment) and bottom panel (test) of the E2E-

NPLDA model (Fig 4.1) are tied. This sharing makes the architecture Siamese. The front-end

model parameters are initialized with the embedding extractor parameters while the PLDA

model parameters are used to initialize the back-end layers. The entire Siamese model is

trained using the speaker verification cost (soft detection cost function given in Eq. (4.14)).

80

The trainable parameters include the components of the quadratic cost function as well.

The trials for training the model consist of recordings from several thousand speakers. This

results in millions of trials (enrollment-test combinations). Hence, a data sub-sampling strategy

that accounts for the available GPU memory is required to enable the efficient implementation

of the proposed model1.

4.4.2.1 Brute force trial sampling

In the brute force implementation, each training batch of N trials consists of 2N unique utter-

ances assuming there are no repetitions. We estimate the memory required for a batch update of

training parameters as the sum of memory required to store the network parameters, gradients,

forward and backward activations. Let each utterance contain T acoustic frames. Let ki denote

the dimension of the input to the ith TDNN layer in the embedding extractor network. With

a context of ci frames, the total memory required by the TDNN embedding extractor alone

is 2NT
∑

i kici × 8 bytes. A batch-size of 2048 trials would consist of 4096 unique utterances.

Assuming each utterance to consist of 20 second segments (T = 2000) along with the 10 layers

of TDNN architecture, the brute force implementation results in GPU memory load of 120 GB.

Hence, we propose a trial sub-sampling strategy that involves sharing the enrollment/test sides

of the pairs which form a trial.

Reducing the batch size or the segment length has adverse effects on the model train-

ing/performance. A reduced batch size means that the speaker variability within a batch was

insufficient to train the model properly and this resulted in the divergence of the training loss.

A reduced segment length makes the audio chunks too small to extract meaningful speaker

information from the audio segment in the embeddings. The training and testing loss perfor-

mance degrades with the reduced segment duration. In essence, this means that developing a

novel memory-efficient sampling strategy is the only option for improving the performance of

the model.

1The implementation of the proposed model can be found in https://github.com/iiscleap/E2E-NPLDA

81

https://github.com/iiscleap/E2E-NPLDA

4.4.2.2 Low memory trial sampling

We propose to construct trials for training the E2E-NPLDA with significant sharing of the

speech segments. For ease of implementation, we fix the number of frames from each recording

by creating a modified dataset. This involves splitting longer utterances into multiple segments

with a fixed number of frames. The maximum duration of the segment is 20 seconds. With this

setting, a batch of 64 segments leads to a total duration of NT = 1280 seconds. The memory

requirement for the embedding extraction on these segments is about 15 GB.

The next strategy is to form as many trials as possible from these N = 64 audio segments.

Let the N = 64 segments contain m speakers, with approximately equal number of 64
m

segments

per speaker. The embeddings generated for these 64 segments (through the embedding extrac-

tor) are used to form (64 choose 2) 64C2 = 2016 trials and these trials form the batch of training

for the E2E-NPLDA model. This strategy reduces the memory footprint significantly. Each

of these trials is assigned a label of target or non-target and the model training is performed

using the cost function defined in Eq. (4.10). The gradients are back-propagated to update all

the E2E-NPLDA model parameters. To avoid cross-gender trials in training, we also make use

of gender labels.

It is worth noting that the batch statistics of the two sampling methods are significantly

different. A batch of trials in the brute force sampling method (Algo. 1) can contain trials

from multiple gender/domains, whereas, in the proposed low memory sampling method (Algo.

2), all the trials in a batch are from the same gender/domain. Further, the segments that form

the trials are shared. Hence, the number of unique speakers within a batch of trials is much

smaller for the low memory sampling method (Algo. 2) compared to the brute force sampling

approach. In spite of these statistical differences, our experiments on the NPLDA model show

that the training of the model is not impacted by the low memory trial sampling (Sec. 4.6.2).

82

Table 4.1: Description of the evaluation datasets and test conditions from SITW, VOiCES and
SRE18 VAST corpora.

Dataset
Recording
Condition

Avg. dur (Sec)
Trials

Evaluation parameters

Enrol. Test π CMiss CFA

SITW [52] Multi-media 427 80.6 721k 0.01 1 1
VOiCES Dev [53] Reverb/Noise 14.5 15.6 4M 0.01 1 1
VOiCES Eval [53] Reverb/Noise 14.4 15.6 3.6M 0.01 1 1

SRE18 Dev VAST [49] Multi-media 188.8 257 270 0.05 1 1
SRE18 Eval VAST [49] Multi-media 152.2 231 31k 0.05 1 1

4.5 Experiments and Results

We present experiments to evaluate the NPLDA and E2E-NPLDA models using two popular

embedding extractor architectures. We perform several experiments on data sampling strate-

gies, neural network parameter initialization approaches training utterance duration and various

loss functions. The proposed E2E-NPLDA model is compared with baseline systems involving

the x-vector PLDA approach.

All the systems are trained using the VoxCeleb 1 [106] and VoxCeleb 2 corpora [35] with

a sampling rate of 16 kHz. These datasets contain English language speech extracted from

celebrity interview videos available on YouTube, spanning a wide range of different ethnicities,

accents, professions, and ages. The entire VoxCeleb 2 dataset with 6112 speakers and the Dev

portion of VoxCeleb 1 verification split with 1211 speakers constitute the training set. After

removing utterances that are less than 5 seconds and removing speakers with less than eight

utterances, we are left with 1, 276, 392 utterances of 7320 speakers, of which 4423 are male and

2897 are female. The total duration of the training dataset is 2779 hours. The test portion

of VoxCeleb 1 with 40 speakers is used as a validation set for hyperparameter selection and to

choose the model checkpoint for evaluation on various datasets.

We present ASV results on Speakers in the Wild (SITW) [52] eval, VOiCES [53], and the

NIST SRE 2018 VAST evaluation [49] datasets. The details of these datasets like number of

83

trials, and evaluation parameters are given in Table 4.1.

4.5.1 Embedding extractors

For all our experiments, we experiment with two popular neural network architectures for em-

bedding extraction. Both the embedding extractors are trained with 30-dimensional MFCC

features from 25 ms frames shifted every 10 ms using a 40-channel Mel-scale filterbank span-

ning the frequency range of 20 Hz - 7600 Hz. The pre-processing includes an energy based

voice activity detection (VAD) and cepstral mean-variance normalization (CMVN). A 5-fold

augmentation was used to generate 6.38M training segments for the combined VoxCeleb set.

4.5.1.1 E-TDNN

For the first set of experiments, we train the extended time-delay neural network (E-TDNN)

architecture described in [82] to extract the x-vector embeddings. The network contains 10

layers of time-delay neural networks (TDNN) with ReLU non-linearity and batch normalization,

followed by a statistics pooling layer, which computes the sample mean and standard deviations

across the time frames. The pooled output is connected to two feed-forward layers with ReLU

non-linearity and batch normalization, and the output layer has 7320 dimensions. The network

is trained with a softmax cross-entropy objective using the Kaldi toolkit [107]. The x-vectors

of 512 dimensions are extracted from the affine component (layer 12).

4.5.1.2 F-TDNN

For the second set of experiments, we train the embedding extractor with the architecture

described in [87]. The architecture uses factorized TDNN (F-TDNN) [33] layers. The F-TDNN

reduces the number of parameters of the network by factorizing the weight matrix of each TDNN

layer as the product of two low-rank matrices. The semi-orthogonalization step of the weight

matrices is done after every 5 steps of backpropagation. The architecture consists of an input

TDNN layer, followed by eight F-TDNN layers with ReLU non-linearity, batch normalization,

and dropouts. Out of these F-TDNN layers, three layers have a skip connection input. This is

84

followed by a dense ReLU layer and a stats pooling layer which accumulates the sample means

and standard deviations across time frames. The segment level processing consists of two fully

connected layers, and the output layer is identical to the E-TDNN architecture. The x-vectors

of 512 dimensions are extracted from the affine layer following the pooling layer.

4.5.2 Experiments with the NPLDA Back-End and E2E-NPLDA

Models

We perform experiments for the two embedding extractor networks and report results for three

baseline systems - GPLDA, GB, and DPLDA. We compare the baseline systems with the

NPLDA back-end and the E2E-NPLDA models. The common post-processing steps applicable

to all the back-end models following the extraction of x-vectors include centering, dimensionality

reduction using LDA, followed by unit length normalization [59]. Our initial experiments during

the SRE 2018 evaluation [102, 108] gave us the best baseline results when the LDA dimension

was set to 170. All the further experiments conducted thereafter towards this thesis used

an LDA dimension of 170. The first affine layer of the NPLDA model that corresponds to

centering and LDA has an output size of 170 to match this choice. The GPLDA model is

trained using the recipe from Kaldi [107]. The parameters of the model are estimated using

the expectation-maximization (EM) algorithm.

For neural-network experiments using the softDCF loss, the hyperparameters such as the

warping factor α, learning rate, and batch size, were chosen based on several initial experiments

with the NPLDA back-end whose results are not reported in this thesis. We used the brute

force sampling algorithm (Sec. 4.4.2.1) with a fixed batch size of 1024 trials, and ran several

experiments with various combinations of warping factors (α) and learning rates, with α ranging

from 1 to 200, and a (fixed) learning rate ranging from 10−2 to 10−9. The best performance

on the VoxCeleb 1 validation set was achieved for α = 15, and learning rate 10−4. Further

improvements were achieved by reducing the learning rate by 50% if the validation loss increased

85

Table 4.2: Performance comparisons of baseline systems with the best performing NPLDA and
E2E-NPLDA models

(a) ETDNN Results

Model Init.
SITW-E VOiCES-D VOiCES-E SRE18 D-V SRE18 E-V

EER CMin EER CMin EER CMin EER CMin EER CMin

GPLDA - 2.87 0.301 2.56 0.300 6.45 0.521 7.41 0.461 15.56 0.641
GB - 4.08 0.411 3.66 0.377 9.41 0.666 11.11 0.527 16.55 0.685

DPLDA - 3.06 0.313 2.63 0.324 6.62 0.558 8.23 0.556 14.24 0.592
NPLDA GPLDA 2.10 0.209 1.79 0.223 5.69 0.450 7.41 0.377 12.55 0.533

E2E-NPLDA GPLDA 2.36 0.216 2.04 0.231 5.60 0.425 6.58 0.379 12.83 0.530
E2E-NPLDA NPLDA 1.92 0.198 1.67 0.211 5.70 0.438 6.58 0.300 13.65 0.502

Relative improvements
for E2E-NPLDA over

GPLDA in %
33 34 35 30 13 18 11 35 18 22

Relative improvements
for E2E-NPLDA over

NPLDA in %
9 5 7 5 0 3 11 20 -9 6

(b) FTDNN results

Model Init.
SITW-E VOiCES-D VOiCES-E SRE18 D-V SRE18 E-V

EER CMin EER CMin EER CMin EER CMin EER CMin

GPLDA - 2.68 0.276 2.15 0.268 6.01 0.490 7.41 0.449 15.82 0.610
GB - 3.47 0.346 2.94 0.315 7.28 0.548 12.76 0.486 17.46 0.647

DPLDA - 2.90 0.280 2.21 0.273 6.00 0.480 7.82 0.444 13.02 0.553
NPLDA GPLDA 1.78 0.178 1.49 0.176 5.18 0.432 6.17 0.337 12.38 0.467

E2E-NPLDA GPLDA 1.96 0.177 1.48 0.181 5.45 0.396 6.17 0.226 12.19 0.497
E2E-NPLDA NPLDA 1.67 0.165 1.36 0.166 4.99 0.407 7.00 0.263 12.68 0.455

Relative improvements
for E2E-NPLDA over

GPLDA in %
38 40 37 38 17 19 17 50 23 25

Relative improvements
for E2E-NPLDA over

NPLDA in %
6 7 9 6 4 6 -13 19 -2 3

for two consecutive epochs. With a warping factor α = 15, and an initial learning rate of 10−4,

we conducted a few experiments by varying the batch size from 128 to 4096 trials. The best

results were obtained for a batch size of 2048 trials.

The results of these experiments are reported in Table 4.2. The evaluation metrics reported

86

0.00 0.01 0.02 0.03 0.04 0.05
PMiss

0.00

0.01

0.02

0.03

0.04

0.05

P
FA

GPLDA

DPLDA

NPLDA

SiamNN

Figure 4.2: DET plots for the various models using the FTDNN architecture on the SITW
evaluation set.

are the equal error rate (EER) and the minimum detection cost (CMin) defined in Eq. (4.13).

