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Applications

• Voice based authentication systems – In personal devices and call centers

• Personalized smart home systems that responds to only authorized users

• Enabling multi-lingual, accented speech technologies.

• Telephonic surveillance in defense applications

• Criminal investigations

• Basis for Speaker & Language Diarization & Multi-speaker /Multilingual speech 

technologies.
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• Noise, reverberation, low SNR conditions

• Recording environment and Microphone quality differences between enrollment 

and test recordings

• Language & accent variability / Speaker variability / Content Variability

• Variations in emotion and prosody

• Mimicry and spoofing
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• Segments of duration ranging from as low as 1 second to a few minutes can be 
associated with a single speaker/language label. 

• A certain duration of speech must be processed to determine the 
speaker/language.

• Longer the duration, lesser is the uncertainty of speaker and language.

• A common practice in Speaker/Language Recognition research is to use the approaches 
used in speaker recognition for language recognition, and vice-versa.

• Similar approaches are found to achieve the state-of-the-art in both speaker and 
language recognition. 
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Adaptation of GMM
• A large dataset of speech, with many speakers is used to 

estimate a GMM Background Model.

• The enrollment recordings of the target speaker or  language 

are used to adapt the parameters of the Background model to 

get the target speaker  / language model.

• The GMM log likelihoods of a test utterance is computed 

using the Background model (null hypothesis) and target 

speaker model (target hypothesis)… and then we compute a 

log likelihood ratio.

• Decision is made by thresholding the LLR based on the 

required criterion (Min Bayes Risk, Neyman-Pearson)

Douglas Reynolds et. al.,  “Speaker Verification Using Adapted Gaussian Mixture Models”, 2000.
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Front-end Factor Analysis
• The speaker dependent and independent terms of the JFA model were combined 

as one total variability term as follows:

• The MAP estimate of 𝒚 for a speech segment is called an i-vector, which is a fixed 

dimensional representation (embedding) of the “total variability” of the segment.

𝑴(𝒔) = 𝑴𝟎 + 𝑻𝒚 where 𝒚 ~ 𝑵(𝟎, 𝑰)
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Motivation
• i-vectors are unsupervised embeddings that capture the total variability of an utterance 

from the GMM-UBM.

• For training a language recognition system, the labels are utilized only in the back-end 

modeling stage. Lot of relevant information may be lost in i-vector extraction.

• Can we incorporate the label information into the model, making it supervised?

• i-vectors have a standard normal assumption in the front-end, but a GMM assumption 

in the back-end.

• Can we train the front-end i-vector model with a mixture Gaussian prior, making the 

assumptions consistent with the back-end?
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• Where, the prior of latent variable 𝒚(𝑠) for class 𝑙 is given by:

𝑴 𝑠 = 𝑴0 + 𝑇 𝒚(𝑠)
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Training the s-vector model
• E – Step: We compute the  following quantities:

N𝑐 𝑠 = ෍

𝑖

𝑝 𝑐 𝒙𝑖 𝑠

       N(s) =
N1 𝑠  0

 ⋱  
0  N𝐶 𝑠

 

𝐅𝑐 𝑠 = ෍

𝑖

𝒙𝑖 𝑠 p 𝑐 𝑥𝑖 𝑠

             𝐅 s =
𝐅1(𝑠)

⋮
𝐅𝑐(𝑠)
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• Oracle s-vectors (cheat) : To understand 

the limits of this model. 
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Re-weighting the priors

• By re-weighting the prior covariance, the model can be made more discriminative
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Results

• Results on LRE17 Development Dataset (3661 test examples) with SVM Back-end.
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Results
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Results

• Variation of 𝐶𝑃𝑟𝑖𝑚𝑎𝑟𝑦 with 𝜆 for various durations for MMSE s-vectors.
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Results

• Comparison of confusion matrices for 3 sec condition with LRE2017 dev set.
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Summary of s-vector modeling

• We proposed a supervised approach to i-vector modeling by assuming a GMM prior on the 

latent variables in the i-vector model.
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• Confusion matrices, data visualization using t-SNE embeddings show that s-vectors are 

highly useful for accent recognition.
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The X-vector Model

Snyder et.al., “X-vectors: Robust DNN Embeddings for Speaker Recognition”, 2018
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Gaussian Probabilistic LDA

S. Ioffe, “Probabilistic Linear Discriminant Analysis”, 2006
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Neural PLDA (NPLDA)

Ramoji et al., “NPLDA: A Deep Neural PLDA model for speaker verification.”, Odyssey 2020 
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Neural PLDA (NPLDA)

• NPLDA is a pairwise 

discriminative network, where 

we construct the pre-processing 

steps of LDA as an affine layer, 

unit-length normalization as a 

non-linear activation.

• The final PLDA pair-wise scoring 

implemented as a Quadratic layer.

• Parameters are initialized with the 

GPLDA model weights.

Ramoji et al., “NPLDA: A Deep Neural PLDA model for speaker verification.”, Odyssey 2020 
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|𝒯|
 ;  𝜆2 =

𝐶𝐹𝐴(1−𝑃𝑇𝑎𝑟𝑔𝑒𝑡)

|𝒩|
;  𝜃 = log 𝛽
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• Contains around 1.2M utterances from 7323 speakers.

• An extended TDNN (E-TDNN) model was trained with the softmax-cross-entropy speaker 
classification objective, from which 512 dim speaker embeddings were extracted.

• A 5-fold augmentation strategy is used that adds four corrupted copies of the original 
recordings to the training – Clean, Noise, Babble, Music, Reverberation
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Experiments on NPLDA
• Test Datasets Description:

• SITW (Speakers in the Wild) Dataset: 

• Consists of 300 speakers across clean interviews, red carpet interviews, stadium 
conditions, indoor and outdoor conditions.