The value of β for the softDCF loss was computed separately for each test dataset, based on the

values of π, CFA and CMin defined in Table. 4.1. For the NPLDA back-end, we used a warping

factor α = 15, initial learning rate 10−4, reducing it by a factor of 0.5 if the validation loss

increased for two successive epochs. For the E2E-NPLDA model, a higher initial learning rate

of 10−6 was required. The low-memory trial sampling (Algo.2, as discussed in Sec. 4.4.2.2), with

a batch size of 64 unique utterances per batch. To sample these 64 utterances, we first select k

speakers at random for each batch, where k can range from 3 to 8. Then, we choose
⌊
64
k

⌋
+ 1

utterances from (64 mod k) speakers, and
⌊
64
k

⌋
utterances from the remaining speakers. The

trials sampled using this algorithm were also used for the GB and DPLDA baselines.

Both the NPLDA [79] and E2E-NPLDA models used the soft detection cost function (Soft-

DCF) for optimization, whereas the BCE loss was used for the DPLDA baseline.

The detection error trade-off (DET) plots for the methods based on the FTDNN x-vectors

are shown in Figure 4.2.

The results using both the embedding extractors show that, amongst the baseline systems,

the GPLDA and DPLDA models perform better than the GB model. With the ETDNN x-

87

vectors, the GPLDA model fares better than the DPLDA on the SITW, VOiCES, and SRE18

Dev (VAST) datasets. However, with the FTDNN x-vectors, the GPLDA model is better

than DPLDA only for SITW and VOiCES Dev datasets. We report results for the NPLDA

model initialized with the respective GPLDA model and two E2E-NPLDA models initialized

with the respective GPLDA and NPLDA models. We consistently observe that the proposed

E2E-NPLDA model provides significant improvements over the baseline systems.

The results using the E-TDNN model as the embedding extractor are reported in Table 4.2

(a). We observe the NPLDA models show relative improvements over the GPLDA model in

the range of 14%− 31% in terms of CMin and 12%− 30% in terms of EER. The E2E-NPLDA

models show relative improvements over the GPLDA model in the range of 18%−35% in terms

of CMin and 11%− 35% in terms of EER. In terms of relative improvements over the NPLDA

model, the E2E-NPLDA improves by 0 − 20% for the CMin metric using the E-TDNN model

and by 3− 19 % for the CMin metric using the F-TDNN model. In terms of EER metric, the

relative improvements over the NPLDA model for the E2E-NPLDA model range from -13 to

+19% in the FTDNN architecture. The relative degradation in EER may potentially due to

the optimization targeting the CMin metric in the proposed approach.

The results are consistent when we use the F-TDNN model (Table 4.2 (b)) as the embedding

extractor with relative gains for the NPLDA model over the GPLDA model in the range of

12%− 35% and 14%− 34% in terms of CMin and EER, respectively. The E2E-NPLDA model

shows gains over the GPLDA model in the range of 19%−50% in terms of CMin and 17%−38%

in terms of EER.

4.6 Discussion

4.6.1 Influence of training utterance duration

As discussed in Section 4.4.2.1, we create a modified dataset by splitting longer utterances

into 5,10, and 20 second segments (2000 frames) after voice activity detection (VAD) and

88

Table 4.3: Performance on the evaluation datasets for different choice of training utterance
duration. Here, chunks refer to 5,10 and 20 second segments

Model
Dur. of
Utts.

SITW-E VOiCES-D VOiCES-E SRE18 D-V SRE18 E-V

EER CMin EER CMin EER CMin EER CMin EER CMin

GPLDA Full 2.40 0.256 2.08 0.257 5.91 0.480 7.41 0.486 15.24 0.597
GPLDA Chunks 2.68 0.276 2.15 0.268 6.01 0.490 7.41 0.449 15.82 0.610

NPLDA Full 1.75 0.171 1.49 0.167 5.36 0.442 7.41 0.374 12.38 0.498
NPLDA Chunks 1.78 0.178 1.49 0.176 5.18 0.432 6.17 0.337 12.38 0.467

mean normalization. We compare the performances of the models on the modified dataset and

the original one. The results are reported in Table 4.3. We observe that the performance of

the systems are quite comparable for training with full duration utterances and with 5 − 20

second segments. While a slight degradation in EER results is observed, an improvement in

performance in terms of detection cost function CMin is obtained for both the GPLDA model

as well as the proposed NPLDA model. These results allow us to proceed using short segments

for the E2E-NPLDA model. All subsequent results are reported using 5− 20 second segments

for the training of GPLDA, NPLDA, GB, and E2E-NPLDA models.

4.6.2 Comparison of data sampling algorithms for NPLDA

The data sampling methods are discussed in Sec. 4.4.2.2. The performance comparison of the

two sampling techniques with NPLDA models trained on the SRE18 Evaluation dataset can be

seen in Table 4.4. Although the statistics of batch-wise trials have changed significantly (Algo.

2), we see that its performance is better than our previous sampling method (Algo. 1) [79].

The comparable performance of (Algo. 2) allows us to use this method for E2E-NPLDA model

as this is not memory intensive.

4.6.3 Comparison of loss functions for NPLDA

We discuss our experiments using the NPLDA model comparing the different loss functions

discussed in Section 4.3. We perform similar pre-processing steps as discussed in the previous

89

Table 4.4: Performance on the evaluation datasets for NPLDA model with different data sam-
pling strategies.

Model
Sampling
Algorithm

SITW-E VOiCES-D VOiCES-E SRE18 D-V SRE18 E-V

EER CMin EER CMin EER CMin EER CMin EER CMin

NPLDA
Algo 1 1.89 0.191 1.65 0.205 5.41 0.498 7.41 0.337 13.33 0.504
Algo 2 1.78 0.178 1.49 0.176 5.18 0.432 6.17 0.337 12.38 0.467

Table 4.5: Comparison of NPLDA models for various loss functions

Embedding
Extractor

Init. Loss Fn.
SITW-E VOiCES-D VOiCES-E SRE18 D-V SRE18 E-V

EER CMin EER CMin EER CMin EER CMin EER CMin

ETDNN GPLDA

BCE [93] 2.11 0.237 2.52 0.298 6.93 0.585 7.41 0.379 13.02 0.542
Cllr [54] 2.08 0.241 2.56 0.318 7.30 0.64 8.64 0.449 13.85 0.616
WCllr [98] 2.19 0.223 2.21 0.26 6.67 0.498 7.41 0.416 12.38 0.513
SoftDCF 2.10 0.209 1.79 0.223 5.69 0.450 7.41 0.377 12.55 0.533

FTDNN GPLDA

BCE [93] 1.89 0.199 2.10 0.229 6.40 0.538 10.70 0.337 12.38 0.545
Cllr [54] 1.95 0.214 2.06 0.246 6.71 0.605 11.11 0.370 13.02 0.561
WCllr [98] 1.94 0.195 1.95 0.214 5.80 0.474 9.88 0.374 12.38 0.500
SoftDCF 1.78 0.178 1.49 0.176 5.18 0.432 6.17 0.337 12.38 0.467

subsections and report the results for BCE [93], Cllr [54], WCllr [98], and our proposed SoftDCF

cost functions. The experiments are performed for the two embedding extractor network models:

The E-TDNN and F-TDNN. The NPLDA models are initialized with the respective GPLDA

models. These results are reported in Table 4.5.

We observe that the proposed softDCF loss performs significantly better than the other cost

functions for both the embedding extractor network models for all the datasets.

4.6.4 Comparison of Initialization Methods

It is evident from Table. 4.2 that in most cases, the E2E-NPLDA model performs better when its

back-end is initialized with the pre-trained NPLDA parameters than the GPLDA parameters.

Moreover, there is a significant difference induced due to the difference in initialization itself.

When the NPLDA/E2E-NPLDA parameters are initialized randomly and optimized with the

softDCF loss, it quickly converges to a saddle point where the CMin = 1, and the EER is around

50%. This is merely chance-level performance which implies that the models are not learning

90

Table 4.6: Comparison of NPLDA models for different initialization choices using the BCE loss.

Model
Embedding
Extractor

Init.
SITW-E VOiCES-D VOiCES-E SRE18 D-V SRE18 E-V

EER CMin EER CMin EER CMin EER CMin EER CMin

NPLDA
ETDNN

Random 3.53 0.362 4.11 0.466 8.96 0.680 11.11 0.486 14.98 0.598
NPLDA GPLDA 2.11 0.237 2.52 0.298 6.93 0.585 7.41 0.379 13.02 0.542

NPLDA
FTDNN

Random 2.81 0.286 3.42 0.412 8.14 0.667 11.11 0.416 13.33 0.558
NPLDA GPLDA 1.89 0.199 2.10 0.229 6.40 0.538 10.70 0.337 12.38 0.545

anything meaningful. However, using the other loss functions, such as the BCE and WCllr, the

models can be trained successfully with randomly initialized parameters. We explain the reason

for this stark difference between the two loss functions in the following section (4.6.5). In this

section, we present a discussion on the effect of initialization for the cases where meaningful

improvements are achieved.

We performed experiments using the NPLDA model with different initializations for both

the ETDNN and FTDNN embedding extractors with the BCE loss. The results for these

experiments are reported in Table 4.6. We report the results for the GPLDA model along

with two NPLDA models, one initialized randomly and the other with the GPLDA model for

the respective embedding extractor. We observe that the NPLDA model initialized with the

GPLDA parameters performs significantly better than with random initialization. The trend

is similar for models using embeddings from ETDNN/FTDNN models. The initialization with

a generative model boosts the performance. This also illustrates that initialization is a crucial

step in verification style problems using deep learning.

The performance of the proposed ASV system on the SITW task is further analyzed as

a function of the training epoch in Fig. 4.3. In Fig. 4.3(a), we compare the performance of

the NPLDA model for different initialization choices (random versus GPLDA model). The

GPLDA initialization leads to faster learning and convergence to better local minima. Further,

the use of the SoftDCF cost function improves the performance of the NPLDA model, where

the CMin value achieved is always better than GPLDA model initialization. The comparison of

91

0 10 20 30 40 50
Epoch #

0.2

0.4

0.6

0.8

1.0

C M
in

GPLDA Init. with SoftDCF
GPLDA Init. with BCE
Random Init. with BCE

(a)

0 10 20 30 40 50
Epoch #

0.16

0.18

0.20

0.22

0.24

0.26

0.28

C M
in

NPLDA
SiamNN

(b)

Figure 4.3: Plots of Cmin vs training epochs on SITW evaluation set for various models and loss
functions: (a) NPLDA models trained with softDCF and BCE for two types of initialization -
GPLDA initialization or random initialization, (b) NPLDA vs E2E-NPLDA using soft detection
loss with GPLDA initialization

NPLDA training and the E2E-NPLDA training using the same GPLDA initialization is shown

in Fig. 4.3(b). The E2E-NPLDA model has more learning capacity as the entire model is

trained in this case. This results in improved CMin value at end of 50 epochs of training. The

stopping criterion was based on the VoxCeleb 1 validation data. The network is not optimized

on the SITW eval set. The model weights stored after every epoch are used to generate the

plot of Cmin vs epochs on an unseen SITW eval set in Fig. 4.3(b).

4.6.5 A comparative analysis between SoftDCF and WCllr losses

In this section, we perform a comparative analysis of the SoftDCF and the WCllr loss functions

with the intent of understanding how they fundamentally differ in their role of optimizing the

model performance. To do this, we express them in a comparable format and highlight some

similarities and differences.

Recall that the softDCF loss is defined as:

softDCF =
1

|T|
∑
i∈T

[1− σ(α(si − θ))] +
β

|N|
∑
i∈N

σ(α(si − θ)) (4.16)

92

Recall that the WCllr loss function can be expressed as a special case of the generalized

BCE function (Eq. 4.9) as follows:

C
(w)
llr =

πCMiss

|T|
∑
i∈T

log(1 + e−(si−θ)) +
(1− π)CFA

|N|
∑
i∈N

log(1 + e(si−θ)) (4.17)

which can be normalized by πCMiss and re-written as

C
(w)
llr = − 1

|T|
∑
i∈T

log(σ(si − θ))− β

|N|
∑
i∈N

log(1− σ(si − θ)) (4.18)

Here, si is the system output for a trial (score), θ is the decision threshold1 applied to si, α is

the sigmoid warping factor, T denotes the set of target trials and N, the non-target trials.

Now, equations 4.16 and 4.18 are in a comparable format, involving sums over different

functions of the target and non-target scores output by the system, which can be written in a

generalized format as follows:

L =
∑
i∈T

F (si) +
∑
i∈T

G(si) (4.19)

For the softDCF loss,

F (si) =
1

|T|
[1− σ(α(si − θ))] G(si) =

β

|N|
σ(α(si − θ)) (4.20)

and for the WCllr loss:

F (si) = −
1

|T|
log(σ(si − θ)) G(si) = −

β

|N|
log(1− σ(si − θ)) (4.21)

1Note that in our softDCF loss definition, θ is a model parameter. On the other hand, the WCllr loss
computes a term li = asi + b, interpreted as a calibrated log-likelihood ratio, to which a fixed threshold of log β
is applied. Here, a and b are learnable parameters [54, 98]. For the purpose of comparison with softDCF, we
can assume a = 1 to be fixed, and consider θ = −b+ log β as the threshold applied over the raw scores si.

93

Note that both these functions penalize both types of errors (miss and false alarms). The

function F returns a high value if a target score is lesser than the decision threshold, thereby

penalizing false negatives (miss), and a low value otherwise. Similarly, the function G returns a

high value if a non-target score is greater than the threshold, penalizing the false alarms, and a

low value otherwise. Both functions considered here will achieve a desirable minimum value if

the target scores predominantly lie above the threshold, and almost all the non-target scores lie

below the threshold. By analyzing the derivatives, we describe how each of these cost functions

differ, when used in the back-propagation algorithm.

Differentiating equation 4.19 with respect to the network parameters Λ, we get

∂L

∂Λ
=
∑
i∈T

∂F (si)

∂si

∂si
∂Λ

+
∑
i∈N

∂G(si)

∂si

∂si
∂Λ

(4.22)

Denoting ∂F (si)
∂si

as f(si) and
∂G(si)
∂si

as g(si) and rewriting the equation, we get:

∂L

∂Λ
=
∑
i∈T

f(si)
∂si
∂Λ

+
∑
i∈N

g(si)
∂si
∂Λ

(4.23)

Equation 4.23 is a weighted sum of the gradient of the network outputs w.r.t the parameters.

These weights are a function of the output si, and the ground truth. The “gradient descent”

update is given by:

Λ(new) ←− Λ(old) − η
∂L

∂Λ
(4.24)

where η is a sufficiently small enough positive learning rate. Substituting for ∂L
∂Λ

, we can write

Λ(new) ←− Λ(old) −

(∑
i∈T

ηf(si)
∂si
∂Λ

+
∑
i∈N

ηg(si)
∂si
∂Λ

)
(4.25)

The gradient descent algorithm has to effectively cause the target scores to increase above

94

the threshold, and the non-target scores to decrease below the threshold. For this to happen,

f(si) has to be non-positive and g(si) should be non-negative. By examining how f(si) and g(si)

vary with the network output si, for both the loss functions, we can comment on how different

they are from each other in achieving the objective of separating the target and non-target

distributions.

For the WCllr loss, the functions F , G, and their respective derivatives f and g are:

F (si) = −
1

|T|
log(σ(si − θ)) G(si) = −

β

|N|
log(1− σ(si − θ)) (4.26)

f(si) = −
1

|T|
[1− σ(si − θ)] g(si) =

β

|N|
σ(si − θ) (4.27)

The plots of f(si) and g(si) are shown in Figure 4.4. The WCllr loss function satisfies the

above-mentioned criterion that f(si) should be non-positive and g(si) should be non-negative.

The function f(si) has a value of −0.5
|T| at the threshold, and quickly converges to − 1

|T| asymp-

totically as si reduces below the threshold, and quickly converges to 0 asymptotically as si

increases above the threshold. Similarly, g(si) has a value of 0.5β
|N| at the threshold, and quickly

converges to β
|N| asymptotically as si increases above the threshold, and quickly converges to 0

asymptotically as si decreases below the threshold.

This indicates that the contributors to the total gradients being back-propagated are from

the target training examples whose outputs lie below the threshold (miss), and the non-target

training examples with output scores predominantly above the threshold (false alarms).

On the contrary, in the case of the softDCF loss, we have

F (si) =
1

|T|
[1− σ(α(si − θ))] G(si) =

β

|N|
σ(α(si − θ)) (4.28)

f(si) = −
α

|T|
σ(α(si − θ)) [1− σ(α(si − θ))] g(si) =

αβ

|N|
σ(α(si − θ)) [1− σ(α(si − θ))]

(4.29)

95

3 2 1 0 1 2 3 4 5
LLR (si)

0.1

0.0

0.1

0.2

0.3

f(s_i)
g(s_i)

Figure 4.4: The plots of f(si) and g(si) for the WCllr loss. The vertical dotted black line is used
to denote the threshold θ. For the purpose of illustration, these plots are generated considering
CFA = CMiss = 1, π = 0.05 as the evaluation parameters. Further, we assume a batch size of
100 with |T| = 10 and |N| = 90. We also show the non-target score distribution in orange(on
the left) and the target score distribution in blue (on the right).

As illustrated in Fig. 4.5, the functions f(si) and g(si) are bell-shaped curves around the

threshold, whose width and height are controlled by the warping factor α. This means only

the training examples whose output scores are within the support of the bell shaped curves

(between 2 and 4 in the illustrated plot) are the ones that contribute to the total gradients, and

hence, to the parameter updates. The magnitude of gradients contributed by training examples

whose outputs are close to the threshold is smaller in the case of WCllr, as compared to the

softDCF loss.

To summarize, the gradient update rule using WCllr loss updates the parameters in a

direction that tries to force all the scores of the target training examples below the threshold to

96

3 2 1 0 1 2 3 4 5
LLR (si)

0.1

0.0

0.1

0.2

0.3

f(s_i)
g(s_i)

Figure 4.5: The plots of f(si) and g(si) for the softDCF loss. The vertical dotted black line
is used to denote the threshold θ. For the purpose of illustration, these plots are generated
considering CFA = CMiss = 1, π = 0.05 as the evaluation parameters. Further, we assume a
batch size of 100 with |T| = 10 and |N| = 90. We also show the non-target score distribution
in orange(on the left) and the target score distribution in blue (on the right).

increase, and all the scores of the non-target training examples above the threshold to decrease.

This happens repeatedly, batch after batch and epoch after epoch, eventually causing almost

all the target and non-target score distributions to distinctively separate out at the threshold.

On the other hand, the gradient update rule using softDCF loss updates the parameters in

a direction such that the target scores in a small neighbourhood around the threshold are

encouraged to increase, and the non-target scores in the same region to decrease. This causes

the errors in a small neighborhood around the threshold to be corrected, while giving up on

larger errors.

This observation sheds light on the question as to why the softDCF loss does not work

when the parameters are initialized randomly. In the randomly initialized state, the model

97

does not have any ability to distinguish a target trial from a non-target trial. If we evaluate

such a model, we would only get chance-level performance. The target and non-target score

distributions would be highly overlapping with each other, and not well separated like that

of a trained model. They would also have a larger loss with large gradients compared to a

pre-trained network. In such cases, as the PFA term has a higher weight (by a factor of β),

all the scores (target and non-target) are found to quickly move to the left side of the bell

curve where P
(soft)
FA ≈ 0 and P

(soft)
miss ≈ 1. This is a saddle point of the softDCF loss, where

the gradient magnitudes are approximately zero, and does not ensure that the target and non-

target distributions are separated. Thus, most of the samples end up outside the support of

the bell-shaped f(si) or g(si) curves. Hence, when the network is randomly initialized, the

network converges to a saddle point where the target and non-target distributions are highly

overlapping.

This analysis highlights how the softDCF loss complements the BCE or WCllr loss functions

for the task of speaker verification. It also explains the need to initialize a verification network

with pre-trained model parameters such as the GPLDA, for the softDCF loss to work. As

the training loss converges, the WCllr loss keeps trying to correct larger errors, whereas the

softDCF loss focuses on correcting minor errors where the scores are very close to the threshold,

while giving up on larger errors. As our experiments have shown that the softDCF performs

slightly better than WCllr, we hypothesize that this may be because trying to correct larger

errors (outliers and mislabeled training examples) may introduce more errors, but it takes a

smaller effort to try correcting errors that are only in a small neighbourhood of the threshold,

without introducing new errors.

4.6.6 Visualization of x-vectors using tSNE

We visualize the representations using the t-distributed stochastic neighborhood embedding

(tSNE) [74]. The tSNE is an unsupervised dimensionality reduction method that preserves the

local neighborhood of the data space in the lower-dimensional subspace. We performed tSNE

98

(a) Baseline X-vectors (Kaldi)

(b) E2E-NPLDA X-vectors

Figure 4.6: The tSNE visualization of 10 randomly selected female speakers from the Voxceleb
development dataset for baseline x-vector embeddings and embeddings from layer-12 of the
proposed E2E-NPLDA system. The F-ratio of the 2-D t-SNE embeddings for the x-vector
extractor and the E2E-NPLDA system are 8.7 and 15.4 respectively.

dimensionality reduction to two dimensions on the baseline x-vectors, and the embeddings from

layer-10 of the E2E-NPLDA system at the same processing step. In Fig. 4.6, we show the tSNE

visualization of embeddings from 10 female speakers selected from the VoxCeleb development

dataset. While the difference may not be apparent at the first glance, we can see that the

speaker clusters appear to be better separated at the boundaries.

99

A quantitative measure of the improvement in the separability is obtained by measuring

the F-ratio of the 2-D tSNE embeddings in both these cases. F-ratio is defined as the ratio of

the between-class (speaker) variance to the within-class (speaker) variance. For the baseline x-

vector embeddings, we observe an F-ratio of 8.7 and for the embeddings from the corresponding

layer in the E2E-NPLDA network, we observe an F-ratio of 15.4. The improved separability

obtained by the proposed system may be significant when the embeddings from the E2E-

NPLDA model are extended for tasks like speaker diarization.

4.6.7 Comparison with related works

In this section, we train the models only on VoxCeleb-2 data and report the results on the

original Voxceleb-1 test set, in order to enable the comparison with other works reported in the

literature. The work by Nagrani et. al. [109] makes a detailed comparison of models trained

with various architectures, temporal pooling/aggregation methods, loss functions, and scoring

methods. Further, Chung et.al. [97] explored a range of metric learning and classification

objectives by conducting careful experiments worth over 20000 GPU hours and consolidated

their results. We highlight the best results corresponding to each architecture reported in these

works and compare them with our proposed model (E2E-NPLDA).

For these experiments, we retrain our models using only the Voxceleb2 (development) por-

tion containing 5994 speakers for training, as done in prior works. The other results reported in

this table use models based on residual networks and with various loss function choices. We test

the publicly released model trained with the angular-prototypical loss [97] on the Voxceleb1-test,

SITW and the VOiCES evaluation trials1. We also extract the embeddings from the ResNet

model and process them with centering and LDA. Further, we train the GPLDA/NPLDA back-

ends. The results are reported in Table 4.7. While the GPLDA model trained on the ResNet

embeddings performs worse than the cosine scoring approach, the NPLDA model on the ResNet

1The trained model was downloaded from http://www.robots.ox.ac.uk/~joon/data/baseline_lite_

ap.model

100

http://www.robots.ox.ac.uk/~joon/data/baseline_lite_ap.model
http://www.robots.ox.ac.uk/~joon/data/baseline_lite_ap.model

Table 4.7: Comparison of the results using the FTDNN models trained on VoxCeleb-2 dataset.
The models are tested with VoxCeleb-1 original test set and other evaluation sets. The table
also provides comparison with other published works.

Model
Training

loss
Back
End

Vox1 Test SITW E Voices E
EER Cmin EER Cmin EER Cmin

FTDNN Xvector Softmax GPLDA 2.67 0.18 3.2 0.21 6.68 0.38
E2E-NPLDA Softmax NPLDA 2.27 0.14 2.65 0.16 6.61 0.35

VGG-M [35] Softmax+contrastive - 5.94 - - - - -
Resnet34 [35] Softmax+contrastive - 4.83 - - - - -
Resnet50 [35] Softmax+contrastive - 3.95 - - - - -
ResNet34L [97] Angular Cosine 2.39 0.17 3.55 0.25 11.1 0.71
ResNet34L [97] Angular GPLDA 3.58 0.22 4.16 0.27 10.22 0.54
ResNet34L [97] Angular NPLDA 2.46 0.17 3.06 0.21 8.58 0.47

embeddings gives an improvement in performance over the cosine scoring rule (particularly on

the VOiCES dataset).

Comparing the prior works with our proposed E2E-NPLDA model (Table 4.7), the E2E-

NPLDA results improve over the other architectures and loss functions on all the tasks consid-

ered (Vox1 test data, SITW, and VOiCES). These results indicate that the joint optimization

of all the modules in a speaker verification model using the soft detection loss function in a

Siamese style neural network achieves considerable improvements in some of the challenging

speaker verification datasets.