• The evaluation set consists of 721,788 trials

• VOiCES Challenge 2019 Dataset:

• Re-recorded read speech in acoustically challenging, noisy and reverberent environments.

• The Development set contains 16k segments 196 speakers, and 4 Million trials

• The Test set contains 11k segments from 100 speakers, 3.6 Million trials
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Results on NPLDA

• Relative improvements in the range of 9% to 23% in terms of EER, and 11% to 
31%in terms of minDCF.
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• The Siamese E2E-NPLDA model requires frame-level processing of the MFCC features at 100 
frames per second of the audio (as opposed to the segment level x-vectors).

• We need to pad/truncate the audio to a fixed duration, in every batch.

• The GPU requirements for the NPLDA back-end was <600 Mb

• The GPU requirements for the E2E-NPLDA increases linearly with total audio duration per 
batch 

• Was estimated to be >200GB for 2048 trials of 20 sec segments.

48



Implementation Challenges 49



Implementation Challenges
• As we had a GPU limit of 16 Gb, the neural network architecture we used could process 

a total audio duration of 130 secs per batch (~64 utterances of 20 secs each)

49



Implementation Challenges
• As we had a GPU limit of 16 Gb, the neural network architecture we used could process 

a total audio duration of 130 secs per batch (~64 utterances of 20 secs each)

• To confine the E2E-NPLDA to meet the GPU memory constraints, but also have >2k 

trials per batch, we used a low-memory trial sampling algorithm:

49



Implementation Challenges
• As we had a GPU limit of 16 Gb, the neural network architecture we used could process 

a total audio duration of 130 secs per batch (~64 utterances of 20 secs each)

• To confine the E2E-NPLDA to meet the GPU memory constraints, but also have >2k 

trials per batch, we used a low-memory trial sampling algorithm:

49

n
 (

s
p

e
a
k
e
rs

)

m (speakers)

…

…

…

…… …



Implementation Challenges
• As we had a GPU limit of 16 Gb, the neural network architecture we used could process 

a total audio duration of 130 secs per batch (~64 utterances of 20 secs each)

• To confine the E2E-NPLDA to meet the GPU memory constraints, but also have >2k 

trials per batch, we used a low-memory trial sampling algorithm:

49

n
 (

s
p

e
a
k
e
rs

)

m (speakers)

…

…

…

…… …
(1)

(1)

(1)

(0)

(0)

(0)

mn
C2 trials (pairs)

(1) (0)

… …



Results of NPLDA and E2E models 50

• Results with a factorized TDNN [1] x-vector architecture trained on VoxCeleb 1 & 2 datasets 

show robust improvements of the model across various test domains.



A look at the Detection Error Tradeoffs

• Detection Error Tradeoff curves are shown for two baseline models (Generative Gaussian 
PLDA and Discriminative PLDA), Neural PLDA backend, and E2E-NPLDA models.

• Consistent improvements seen across a wide range of thresholds, using many evaluation 
datasets.
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Visualization of Embeddings

• t-SNE plots show that the embeddings extracted from the SiamNN models are better 

suited for the verification task than the original embedding extractor (x-vector model).
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Comparison of Loss functions (NPLDA)

• Comparison of SoftDCF loss with Binary Cross-Entropy and its weighted versions
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• SoftDCF loss function converges to the best loss values when initialized with GPLDA params.

• With random init, the SoftDCF loss converges to a saddle point where val. 𝐶𝑚𝑖𝑛 = 1, and all the 

gradients are 0.

Comparison of Initialization methods 54



Recent Advances related to our work

• Lots of improvements in the network architecture for speaker verification

•  ResNets, ECAPA-TDNN, Transformer based architectures.

• Exhaustive application of various novel loss functions and their combinations:

• Classification objectives:

• Angular Margin (AM) and Additive Angular Margin (AAM) Softmax loss

• Metric Learning objectives:

• Angular Prototypical loss
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Recent Advances related to our work 56

[2] 

[1] 

[2] 

[2] 

[1] 

[1] 

[1] A. Nagrani et. al., “VoxCeleb:  Large scale speaker verification in the wild ”, CSL 2020

[2] J. S. Chung et. al., “In defence of metric learning for speaker recognition” Interspeech 2020



Advantages and Disadvantages

• The NPLDA and the corresponding E2E architectures are capable of significantly 

improving a PLDA based speaker verification model.

• The improvements are consistent over several test sets, over the PLDA model, 

indicating that it is a robust approach.

• While the softDCF loss helps us achieve the best improvements compared to other 

loss functions such as the binary cross-entropy and its weighted versions, it is highly 

sensitive to factors such as batch size, learning rate, and the warping factor 𝛼.

• The softDCF loss requires the parameters to be initialized with the Generative PLDA 

parameters, and not suitable for a fully end-to-end training of the network.

57



Concluding remarks…
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• Two major directions pursued:

• Supervised i-vector  (S-vector) modeling for Language/Accent Recognition.

• Algorithms & Derivations, Embedding Extraction methods.

• PLDA inspired Siamese neural networks for Speaker Verification.

• NPLDA backend architecture, E2E training, loss functions and their detailed 

comparison.
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Future Perspectives

• Neural network based generative models for speaker and language embedding 

extraction for recognition.

• Neural Network approaches for language recognition, particularly for lang diarization.

• Self-supervised Learning for speaker and language recognition. 

• Architectures for speaker detection in conversational settings.

• Cross Attention between enrollment and test segments that can better model the 

speaker in language/accent/emotion mismatched cases, and overlapped speech. 
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