4.7 Chapter Summary

This chapter gave a detailed account of a novel approach to speaker verification back-end mod-

eling by posing the generative PLDA modeling framework as neural layers. The proposed neural

PLDA (NPLDA) model is optimized directly for a verification cost function which approximates

the detection cost function, which is the primary metric used in speaker verification evaluation.

The NPLDA model allows the direct integration of the neural embedding extractor as well as

the pre-processing steps in a single neural pipeline, referred to as the E2E-NPLDA. The E2E-

101

NPLDA system provides significant performance improvements over the state-of-art speaker

verification systems for a variety of datasets like SITW, VOiCES, and NIST SRE datasets. We

have also compared various considerations like initialization, loss function, model architecture

for the embedding extractor, and data sampling strategies. The additional analysis shows that

the performance benefits are also achieved with improved computational efficiency. Further,

the embeddings from the E2E-NPLDA model show improved speaker discrimination which may

be beneficial for tasks like speaker diarization.

102

Chapter 5

Summary and Future Perspectives

Developing algorithms that automatically infer the speaker, language, or accent from a given

segment of speech are challenging tasks that have been researched for more than three decades.

Researchers in the field have explored several approaches in signal processing, pattern recog-

nition, and machine learning. Speaker and language recognition have a variety of applications

in call centers, AI-based helplines, voice assistants, robotics, and also in security and defense

applications. Moreover, to make speech technology like conversational AI accessible to every

corner of the world, we need to explore methods to identify uncommon languages and dialects

using limited training resources. It is also required to build systems that are robust to arti-

facts such as background noise and reverberation. The main theme of this doctoral research

was to explore the shortcomings of existing approaches to these challenges, and explore novel

directions to tackle these shortcomings for developing robust speaker and language recognition

systems in a supervised setting.

Speaker and Language Recognition can be broadly classified into two types:

1. Detection or Verification problem: Is speaker X (or Language Y) present in a given

segment of speech?

2. Classification problem: Who among a given set of speakers is speaking? Which

103

among a given set of languages is being spoken?

While the classification problem assumes that the test recording belongs to exactly one of the

N classes, the detection or verification problem neither assumes that there are a fixed number

of classes, nor that the test recording belongs to exactly one speaker or language class. It

is important to note that for speaker verification, an enrollment utterance is used to obtain

a model of the target speaker to be detected or verified. Since the task is to say whether a

given test segment is from the enrollment speaker or not, it can also be viewed as the task

of identifying whether a pair of speech segments are from the same speaker or not. The

detection/verification systems are evaluated by metrics such as equal error rates (EER) and

the Bayesian detection cost function (DCF, minDCF) [54]. These metrics are widely used for

speaker and language recognition as they account for biases and imbalances in the test datasets,

which make them excellent indicators of the discriminative ability of the speaker and language

recognition systems.

In this chapter, we summarize the key contributions of the thesis, discuss some limitations

of our approaches, and identify some important unexplored directions that can address the

drawbacks of the existing methods.

5.1 Key contributions of the thesis

We have explored two major directions in this thesis. In the first part of our research, we

developed a supervised version of a popular i-vector approach, which we call as s-vector. In the

second part of the research, we proposed a neural network version of a popular generative back-

end model for speaker verification called Probabilistic Linear Discriminant Analysis (PLDA).

We call this Neural PLDA or NPLDA. Furthermore, we extended the neural network back-end

to an end-to-end approach, where a Siamese neural-network based front-end and the back-end

are jointly trained (E2E-NPLDA).

104

The two major directions pursued in this thesis are linked by the applications they can

be used in, that is, for speaker and language recognition. Additionally, both the directions

pursued are based on highly related factor analysis frameworks - the i-vector and PLDA. It has

been a standard practice to use the approaches for speaker recognition to language recognition,

and vice-versa, and such approaches have shown to be very effective. The approaches explored

in the first part of the thesis are more suitable for language recognition, and the approaches

explored in the second part are more suitable for speaker verification.

In the following subsections, we give a brief summary of each of the directions pursued.

5.1.1 Supervised i-vector approach for Language Recognition

In the last decade, one of the most popular approaches to language (accent) and speaker recog-

nition consisted of modeling a database of speech recordings (in the form of a sequence of

short-term feature vectors) with a Gaussian Mixture Model - Universal Background Model

(GMM-UBM) [14, 15]. Given a speech segment from a particular speaker or language, the

GMM-UBM mean components can be modified to fit the speech segment using maximum

aposteriori (MAP) adaptation. The deviation in the mean components is captured in a lower

dimensional latent space called the i-vector space [11, 27]. The parameters in this model were

derived using a maximum likelihood (ML) framework with an iterative expectation maximiza-

tion (EM) approach. The latent vector is assumed to have a standard normal prior (having

zero mean and identity covariance). The MAP estimate of the latent vector given a speech

segment is called the i-vector. These i-vectors serve as front-end embeddings for both speaker

and language recognition.

The i-vector model is an unsupervised generative model, as it doesn’t require any speaker or

language information to train. In chapter 3, we discussed our fully supervised version of the i-

vector model that we published in [63, 64], where each label class is associated with a Gaussian

prior with a class-specific mean parameter. The joint prior on the latent variable becomes

a GMM. The choice of prior is motivated by the Gaussian back-end approach [56], where

105

the conventional i-vectors for each language are modeled with a single Gaussian distribution.

Hence, introducing a GMM prior made the assumptions consistent with the back-end, which

we hypothesized as one of the main reasons for the proposed model to improve the performance

significantly.

We gave a detailed derivation of the EM algorithm to estimate the model parameters, and

discussed various approaches to extracting the s-vector embeddings in section 3.3. We performed

language recognition experiments on the NIST Language Recognition Evaluation (LRE) 2017

challenge dataset [58], which has test segments ranging from 3 to 30 seconds. With the s-vector

framework, we observe relative improvements between 8% to 20% in terms of the Bayesian

detection cost function, 4% to 24% in terms of EER, and 9% to 18% in terms of classification

accuracy over the conventional i-vector framework. While the performance improved for all

the durations, more improvements were observed for shorter duration test cases. We also

perform language recognition experiments showing similar improvements on the RATS dataset

and Mozilla CommonVoice dataset. All the language and accent recognition experiments are

reported in section 3.4.

We concluded the chapter with a detailed discussion of the proposed approach in section 3.5.

With detailed data analysis and visualization, we showed that the s-vector features yield rep-

resentations succinctly capture the language (accent) label information, and do a significantly

better job distinguishing the various accents of the same language. To test our approach on

speaker classification, we also performed experiments using the LibriSpeech dataset, which we

reported in section 3.5.7.

5.1.2 Supervised Neural Network models for Speaker Verification

In the second part of this thesis (Chapter 4), we discussed our research on speaker verification.

The state-of-art approach for speaker verification consisted of a neural network based embed-

ding extractor called x-vectors [32] and a back-end model such as the Probabilistic Linear

Discriminant Analysis (PLDA) [41] to compute the log-likelihood ratio scores.

106

In this part of our research, we began by proposing a neural network approach for back-

end modeling, based on the PLDA approach. The likelihood ratio score of the generative

PLDA model was posed as a discriminative similarity function and the learnable parameters

of the score function were optimized using a verification cost. The proposed model, termed

as neural PLDA (NPLDA), was initialized using the generative PLDA model parameters. An

approximation of the minimum detection cost function (DCF) was proposed to be used as the

loss function to train the NPLDA model parameters. This was discussed in sections 4.4 and

4.4.1. The speaker recognition experiments using the NPLDA model were performed on the

speaker verification task in the VOiCES datasets as well as the SITW challenge dataset.

Further, we explored a fully end-to-end neural network approach where the model outputs

the verification score directly, given the acoustic feature inputs. This Siamese neural network

(E2E-NPLDA) model combines the embedding extraction and back-end modeling into a single

processing pipeline. The development of the single neural Siamese model allows the joint

optimization of all the modules using a verification cost. As these models had to be trained on

pairs of speech segments, the approaches we used to sample trials to train the NPLDA back-end

model was no longer feasible in the end-to-end setting, as they would easily exhaust the GPU

memory. Hence, we explored low-memory trial sampling methods, where many utterances were

repeated within a batch. This was explained in detail in section 4.4.2.

Several speaker recognition experiments were performed using Speakers in the Wild (SITW),

VOiCES, and NIST SRE datasets, where the proposed NPLDA and E2E-NPLDA models were

shown to improve significantly over the x-vector PLDA baseline system (relative improvements

of up to 35 % in the primary cost metric). In particular, we showed that the proposed soft

detection cost function based optimization improves significantly over other loss functions con-

sidered on challenging test conditions, indicating robustness. The details of experiments and

results are provided in section 4.5.

We concluded the chapter with a detailed discussion in section 4.6, analyzing the influence

107

of training duration, providing comparative analysis of the data sampling approaches, loss

functions and initialization methods. To understand the results better, we visualized the E2E-

NPLDA embeddings and compared it with the baseline x-vector embedding using t-SNE plots.

With the help of equations and plots, we analyzed the differences between our proposed softDCF

loss and the BCE loss functions. We showed that the two loss functions complement each other

for the task of speaker verification.

5.2 Limitations of the work

Although it is possible to use the s-vector approaches for speaker recognition, and the Siamese

neural network approaches for language recognition, there are certain inherent aspects of speaker

and language itself, that limit the extent to which these approaches can be shared between

speaker and language embedding models. For example, speaker verification is typically an

out-of-set problem, where an enrollment speaker during test time is typically not a part of

the training data, and the enrollment duration is typically less than a minute. However, in

language/accent recognition, the verification/detection problem is typically a closed-set prob-

lem, where the entire training data corresponding to the target language is typically used for

enrollment. It is not easy to capture the language identity of unseen languages using short

audio segments. This limits the extent to which Siamese neural network approaches are used

for language detection. Similarly, the sheer diversity and the huge population of the world make

it challenging to employ the s-vector approach for speaker recognition in a scalable way.

We mention the drawbacks of the two major directions pursued in the following subsections.

5.2.1 Supervised i-vector approach for Language Recognition

One major drawback of the proposed s-vector approach is the limit on number of labels in

the embedding extraction. For language recognition tasks, the number of class labels are

typically small thereby allowing the modeling of each language class with a GMM component.

In tasks such as speaker recognition, where the i-vector approaches are dominantly used, the

108

number of class labels (speakers) can become significantly high. The i-vector computation

involves a N ×N matrix inversion operation, where N is the i-vector dimension. The s-vector

computation involves L such matrix inversion operations, where L is the number of class labels.

Hence the memory requirements and computation time increases linearly with the number of

labels considered. For tasks like speaker recognition, it is common to have a few thousand

speaker labels. In such cases, we would require much higher memory with a large number of

processors running in parallel or high end graphics processing units to extract the s-vectors

in reasonable time. This limits the applications of s-vectors to cases where there are smaller

number of speaker or language labels.

5.2.2 Supervised Neural Network models for Speaker Verification

The major disadvantage of the explored direction is the limitation of softDCF loss function.

While this loss achieves significant improvements over other loss functions considered, it fails to

work when the model parameters are initialized randomly. As discussed in 4.6.5, the softDCF

loss works by correcting errors using training examples whose output scores lie close to the de-

cision threshold. For a randomly initialized E2E-NPLDA model, the output score distributions

of the target and non-target examples are highly overlapping to begin with, and optimizing

such a network with the softDCF loss using the backpropagation algorithm drives it to a saddle

point, where the gradients are close to zero, but the target and non-target score distributions

are still highly overlapping. Hence, to use the softDCF loss, we require the model parameters

to be initialized using the generative PLDA, or pre-trained with any other objective, such as

the binary cross-entropy loss or the weighted Cllr. However, it can still be combined with other

loss functions as it results in robust performance across a wide range of test datasets.

5.3 Future directions

All the existing literature on speaker and language recognition, along with the directions ex-

plored in this thesis, have demonstrated the efficacy of supervised learning approaches and

109

neural networks. However, there are several directions in which future research can build upon

the approaches pursued in this thesis. In this section, we discuss some future directions that

can be inspired by this thesis.

5.3.1 Neural network approaches for language recognition

Of late, neural network approaches have been used for language recognition as well, and they

have been shown to outperform the i-vector approaches [110, 111]. Using the Siamese net-

work approaches and loss functions presented in this thesis for language recognition can be

particularly useful for problems such as language diarization. However, as there can be a huge

within-language variability due to speaker and content, the Siamese networks optimized using

a binary verification loss might not converge as well as a regular language classifier that uses

softmax loss. A potential solution in such cases is to combine the binary verification losses

with the softmax loss, so that the network explicitly learns a similarity metric that can help in

problems such as language diarization.

5.3.2 Neural generative models for language and accent recognition

As the focus of the research community shifted from the i-vector approach to Neural language

embeddings like x-vectors, all approaches have been focused on discriminative modeling. One

major disadvantage of discriminative models is that they are prone to overfitting, particularly

in low-resource conditions. There are several languages with extremely limited training data,

which have limited speaker variability, and do not sufficiently cover all the vocabulary, which

makes it hard for discriminative models to generalize well in practical scenarios. In contrast,

generative models can generalize better with limited training data, making them suitable for

low-resource accent recognition. Moreover, humans who speak multiple languages and accents

are naturally better at recognizing those accents. This is primarily because they can repeat

or imagine an utterance in the target accents, and make comparisons with the utterance to

recognize the accent. This fact also reinforces the intuition that generative models can be

110

advantageous for language and accent recognition.

One could explore deep generative models for languages and accents, such as variational au-

toencoders (VAE) or generative adversarial networks (GANs). Similar to the i-vector approach,

one can explore various neural network architectures that can be used as the encoders of VAE,

and the latent representations can be used for language and accent recognition. Traditionally

in VAE, the KL divergence between the encoded distribution and the standard normal distribu-

tion is added to the reconstruction loss for regularization. This approach can be reformulated

in a supervised setting similar to the s-vector approach, by using label-conditioned Gaussian

distributions to regularize the VAE, instead of a standard normal distribution.

5.3.3 Self-supervised Learning for speaker and language recognition

In this thesis, we have explored discriminative models and supervised generative models for

speaker and language recognition. Today, there is a widespread interest in the machine learning

community to leverage large amounts of unlabelled data to derive meaningful representations.

Examples include HuBERT [112], wav2vec [113], and their several variants. In HuBERT, the

speech feature frames are clustered using k-means, and a transformer-based model is trained

to predict the clusters of masked hidden units. The wav2vec model is a CNN-based neural

network encoder trained to predict the encoder representations of the next k frames, using the

as a function of previous n frames, by optimizing a contrastive loss. There are several ways

in which the approaches proposed in this thesis can be combined with these self-supervised

learning approaches.

Firstly, the representations learnt from HuBERT/wav2vec models can replace the MFCC or

BNF features used in the i-vector/s-vector approaches for language recognition. Further, as Lei

et.al. suggested in [61], the senone posteriors from a DNN acoustic model can be used instead

of a GMM to compute the Baum-Welch statistics of an i-vector model. Similar approaches can

be explored using the phonetic cluster posteriors from a HuBERT/wav2vec model, with the s-

vector framework. It may also be beneficial to use the Siamese speaker verification approaches

111

discussed in this thesis on the self-supervised representations learnt from HuBERT/wav2vec

models.

In speaker recognition, there have been successful implementations of self-supervised ap-

proaches for speaker verification with the VoxCeleb datasets [114]. As speaker and language

are utterance-level information, we may benefit from self-supervised learning techniques ap-

plied for longer segments. The supervised approaches explored in this thesis can be used with

pseudo-speaker labels obtained from various clustering algorithms.

5.3.4 Architectures for speaker detection in conversational settings

Although the theme of speaker detection assumes that a test segment can contain multiple

speakers, the test datasets primarily consist of single-speaker test segments. If there are other

distracting speakers in the test segment, it can result in a missed detection. To solve this

problem, we need the speaker verification system to be aware of the enrollment speaker, while

processing the test segment. We can achieve this by exploring attention-based neural architec-

tures that remember the enrollment recording while processing the test, and pay attention to

the regions that are similar to the enrollment speaker.

We explored several architectures along these lines, but however, none of these architectures

performed better than the baseline. We hypothesize that this is because both our train and test

datasets (VoxCeleb 2 and 1) contained only single speaker segments. However, this is an area

worth investigating in future, with more challenging speaker verification datasets containing

multi-speaker test segments. In such cases, it would not be meaningful to use any of the

classification based approaches, as the ground truth will have multiple speaker labels, and

loss functions such as the softmax loss and its angular margin versions require one-hot label

vectors for training. The directions pursued in this thesis can be used in these scenarios, as

Siamese architectures with metric learning based loss functions do not have the drawback of

the classification approaches.

112

Appendix A

In this appendix, we present a detailed step-by-step derivation of the log-likelihood expression

(Equation. 3.5) of the i-vector/s-vector model, and derive the expressions for the posterior

density of the latent variable y, for both the i-vector and s-vector models. The proof is adopted

from [65], with some minor modifications. For this, we again define all the terms that are

involved.

• The short-time frame-level features of a speech utterance s (MFCC/BNFs), are denoted

as:

X(s) =
[
x1, . . . ,xH(s)

]
(A.1)

Here, xi is an F -dimensional vector, and H(s) is the number of frames for utterance s.

• The GMM-UBM parameters are given by

Λ = {πc,µc,Σc}Cc=1 (A.2)

113

• The GMM mean supervector and covariance matrix, along with their dimensions, can be

expressed as:

M 0 =

µ1

...

µC

CF×1

(A.3)

Σ =

[
Σ1

]
0

. . .

0

[
ΣC

]

CF×CF

(A.4)

• Baum Welch statistics: For each GMM mixture component c,

Nc(s) =

H(s)∑
i=1

pΛ(c | xi) (A.5)

FX,c(s) =

H(s)∑
i=1

pΛ(c | xi)(xi − µc) (A.6)

SX,X,c(s) =

H(s)∑
i=1

pΛ(c | xi)(xi − µc)(xi − µc)
⊺

(A.7)

• BW stats in matrix form:

N(s) =

N1(s)

[
IF×F

]
0

. . .

0 NC(s)

[
IF×F

]

CF×CF

(A.8)

114

FX(s) =

FX,1(s)

...

FX,C(s)

CF×1

(A.9)

SX,X(s) =

SX,X,1(s) 0

. . .

0 SX,X,C(s)

CF×CF

(A.10)

The i-vector model assumes that the feature sequence X(s) is generated from an adapted

GMM with a new (utterance specific) mean supervector M (s), according to the generative

model:

M(s) = M 0 + Ty(s) (A.11)

T is the total variability matrix of dimensions CF ×R, and can be written as:

T =

[T1]F×R

...

[TC]F×R

CF×R

(A.12)

where Tc can be considered as the submatrix of T corresponding to the cth mixture of the GMM.

Now, with the assumption that if xi is aligned to mixture component c, its likelihood can

be written as the Gaussian log-likelihood of micture component c, the complete log-likelihood

of an observed feature sequence X(s), given the latent vector y can be written as:

log pT (X(s)|y(s)) =
C∑
c=1

H(s)∑
i=1

xi aligned to
mixture c

log

(
1

(2π)
F
2 |Σc|

1
2

)

115

− 1

2

C∑
c=1

H(s)∑
i=1

xi aligned to
mixture c

(xi − µc − Tcy(s))
⊺
Σ

−1

c (xi − µc − Tcy(s))

(A.13)

Now, The sum over the frames aligned to mixture c are given by the Baum-Welch statistics.

The first summation term can be written in terms of the zeroth order statistics, and the second

summation containing a second order term can be rearranged and simplified as follows:

log pT (X(s)|y(s)) =
C∑
c=1

Nc(s) log

(
1

(2π)
F
2 |Σc|

1
2

)

− 1

2

C∑
c=1

H(s)∑
i=1

xi aligned to
mixture c

tr
(
Σ

−1

c (xi − µc − Tcy(s)) (xi − µc − Tcy(s))
⊺
)

(A.14)

=
C∑
c=1

Nc(s) log

(
1

(2π)
F
2 |Σc|

1
2

)

− 1

2

C∑
c=1

tr

Σ
−1

c

H(s)∑
i=1

xi aligned to
mixture c

(xi − µc − Tcy(s)) (xi − µc − Tcy(s))
⊺

(A.15)

log pT (X(s) | y(s)) =
C∑
c=1

Nc(s) log

(
1

(2π)
F
2 |Σc|

1
2

)

− 1

2

C∑
c=1

tr

Σ
−1

c

H(s)∑
i=1

pΛ(c | xi) (xi − µc − Tcy(s)) (xi − µc − Tcy(s))
⊺

(A.16)

=
C∑
c=1

Nc(s) log

(
1

(2π)
F
2 |Σc|

1
2

)

116

− 1

2

C∑
c=1

tr

Σ
−1

c

H(s)∑
i=1

pΛ(c | xi)(xi − µc)(xi − µc)
⊺

−Σ−1

c

H(s)∑
i=1

2 pΛ(c | xi)(xi − µc)(Tcy(s))
⊺
+ Σ

−1

c

H(s)∑
i=1

pΛ(c | xi)Tcy(s)y(s)
⊺
Tc

⊺

(A.17)

log pT (X(s) | y(s)) =
C∑
c=1

Nc(s) log

(
1

(2π)
F
2 |Σc|

1
2

)

− 1

2

C∑
c=1

tr
(
Σ

−1

c

[
SX,X,c(s)− 2FX,c(s)(Tcy(s))

⊺
+Nc(s)Tcy(s)y(s)

⊺
Tc

⊺])
(A.18)

=
C∑
c=1

Nc(s) log

(
1

(2π)
F
2 |Σc|

1
2

)
− 1

2

C∑
c=1

tr
(
Σ

−1

c SX,X,c(s)
)

+
C∑
c=1

y(s)
⊺
Tc

⊺
Σ

−1

c FX,c(s)−
1

2

C∑
c=1

y(s)
⊺
Tc

⊺
Σ

−1

c Nc(s)Tcy(s)

(A.19)

=
C∑
c=1

Nc(s) log

(
1

(2π)
F
2 |Σc|

1
2

)
− 1

2
tr
(
Σ

−1

SX,X(s)
)

︸ ︷︷ ︸
G(s)

+ y(s)
⊺
T

⊺
Σ

−1

FX(s)−
1

2
y(s)

⊺
T

⊺
Σ

−1

N(s)Ty(s)︸ ︷︷ ︸
HT (s,y(s))

(A.20)

= G(s) +HT (s,y(s)) (A.21)

That concludes the derivation of the log-likelihood expression in Eq. 3.5, which is valid for

both i-vector and s-vector models, as we haven’t assumed any prior over the latent variable

y(s) so far.

Using the Bayes’ formula, the aposteriori density function of y(s) given an utterance X(s)

117

can be written as

pT (y(s) |X(s)) =
pT (X(s) | y(s))p(y(s))∫
<y>

pT (X(s) | y)p(y)dy
(A.22)

∝ pT (X(s) | y(s))p(y(s)) (A.23)

For the i-vector model, y(s) is assumed to have a standard normal distribution. Substituting

for p(y(s)) and ignoring constant terms, we get:

∝ exp

(
G(s) +HT (s,y(s))−

1

2
y(s)

⊺
y(s)

)
(A.24)

The term G(s) is independent of y, and can be ignored. Substituting for HT (s,y(s))

∝ exp

(
y

⊺
T

⊺
Σ

−1

FX(s)−
1

2
y

⊺
T

⊺
Σ

−1

N(s)Ty − 1

2
y(s)

⊺
y(s)

)
(A.25)

pT (y(s) |X(s)) = exp

y(s)
⊺
T

⊺
Σ

−1

FX(s)−
1

2
y(s)

⊺{I + T
⊺
Σ

−1

N(s)T︸ ︷︷ ︸
L(s)

}y(s)

 (A.26)

= exp

(
y(s)L(s) {L(s)−1

T
⊺
Σ

−1

FX(s)} −
1

2
y(s)

⊺
L(s)y(s)

)
(A.27)

From this form, we can conclude that that the aposteriori distribution of y(s) given the feature

frames X(s) is Gaussian with covariance L(s)
−1

and mean L(s)
−1

T
⊺
Σ

−1
FX(s) .

118

For the s-vector model, we have assumed that:

p(X(s)|y(s), l(s)) = p(X(s)|y(s)) (A.28)

It becomes tedious to derive the posterior by simply substituting the GMM prior of y(s) in

Eq. A.23. However, for a particular language class l, Eq. A.23 can be modified as:

pT (y(s) |X(s), l(s)) ∝ pT (X(s) | y(s)) p(y(s) | l(s)) (A.29)

Substituting the likelihood term and the class conditioned prior, and simplifying, we get:

pT (y(s) |X(s), l(s)) ∝ exp

(
G(s) +HT (s,y(s))−

1

2
y(s)

⊺
y(s)

)
(A.30)

∝ exp

(
y

⊺
T

⊺
Σ

−1

FX(s)−
1

2
y

⊺
T

⊺
Σ

−1

N(s)Ty

−1

2
(y(s)−ml(s))

⊺
(y(s)−ml(s)))

)
(A.31)

= exp

y(s)
⊺
(
ml(s) + T

⊺
Σ

−1

FX(s)
)
− 1

2
y(s)

⊺{I + T
⊺
Σ

−1

N(s)T︸ ︷︷ ︸
L(s)

}y(s)

(A.32)

= exp

(
y(s)L(s)

{
L(s)

−1
(
ml(s) + T

⊺
Σ

−1

FX(s)
)}
− 1

2
y(s)

⊺
L(s)y(s)

)
(A.33)

This is a Gaussian Probability Density Function (PDF) with covariance L(s)
−1

and mean

L(s)
−1
(
ml(s) + T

⊺
Σ

−1
FX(s)

)
.

119

The label conditioned data likelihood (Eq. 3.44 is rewritten here using the short hand notation

LX(l) as:

LX(l) = log p(X(s) | l) = log

∫
<y(s)>

e(G(s)+HT (s,y(s)) 1

(2π)
R
2

e−
1
2
(y(s)−ml)

⊺
(y(s)−ml)dy (A.34)

Here, we present the intermediate simplification steps to get to Eq. 3.45. Note that, using

Bayes’ formula, and assuming uniform prior of p(l) = 1
L
, the language posteriors can be written

in terms of the label conditioned log-likelihoods as :

p(l|X(s)) =
p(X(s)|l)∑L
l=1 p(X(s)|l)

=
ek+log p(X(s)|l)∑L
l=1 e

k+log p(X(s)|l)
(A.35)

Hence, while simplifying Eq. A.34, we can ignore the additive constant terms independent of l,

as it doesn’t affect the label posterior computation. Separating the terms independent of l and

y(s) to simplify Eq. A.34, we get:

LX(l) = log
1

(2π)
R
2

eG(s)

∫
<y(s)>

eHT (s,y(s))− 1
2
y(s)

⊺
y(s)− 1

2
ml

⊺
ml+y(s)

⊺
mldy

= k − 1

2
ml

⊺
ml + log

∫
<y(s)>

ey(s)
⊺
T

⊺
Σ

−1
FX(s)− 1

2
y(s)

⊺
T

⊺
Σ

−1
N(s)Ty(s)− 1

2
y(s)

⊺
y(s)+y(s)

⊺
mldy

= k − 1

2
ml

⊺
ml + log

∫
<y(s)>

ey(s)
⊺
(ml+T

⊺
Σ

−1
FX(s))− 1

2
y(s)

⊺
L(s)y(s)dy (A.36)

As the argument of the integral is a scaled Gaussian density function in y(s), it can be simplified

as follows, which gives us Eq. 3.45.

LX(l) = k − 1

2
ml

⊺
ml + log

(
|L(s)|−

1
2 e

1
2
(ml+T

⊺
Σ

−1
FX(s))

⊺
L(s)

−1
(ml+T

⊺
Σ

−1
FX(s))

)
= k − 1

2
ml

⊺
ml +

1

2
(ml + T

⊺
Σ

−1

FX(s))
⊺
L(s)

−1

(ml + T
⊺
Σ

−1

FX(s))

= k − 1

2
ml

⊺
(I −2 L(s)

−1

)ml +ml
⊺
L(s)

−1

T
⊺
Σ

−1

FX(s) (A.37)

120

Appendix B

In this appendix, we give a brief discussion on proper scoring rules [115, 105]. We follow the

notation used in [105], as it is concise and simple. Binary proper scoring rules are a family

of special cost functions of the form C∗(q, h), which evaluates the goodness of the recognizer

output q, for a trial where hypothesis h is true. Here, h ∈ {tar, non}, where tar and non

represent the target and non-target hypotheses respectively. Examples of Binary PSRs include:

• Logarithmic PSR: Considering q to be the posterior probability p(h = tar|X), given an

observation X, the logarithmic PSR is defined as

C∗(q, h = tar) = −log(q) ; C∗(q, h = non) = −log(1− q) (B.1)

• The zero-one score: If a decision rule is given by thresholding the recognizer output q,

and the Bayesian costs assigned to the costs are 0 for a correct decision and 1 for an error

(false alarm/miss), the zero-one score is defined as

C∗(q, h = tar) = 1− u(q − θ) ; C∗(q, h = non) = u(q − θ) (B.2)

• Brier score: It is defined as:

C∗(q, h = tar) = (1− q)2 ; C∗(q, h = non) = q2 (B.3)

121

The equation (3) of [105] gives a template to build an objective function for binary classifiers:

C̄π
w =

π

T

∑
i∈T

C∗
w(qi, tar) +

1− π

N

∑
i∈N

C∗
w(qi, non) (B.4)

Here, qi is the recognizer’s posterior for trial i, T is a set of T target trials, and N is a set of N

non-target trial indices. C∗
w() is a binary proper scoring rule.

The softDCF function was defined in (Eq. 4.16) as:

softDCF =
1

|T|
∑
i∈T

[1− σ(α(si − θ))] +
β

|N|
∑
i∈N

σ(α(si − θ)) (B.5)

By considering qi = σ(α(si − θ)) as the posterior probability, we can compare it to Eq. B.4 to

identify what the term C∗
w() is. We get

C∗(q, h = tar) = (1− q) ; C∗(q, h = non) = q (B.6)

As this is a proper scoring rule, the softDCF loss function is, in fact, a prior weighted proper

scoring rule.

122

Bibliography

[1] Thomas F Quatieri. Discrete-time speech signal processing: principles and practice. Pear-

son Education India, 2002. 3

[2] John Makhoul. Linear prediction: A tutorial review. Proceedings of the IEEE, 63(4):561–

580, 1975. 3

[3] Sriram Ganapathy. Signal analysis using autoregressive models of amplitude modulation.

PhD thesis, Johns Hopkins University, 2012. 3

[4] Purvi Agrawal. Neural representation learning for speech and audio signals. PhD thesis,

Indian Institute of Science, 2021. 3

[5] Arthur S House and Edward P Neuburg. Toward automatic identification of the lan-

guage of an utterance. i. preliminary methodological considerations. The Journal of the

Acoustical Society of America, 62(3):708–713, 1977. 6

[6] Deidre Cimarusti and R Ives. Development of an automatic identification system of

spoken languages: Phase i. In ICASSP’82. IEEE International Conference on Acoustics,

Speech, and Signal Processing, volume 7, pages 1661–1663. IEEE, 1982. 6

[7] Bishnu S Atal. Automatic recognition of speakers from their voices. Proceedings of the

IEEE, 64(4):460–475, 1976. 6

123

BIBLIOGRAPHY

[8] Aaron E Rosenberg. Automatic speaker verification: A review. Proceedings of the IEEE,

64(4):475–487, 1976. 6

[9] M. A. Zissman. Comparison of four approaches to automatic language identification of

telephone speech. IEEE Transactions on Speech and Audio Processing, 4(1):31–44, 1996.

6

[10] Jiri Navratil. Spoken language recognition-a step toward multilinguality in speech pro-

cessing. IEEE Transactions on Speech and Audio Processing, 9(6):678–685, 2001. 6

[11] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet.

Front-end factor analysis for speaker verification. IEEE Transactions on Audio, Speech,

and Language Processing, 19(4):788–798, 2010. 8, 12, 14, 15, 62, 105

[12] George R Doddington. Speaker recognition—Identifying people by their voices. Proceed-

ings of the IEEE, 73(11):1651–1664, 1985. 11

[13] Douglas OShaughnessy. Speaker recognition. IEEE Assp Magazine, 3:4–17, 1986. 11

[14] Douglas A Reynolds and Richard C Rose. Robust text-independent speaker identifica-

tion using Gaussian mixture speaker models. IEEE Transactions on Speech and Audio

Processing, 3(1):72–83, 1995. 11, 14, 32, 105

[15] Douglas A Reynolds, Thomas F Quatieri, and Robert B Dunn. Speaker Verification using

Adapted Gaussian Mixture Models. Digital signal processing, 10(1-3):19–41, 2000. 11,

32, 105

[16] Patrick Kenny. Joint factor analysis of speaker and session variability: Theory and algo-

rithms. (Report) CRIM, 14:1–17, 2006. 12, 14, 32, 35, 39, 44, 62

[17] Patrick Kenny, Gilles Boulianne, Pierre Ouellet, and Pierre Dumouchel. Joint Factor

124

BIBLIOGRAPHY

Analysis Versus Eigenchannels in Speaker Recognition. IEEE Transactions on Audio,

Speech, and Language Processing, 15(4):1435–1447, 2007. 12

[18] Sergey Ioffe. Probabilistic linear discriminant analysis. In European Conference on Com-

puter Vision, pages 531–542. Springer, 2006. 12, 17, 62

[19] Seiichi Nakagawa, Yoshio Ueda, and Takashi Seino. Speaker-independent, text-

independent language identification by HMM. In Second International Conference on

Spoken Language Processing, 1992. 12

[20] TJ HAZEN. Automatic language identification using an segment-based approach. In

Proc. EUROSPEECH’93, pages 1303–1306, 1993. 13

[21] Marc A Zissman and Elliot Singer. Automatic language identification of telephone speech

messages using phoneme recognition and n-gram modeling. In Proceedings of ICASSP’94.

IEEE International Conference on Acoustics, Speech and Signal Processing, volume 1,

pages I–305. IEEE, 1994. 13

[22] Marc A Zissman. Comparison of four approaches to automatic language identification of

telephone speech. IEEE Transactions on speech and audio processing, 4(1):31, 1996. 13

[23] Pedro A Torres-Carrasquillo, Elliot Singer, Mary A Kohler, Richard J Greene, Douglas A

Reynolds, and John R Deller Jr. Approaches to language identification using Gaussian

mixture models and shifted delta cepstral features. In Interspeech, 2002. 13

[24] William M Campbell, Elliot Singer, Pedro A Torres-Carrasquillo, and Douglas A

Reynolds. Language recognition with support vector machines. In Odyssey: The Speaker

and Language Recognition Workshop (2004), pages 285–288, 2004. 13, 32, 51

[25] David A Van Leeuwen and Niko Brummer. Channel-dependent gmm and multi-class

logistic regression models for language recognition. In 2006 IEEE Odyssey-The Speaker

and Language Recognition Workshop, pages 1–8. IEEE, 2006. 13

125

BIBLIOGRAPHY

[26] William M Campbell, Douglas E Sturim, and Douglas A Reynolds. Support vector

machines using GMM supervectors for speaker verification. IEEE signal processing letters,

13(5):308–311, 2006. 13

[27] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet.

Front-End Factor Analysis For Speaker Verification. IEEE Transactions on Audio, Speech,

and Language Processing, 19(4):788–798, 2011. 14, 15, 32, 35, 36, 70, 105

[28] Ehsan Variani, Xin Lei, Erik McDermott, Ignacio Lopez Moreno, and Javier Gonzalez-

Dominguez. Deep neural networks for small footprint text-dependent speaker verification.

In ICASSP, pages 4052–4056. IEEE, 2014. 16

[29] Amirsina Torfi, Jeremy Dawson, and Nasser M Nasrabadi. Text-independent speaker ver-

ification using 3d convolutional neural networks. In 2018 IEEE International Conference

on Multimedia and Expo (ICME), pages 1–6. IEEE, 2018. 16

[30] Maxim Tkachenko, Alexander Yamshinin, Nikolay Lyubimov, Mikhail Kotov, and Marina

Nastasenko. Language identification using time delay neural network d-vector on short

utterances. In International conference on speech and computer, pages 443–449. Springer,

2016. 16

[31] David Snyder, Pegah Ghahremani, Daniel Povey, Daniel Garcia-Romero, Yishay Carmiel,

and Sanjeev Khudanpur. Deep neural network-based speaker embeddings for end-to-end

speaker verification. In Spoken Language Technology Workshop (SLT), pages 165–170.

IEEE, 2016. 16, 72, 78

[32] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev Khudan-

pur. X-vectors: Robust DNN Embeddings for Speaker Recognition. In ICASSP, pages

5329–5333, 2018. 16, 70, 71, 73, 106

126

BIBLIOGRAPHY

[33] Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan Xu, Mahsa Yarmohammadi,

and Sanjeev Khudanpur. Semi-orthogonal low-rank matrix factorization for deep neural

networks. In Proc. Interspeech, pages 3743–3747, 2018. 16, 84

[34] Yingke Zhu, Tom Ko, David Snyder, Brian Mak, and Daniel Povey. Self-Attentive Speaker

Embeddings for Text-Independent Speaker Verification. In Proc. Interspeech, pages 3573–

3577, 2018. 16

[35] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. VoxCeleb2: Deep Speaker

Recognition. In Proc. Interspeech, pages 1086–1090, 2018. 16, 83, 101

[36] Javier Gonzalez-Dominguez, Ignacio Lopez-Moreno, Haşim Sak, Joaquin Gonzalez-

Rodriguez, and Pedro J. Moreno. Automatic language identification using long short-term

memory recurrent neural networks. In Proc. Interspeech, pages 2155–2159, 2014. 16

[37] Ruben Zazo, Alicia Lozano-Diez, and Joaquin Gonzalez-Rodriguez. Evaluation of an

lstm-rnn system in different nist language recognition frameworks. In Odyssey, pages

231–236, 2016. 16

[38] Bharat Padi, Anand Mohan, and Sriram Ganapathy. Towards relevance and sequence

modeling in language recognition. IEEE/ACM Transactions on Audio, Speech, and Lan-

guage Processing, 28:1223–1232, 2020. 17

[39] Chia-Ping Chen, Su-Yu Zhang, Chih-Ting Yeh, Jia-Ching Wang, Tenghui Wang, and

Chien-Lin Huang. Speaker characterization using tdnn-lstm based speaker embedding.

In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 6211–6215. IEEE, 2019. 17

[40] Chien-Lin Huang. Exploring effective data augmentation with tdnn-lstm neural network

embedding for speaker recognition. In 2019 IEEE Automatic Speech Recognition and

Understanding Workshop (ASRU), pages 291–295. IEEE, 2019. 17

127

BIBLIOGRAPHY

[41] Simon JD Prince and James H Elder. Probabilistic linear discriminant analysis for infer-

ences about identity. In International Conference on Computer Vision (ICCV) (2007),

pages 1–8, 2007. 17, 32, 106

[42] Patrick Kenny. Bayesian Speaker Verification with Heavy-Tailed Priors. In Proc. Odyssey,

pages 14–21, 2010. 18, 70, 74

[43] David Martinez, Oldřich Plchot, Lukáš Burget, Ondřej Glembek, and Pavel Matějka.

Language recognition in ivectors space. In INTERSPEECH (2011), pages 861–864, 2011.

18, 33, 41, 51

[44] Sandro Cumani, Niko Brümmer, Lukáš Burget, Pietro Laface, Oldřich Plchot, and

Vasileios Vasilakakis. Pairwise Discriminative Speaker Verification in the i-Vector Space.

IEEE Transactions on Audio, Speech, and Language Processing, 21(6):1217–1227, 2013.

19, 72, 74

[45] Alvin F. Martin, Craig S. Greenberg, John M. Howard, George R. Doddington, and

John J. Godfrey. NIST Language Recognition Evaluation - Past and Future. In Proc.

The Speaker and Language Recognition Workshop (Odyssey 2014), pages 145–151, 2014.

21

[46] Mozilla Common Voice Dataset. https://voice.mozilla.org/en/datasets, 2018. [On-

line; accessed 19-July-2018]. 23, 34, 50

[47] Kevin Walker and Stephanie Strassel. The rats radio traffic collection system. In Odyssey

2012-The Speaker and Language Recognition Workshop, 2012. 24, 34

[48] K. J. Han, S. Ganapathy, M. Li, M. Omar, and S. Narayanan. TRAP Language identifi-

cation system for RATS phase II evaluation. In Interspeech. ISCA, 2013. 25

128

https://voice.mozilla.org/en/datasets

BIBLIOGRAPHY

[49] Seyed Omid Sadjadi, Craig Greenberg, Elliot Singer, Douglas Reynolds, Lisa Mason, and

Jaime Hernandez-Cordero. The 2018 NIST Speaker Recognition Evaluation. In Proc.

Interspeech, pages 1483–1487, 2019. 25, 83

[50] Omid Sadjadi. NIST 2019 Speaker Recognition Evaluation: CTS Challenge - Eval-

uation Plan. https://www.nist.gov/system/files/documents/2019/07/22/2019_

nist_speaker_recognition_challenge_v8.pdf, 2019. 25

[51] Hossein Zeinali, Kong Aik Lee, Jahangir Alam, and Lukas Burget. Short-duration Speaker

Verification (SdSV) Challenge 2020: the Challenge Evaluation Plan. arXiv preprint

arXiv:1912.06311, 2019. 25

[52] Mitchell McLaren, Luciana Ferrer, Diego Castan, and Aaron Lawson. The Speakers in the

Wild (SITW) speaker recognition database. In Proc. Interspeech, pages 818–822, 2016.

25, 83

[53] Mahesh Kumar Nandwana, Julien van Hout, Colleen Richey, Mitchell McLaren, Maria A.

Barrios, and Aaron Lawson. The VOiCES from a Distance Challenge 2019. In Proc.

Interspeech, pages 2438–2442, 2019. 25, 29, 83

[54] Niko Brümmer and Johan Du Preez. Application-independent evaluation of speaker de-

tection. Computer Speech & Language, 20(2-3):230–275, 2006. 28, 78, 90, 93, 104

[55] Lukáš Burget, Oldřich Plchot, Sandro Cumani, Ondřej Glembek, Pavel Matějka, and

Niko Brümmer. Discriminatively trained probabilistic linear discriminant analysis for

speaker verification. In International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP) (2011), pages 4832–4835. IEEE, 2011. 32, 72, 74, 75

[56] Najim Dehak, Pedro A Torres-Carrasquillo, Douglas Reynolds, and Reda Dehak. Lan-

guage recognition via i-vectors and dimensionality reduction. In INTERSPEECH (2011),

pages 857–860, 2011. 32, 33, 51, 105

129

https://www.nist.gov/system/files/documents/2019/07/22/2019_nist_speaker_recognition_challenge_v8.pdf
https://www.nist.gov/system/files/documents/2019/07/22/2019_nist_speaker_recognition_challenge_v8.pdf

BIBLIOGRAPHY

[57] Ruchir Travadi, Maarten Van Segbroeck, and Shrikanth S Narayanan. Modified-prior

i-vector estimation for language identification of short duration utterances. In INTER-

SPEECH (2014), pages 3037–3041, 2014. 32, 63

[58] Seyed Omid Sadjadi et al. The 2017 NIST language recognition evaluation. In Odyssey

Speaker and Language Recognition Workshop (2018), pages 82–89, 2018. 33, 34, 50, 53,

54, 58, 106

[59] Daniel Garcia-Romero and Carol Y Espy-Wilson. Analysis of i-vector length normaliza-

tion in speaker recognition systems. In INTERSPEECH (2011), pages 249–252, 2011. 33,

70, 74, 77, 85

[60] George Saon, Hagen Soltau, David Nahamoo, and Michael Picheny. Speaker adaptation

of neural network acoustic models using i-vectors. In ASRU (2013), pages 55–59, 2013.

33

[61] Yun Lei, Nicolas Scheffer, Luciana Ferrer, and Mitchell McLaren. A novel scheme for

speaker recognition using a phonetically-aware deep neural network. In 2014 IEEE in-

ternational conference on acoustics, speech and signal processing (ICASSP), pages 1695–

1699. IEEE, 2014. 33, 111

[62] Fred Richardson, Douglas Reynolds, and Najim Dehak. Deep neural network approaches

to speaker and language recognition. IEEE Signal Processing Letters, 22(10):1671–1675,

2015. 33

[63] Shreyas Ramoji and Sriram Ganapathy. Supervised i-vector modeling-theory and appli-

cations. In INTERSPEECH (2018), pages 1091–1095, 2018. 33, 53, 57, 58, 105

[64] Shreyas Ramoji and Sriram Ganapathy. Supervised I-vector modeling for language and

accent recognition. Computer Speech & Language, 60:101030, 2020. 33, 105

130

BIBLIOGRAPHY

[65] Patrick Kenny, Gilles Boulianne, and Pierre Dumouchel. Eigenvoice modeling with sparse

training data. IEEE transactions on speech and audio processing, 13(3):345–354, 2005.

36, 113

[66] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B

(Methodological), 39(1):1–22, 1977. 36

[67] Harold Hotelling. Analysis of a complex of statistical variables into principal components.

Journal of educational psychology, 24(6):417, 1933. 46

[68] Jongseo Sohn, Nam Soo Kim, and Wonyong Sung. A statistical model-based voice activity

detection. IEEE signal processing letters, 6(1):1–3, 1999. 51

[69] Bharat Padi, Shreyas Ramoji, Vaishnavi Yeruva, Satish Kumar, and Sriram Ganapathy.

The LEAP Language Recognition System for LRE 2017 Challenge-Improvements and

Error Analysis. In Proc. Odyssey 2018 The Speaker and Language Recognition Workshop,

pages 31–38, 2018. 57

[70] Ming Li and Shrikanth Narayanan. Simplified supervised i-vector modeling with appli-

cation to robust and efficient language identification and speaker verification. Computer

Speech & Language, 28(4):940–958, 2014. 58, 59, 63

[71] Ruben Zazo, Alicia Lozano-Diez, and Joaquin Gonzalez-Rodriguez. Evaluation of an

lstm-rnn system in different nist language recognition frameworks. In Proc. of Odyssey

2016 Speaker and Language Recognition Workshop. ATVS-UAM, June 2016. 58, 59

[72] Bharat Padi, Anand Mohan, and Sriram Ganapathy. End-to-end language recognition

using attention based hierarchical gated recurrent unit models. In ICASSP 2019-2019

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 5966–5970. IEEE, 2019. 58, 59

131

BIBLIOGRAPHY

[73] Ruben Zazo, Alicia Lozano-Diez, Javier Gonzalez-Dominguez, Doroteo T Toledano, and

Joaquin Gonzalez-Rodriguez. Language identification in short utterances using long short-

term memory (lstm) recurrent neural networks. PloS one, 11(1):e0146917, 2016. 59

[74] Laurens Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine

learning research, 9(Nov):2579–2605, 2008. 59, 98

[75] Jianbo Ma, Vidhyasaharan Sethu, Eliathamby Ambikairajah, and Kong Aik Lee. Speaker-

phonetic vector estimation for short duration speaker verification. In 2018 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5264–

5268. IEEE, 2018. 63, 64

[76] Jianbo Ma, Vidhyasaharan Sethu, Eliathamby Ambikairajah, and Kong Aik Lee. Gen-

eralized variability model for speaker verification. IEEE Signal Processing Letters,

25(12):1775–1779, 2018. 63, 64

[77] Chengzhu Yu, Gang Liu, Seongjun Hahm, and John HL Hansen. Uncertainty propa-

gation in front end factor analysis for noise robust speaker recognition. In 2014 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

4017–4021. IEEE, 2014. 64

[78] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an

asr corpus based on public domain audio books. In 2015 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210. IEEE, 2015. 65

[79] Shreyas Ramoji, Prashant Krishnan, and Sriram Ganapathy. NPLDA: A Deep Neural

PLDA Model for Speaker Verification. In Proc. Odyssey, pages 202–209, 2020. 69, 70,

87, 89

[80] Shreyas Ramoji, Prashant Krishnan, and Sriram Ganapathy. Neural PLDA Modeling for

End-to-End Speaker Verification. In Interspeech, pages 4333–4337, 2020. 69, 70

132

BIBLIOGRAPHY

[81] Shreyas Ramoji, Prashant Krishnan, and Sriram Ganapathy. Plda inspired siamese net-

works for speaker verification. Computer Speech & Language, 76:101383, 2022. 69

[82] David Snyder, Daniel Garcia-Romero, Gregory Sell, Alan McCree, Daniel Povey, and

Sanjeev Khudanpur. Speaker recognition for multi-speaker conversations using x-vectors.

In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 5796–5800, 2019. 70, 84

[83] Andrew O Hatch, Sachin Kajarekar, and Andreas Stolcke. Within-class covariance nor-

malization for svm-based speaker recognition. In Ninth international conference on spoken

language processing, 2006. 70

[84] David A Van Leeuwen and Niko Brümmer. An introduction to application-independent

evaluation of speaker recognition systems. In Speaker classification I, pages 330–353.

Springer, 2007. 71, 79

[85] Sandro Cumani and Pietro Laface. Large-Scale Training of Pairwise Support Vector

Machines for Speaker Recognition. IEEE Transactions on Audio, Speech and Language

Processing, 22(11):1590–1600, 2014. 72

[86] Sandro Cumani and Pietro Laface. Generative pairwise models for speaker recognition.

In Proc. Odyssey, pages 273–279, 2014. 72, 76

[87] Jesús Villalba, Nanxin Chen, David Snyder, Daniel Garcia-Romero, Alan McCree, Gre-

gory Sell, Jonas Borgstrom, Leibny Paola Garćıa-Perera, Fred Richardson, Réda De-

hak, et al. State-of-the-art speaker recognition with neural network embeddings in NIST

SRE18 and Speakers in the Wild evaluations. Computer Speech & Language, 60:101026,

2020. 72, 84

[88] Luciana Ferrer and Mitchell McLaren. Optimizing a Speaker Embedding Extractor

133

BIBLIOGRAPHY

Through Backend-Driven Regularization. In Proc. Interspeech, pages 4350–4354, 2019.

72

[89] Victoria Mingote, Antonio Miguel, Dayana Ribas, Alfonso Ortega, and Eduardo Lleida.

Optimization of False Acceptance/Rejection Rates and Decision Threshold for End-to-

End Text-Dependent Speaker Verification Systems. In Proc. Interspeech, pages 2903–2907,

2019. 72

[90] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Sig-

nature verification using a Siamese time delay neural network. In Advances in Neural

Information Processing Systems, pages 737–744, 1994. 72

[91] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer. End-to-end text-dependent speaker

verification. In IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 5115–5119, 2016. 72, 78

[92] Yichi Zhang, Meng Yu, Na Li, Chengzhu Yu, Jia Cui, and Dong Yu. Seq2seq attentional

siamese neural networks for text-dependent speaker verification. In ICASSP, pages 6131–

6135, 2019. 72

[93] Li Wan, Quan Wang, Alan Papir, and Ignacio Lopez Moreno. Generalized end-to-end

loss for speaker verification. In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 4879–4883, 2018. 72, 78, 90

[94] Johan Rohdin, Anna Silnova, Mireia Diez, Oldřch Plchot, Pavel Matějka, and Lukáš

Burget. End-to-end DNN based speaker recognition inspired by i-vector and PLDA. In

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 4874–4878, 2018. 72

[95] Chunlei Zhang and Kazuhito Koishida. End-to-end text-independent speaker verification

with triplet loss on short utterances. In Proc. Interspeech, pages 1487–1491, 2017. 72

134

BIBLIOGRAPHY

[96] Phani Sankar Nidadavolu, Saurabh Kataria, Jesús Villalba, Paola Garcia-Perera, and

Najim Dehak. Unsupervised feature enhancement for speaker verification. In IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

7599–7603. IEEE, 2020. 72

[97] Joon Son Chung, Jaesung Huh, Seongkyu Mun, Minjae Lee, Hee-Soo Heo, Soyeon Choe,

Chiheon Ham, Sunghwan Jung, Bong-Jin Lee, and Icksang Han. In Defence of Metric

Learning for Speaker Recognition. In Proc. Interspeech, pages 2977–2981, 2020. 73, 76,

100, 101

[98] Luciana Ferrer and Mitchell McLaren. A discriminative condition-aware backend for

speaker verification. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 6604–6608, 2020. 73, 78, 90, 93

[99] Luciana Ferrer and Mitchell Mclaren. A Speaker Verification Backend for Improved Cal-

ibration Performance across Varying Conditions. In Proc. Odyssey, pages 372–379, 2020.

73, 78

[100] Luciana Ferrer, Mitchell McLaren, and Niko Brümmer. A speaker verification backend

with robust performance across conditions. Computer Speech & Language, 71:101258,

2022. 73

[101] Aleksandr Sizov, Kong Aik Lee, and Tomi Kinnunen. Unifying Probabilistic Linear Dis-

criminant Analysis Variants in Biometric Authentication. In Joint IAPR International

Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and

Syntactic Pattern Recognition (SSPR), pages 464–475. Springer, 2014. 74

[102] Shreyas Ramoji, Anand Mohan, Bhargavram Mysore, Anmol Bhatia, Prachi Singh, Har-

sha Vardhan, and Sriram Ganapathy. The LEAP Speaker Recognition System for NIST

135

BIBLIOGRAPHY

SRE 2018 Challenge. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 5771–5775. IEEE, 2019. 76, 85

[103] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. ECAPA-TDNN: Empha-

sized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verifi-

cation. In Interspeech, pages 3830–3834, 2020. 76

[104] Ke Ding. A note on kaldi’s plda implementation. arXiv preprint arXiv:1804.00403, 2018.

77

[105] Niko Brümmer and George Doddington. Likelihood-ratio calibration using prior-weighted

proper scoring rules. In Proc. Interspeech, pages 1976–1980, 2013. 78, 121, 122

[106] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. VoxCeleb: A Large-Scale

Speaker Identification Dataset. In Proc. Interspeech, pages 2616–2620, 2017. 83

[107] Daniel Povey, Arnab Ghoshal, and Gilles Boulianne. The Kaldi Speech Recognition

Toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition and Understanding.

IEEE Signal Processing Society, 2011. 84, 85

[108] Shreyas Ramoji, V Krishnan, Prachi Singh, Sriram Ganapathy, et al. Pairwise Discrim-

inative Neural PLDA for Speaker Verification. arXiv preprint arXiv:2001.07034, 2020.

85

[109] Arsha Nagrani, Joon Son Chung, Weidi Xie, and Andrew Zisserman. Voxceleb: Large-

scale speaker verification in the wild. Computer Speech & Language, 60:101027, 2020.

100

[110] Yooyoung Lee, Craig Greenberg, Eliot Godard, Asad A Butt, Elliot Singer, Trang Nguyen,

Lisa Mason, and Douglas Reynolds. The 2022 NIST Language Recognition Evaluation.

arXiv preprint arXiv:2302.14624, 2023. 110

136

BIBLIOGRAPHY

[111] Anna Silnova, Josef Slavicek, Ladislav Mošner, Michal Klco, Oldrich Plchot, Pavel Mate-

jka, Junyi Peng, and Themos Stafylakis3 Lukáš Burget. ABC System Description for

NIST LRE 2022. 110

[112] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan

Salakhutdinov, and Abdelrahman Mohamed. Hubert: Self-supervised speech representa-

tion learning by masked prediction of hidden units. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 29:3451–3460, 2021. 111

[113] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsuper-

vised Pre-Training for Speech Recognition. In Proc. Interspeech 2019, pages 3465–3469,

2019. 111

[114] Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu

Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-

supervised pre-training for full stack speech processing. IEEE Journal of Selected Topics

in Signal Processing, 16(6):1505–1518, 2022. 112

[115] Niko Brummer. Measuring, refining and calibrating speaker and language information

extracted from speech. PhD thesis, Stellenbosch: University of Stellenbosch, 2010. 121

137

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Speech - A multitude of information
	1.2 Speech Signal Processing
	1.2.1 Short-time Speech Processing
	1.2.2 Machine Learning for Speech Processing
	1.2.2.1 Generative Models
	1.2.2.2 Discriminative Models

	1.3 Speaker & Language Recognition
	1.3.1 Problem statements
	1.3.2 Motivation and Applications

	1.4 An outline of contributions
	1.5 Thesis organization
	1.6 Chapter Summary

	2 Background Study - Setting the stage
	2.1 Prior work on speaker and language recognition
	2.1.1 Speaker Recognition
	2.1.2 Language Recognition

	2.2 Recent approaches to speaker and language recognition
	2.3 An overview of Front-end Models
	2.3.1 The i-vector Model
	2.3.2 Neural Network Based Models
	2.3.2.1 d-vector Models
	2.3.2.2 X-vector Models
	2.3.2.3 Recurrent Models

	2.4 An overview of Back-End Models
	2.4.1 Probabilistic Linear Discriminant Analysis (PLDA)
	2.4.2 Gaussian Back-End Models
	2.4.3 Support Vector Machines
	2.4.4 Logistic Regression and Neural Network Back-ends

	2.5 Language and Accent Recognition
	2.5.1 Evaluation of Language and Accent Recognition Systems
	2.5.1.1 Classification Accuracy
	2.5.1.2 Average Detection Cost
	2.5.1.3 Minimum detection cost

	2.5.2 Datasets
	2.5.2.1 The NIST Language Recognition Evaluation 2017 Datasets
	2.5.2.2 The Mozilla Common Voice Dataset
	2.5.2.3 The DARPA RATS Dataset

	2.6 Speaker Recognition
	2.6.1 Evaluation of Speaker Recognition Systems
	2.6.1.1 Classification Accuracy
	2.6.1.2 Equal Error Rate
	2.6.1.3 Detection Cost Functions
	2.6.1.4 Log-Likelihood Ratio Cost Function

	2.6.2 Datasets
	2.6.2.1 The NIST Speaker Recognition Evaluation Datasets (1996-2019)
	2.6.2.2 Comprehensive Switchboard Corpora
	2.6.2.3 The Mixer 6 Corpus
	2.6.2.4 Speakers In The Wild (SITW) Dataset
	2.6.2.5 VoxCeleb 1 and 2 Datasets
	2.6.2.6 VOiCES speaker recognition Dataset

	2.7 Chapter Summary

	3 Supervised i-vector Modelling for Language Recognition
	3.1 Introduction
	3.2 The mathematical framework of the i-vector model
	3.2.1 Expectation (E) step:
	3.2.2 Maximization (M) step:
	3.2.3 Minimum Divergence Re-estimation

	3.3 The s-vector model
	3.3.1 EM Algorithm for Parameter Estimation
	3.3.1.1 Expectation (E) step
	3.3.1.2 Maximization Step
	3.3.1.3 Minimum divergence re-estimation

	3.3.2 S-vector extraction
	3.3.2.1 aMAP s-vectors
	3.3.2.2 PCA s-vectors
	3.3.2.3 Averaged label-conditioned s-vectors
	3.3.2.4 Minimum mean-squared (MMSE) s-vectors

	3.3.3 Re-weighting the priors

	3.4 Experiments and Results
	3.4.1 Performance Metrics
	3.4.2 Experiments conducted
	3.4.3 Results on NIST LRE experiments
	3.4.4 Results on the Mozilla CommonVoice Accent Recognition Task
	3.4.5 Results on RATS Language Recognition Task
	3.4.6 Computational Complexity

	3.5 Discussion
	3.5.1 Influence of the prior re-weighting factor
	3.5.2 Comparison with other approaches
	3.5.3 Data Visualization
	3.5.4 Confusion Matrix Analysis
	3.5.5 Relationship to Prior Work
	3.5.6 Estimating the Prior Weight Using Posterior Covariance
	3.5.7 Application to Closed Set Speaker Recognition

	3.6 Chapter Summary

	4 Supervised Neural-Network Models for Speaker Verification
	4.1 Introduction
	4.2 Related Prior Work
	4.3 An account of back-end models
	4.3.1 Generative Gaussian PLDA (GPLDA)
	4.3.2 Discriminative PLDA (DPLDA)
	4.3.3 Pairwise Gaussian back-end (GB)

	4.4 The Neural PLDA (NPLDA) Approach
	4.4.1 Objective Functions for Neural ASV Models
	4.4.1.1 Binary cross-entropy (BCE) and its weighted versions
	4.4.1.2 Proposed soft detection cost

	4.4.2 The E2E-NPLDA model for speaker Verification
	4.4.2.1 Brute force trial sampling
	4.4.2.2 Low memory trial sampling

	4.5 Experiments and Results
	4.5.1 Embedding extractors
	4.5.1.1 E-TDNN
	4.5.1.2 F-TDNN

	4.5.2 Experiments with the NPLDA Back-End and E2E-NPLDA Models

	4.6 Discussion
	4.6.1 Influence of training utterance duration
	4.6.2 Comparison of data sampling algorithms for NPLDA
	4.6.3 Comparison of loss functions for NPLDA
	4.6.4 Comparison of Initialization Methods
	4.6.5 A comparative analysis between SoftDCF and WCllr losses
	4.6.6 Visualization of x-vectors using tSNE
	4.6.7 Comparison with related works

	4.7 Chapter Summary

	5 Summary and Future Perspectives
	5.1 Key contributions of the thesis
	5.1.1 Supervised i-vector approach for Language Recognition
	5.1.2 Supervised Neural Network models for Speaker Verification

	5.2 Limitations of the work
	5.2.1 Supervised i-vector approach for Language Recognition
	5.2.2 Supervised Neural Network models for Speaker Verification

	5.3 Future directions
	5.3.1 Neural network approaches for language recognition
	5.3.2 Neural generative models for language and accent recognition
	5.3.3 Self-supervised Learning for speaker and language recognition
	5.3.4 Architectures for speaker detection in conversational settings

	Bibliography

