Graph Clustering approaches for Speaker Diarization of **Conversational Speech**

PhD Thesis Defense 6th February 2024

Prachi Singh PhD Student, Learning and Extraction of Acoustic Patterns (LEAP) Lab, **Electrical Engineering, Indian Institute of Science, Bangalore.**

Advisor: Dr. Sriram Ganapathy

Outline

- Introduction
 - Motivation
 - Methodology
 - Contributions
- Background study
 - Related work
 - Performance metrics
 - Datasets
- Proposed Graph Clustering approaches
- Conclusion and Future Directions

Introduction

Motivation

Transcribing audio into text using speaker information generates much meaningful text

The task of finding "who spoke when" is called Speaker Diarization.

Transcribing meeting

Call center interactions Analysis

Methodology

Sell et al., Diarization is hard: some experiences and lessons learned for the JHU team in the inaugural DIHARD challenge, 2018.

Contributions outline

7

Contributions outline

Application of graph models to temporal segmentation of speech is the first of its kind.

- Novel hierarchical graph clustering
- Self-supervised metric learning to generate similarity for clustering
- Supervised hierarchical graph clustering

Clustering

Supervised clustering using graph neural networks

Background study

Related work

Unsupervised Clustering approaches

Forming groups based on hidden patterns in the unlabeled data

- Hierarchical clustering Agglomerative Hierarchical Clustering (AHC) •
- Graph Clustering

Clustering approaches

Graph

- A graph G can be well described by the set of vertices V and edges E it contains. G=(V,E)
- The vertices are often called nodes.
- Adjacency matrix (A) captures connections between nodes,
- $A_{ij} = 1$, if Node i is connected to j by an edge
- $A_{ij} = 0$, if Node i and j are not connected
- A with real weights to the edges is called as weighted adjacency matrix.

Graph clustering

Clustering the nodes such that **many edges** are present **within each cluster** and **fewer edges between the clusters**.

Example: Spectral Clustering (SC)

Recent Graph Approaches

- **Graph attentional/convolution encoder (GAE)**¹ based approach for metric learning followed by spectral clustering.
- **Graph Attention- Based Deep Embedded Clustering (GADEC)²**: Graph attention-based clustering using multi-objective training.

³Wang et al., ICASSP, 2020 ²Wei et al., Speech Communications, 2023

Related work

- Speaker embeddings/representations
 - i-vector¹ statistical model
 - d-vector² Deep Neural Network
 - **x-vector**³ –Time delay Neural Network (widely used)
- Similarity measure
 - Cosine⁴
 - **PLDA**⁵ (widely used)

¹Dehak et al., 2011, ²Variani et al., 2014, ³Snyder et.al.,2018 ⁴Senoussaoui et al., 2014, ⁵Sell and Garcia-Romero, 2014, ⁵Sell et al., 2018

Related work

End to end neural diarization (EEND)¹

- Transformer is used to perform speaker activity detection
- Takes input as F-dimensional audio features and generate C speaker labels

DNN

Cons:

- Requires huge amount of labelled data for training.
- Difficult to generalize for higher number of speakers.
- Cannot handle long duration recording at a time.

¹Horiguchi et. al., "End-to-End Speaker Diarization for an Unknown Number of Speakers with Encoder-**Decoder Based Attractors**

EEND

Performance metric

Optimal mapping: $\operatorname{argmax}(A \cap 1, A \cap 2)$, $\operatorname{argmax}(B \cap 1, B \cap 2)$

Performance metric

- **Diarization error rate (DER)** is the standard metric for evaluating and comparing speaker diarization systems.
- It is defined as follows: $DER = \frac{false \ alarm + miss \ detection + speaker \ confusion}{false \ alarm + miss \ detection + speaker \ confusion}$ total speakers duration
 - *false alarm* duration of non-speech predicted as speech
 - *miss detection* duration of speech of a speaker predicted as non-speech
 - *speaker confusion* duration of a reference speaker predicted as another speaker in system output after optimal mapping
 - total speakers duration total duration of all the speakers present

Test Datasets

[1] Mark et al., 2000 NIST Speaker Recognition Evaluation [2] McCowan et al., The AMI meeting corpus, 2005 [3] Ryant et al., The Third DIHARD Diarization Challenge, 2020

[4] Chung et al., Spot the Conversation: Speaker Diarisation in the Wild, 2020

Proposed Approach 1

ullet

•

Supervised clustering using graph neural networks

Motivation

- Each stage (embedding extraction and clustering) is optimized independently.
- The test set will contain unseen domains and speakers.
- Can clustering provide self-supervisory targets for representation learning¹?
- Can we improve clustering using the succinct speaker representations?

Self-supervised clustering

Self-Supervised Clustering alternates between merging the clusters for a fixed embedding representation and learning the representations using the given cluster labels, till we reach the required number of clusters/speakers.

Prachi Singh, Sriram Ganapathy, 'Deep self-supervised hierarchical clustering for speaker diarization', **INTERSPEECH 2020.**

SSC Algorithm

Variables:

 $X = \{x_1, \dots, x_{N_r}\} \in \mathbb{R}^D$: X-vectors sequence of recording *r*

 $Y = \{y_1, \dots, y_{N_r}\} \in \mathbb{R}^d$: lower dimensional representations

 $\mathbf{z} = \{z_1, \dots, z_{N_r}\} \epsilon R$: segment labels

θ: DNN parameters

 $(\mathbf{Y}^q, \mathbf{z}^q, \boldsymbol{\theta}^q)$: refer to variables at iteration q

- N^q : Number of clusters at iteration q
- *N*^{*}: target number of clusters

For NN training at iteration q, use clustering results from q-1 to sample positive and negative pairs of triplets.

P. Singh and S. Ganapathy, "Self-supervised Representation Learning With Path Integral Clustering For Speaker Diarization", IEEE TASLP (2021).

NN training-Triplet loss

- For each cluster C_i^q , pick two elements as anchor and positive $\{y_i, y_i\}$.
- For negative pair, element (y_l) is selected randomly from any other cluster.
- Triplet loss:

$$\theta^{q} = argmax_{\theta} \sum_{i,j,l} [s(i,j) - \alpha(s(i,l) + s(j,l))]$$

Agglomerative clustering

AHC

Merging Criterion:

In an AHC algorithm, the merging criterion for merging two clusters C_a^q and C_b^q where q is the iteration index is given as

$$\{C_a^q, C_b^q\} = \arg\max_{C_i, C_j \in C, i \neq j} A(C_i, C_j)$$
 (where,
measure

, A denote the affinity between two clusters.)

Agglomerative clustering

Path integral clustering (PIC)

Graph-structural based agglomerative clustering algorithm where graph encodes the structure of the embedding space.

- 1. Measures the affinity of clusters based on the neighborhood graph hence is more robust to noisy distances.
- 2. Uses robust graph structural merging strategy for noisy links.
- 3. It does not assume anything on the underlying data distributions and only need the pairwise similarities of samples.

Path Integral Clustering (PIC)

Given a set of vectors $X = \{x_1, x_2, \dots, x_n\}$, it involves creation of directed graph G = (V, E)

Weighted Graph Adjacency matrix (W) given as, $w_{ij} = S(i,j) \ if \ x_i \ \epsilon N_i^K$ 0 otherwise

where, S(i,j) is the pairwise similarity between x_i and x_i , N_i^K is the set of K nearest neighbour of x_i

•

Baselines¹²

Step	Parameter	СН	AMI
-	Sampling rate	8kHz	16kHz
Segmentation	Window size	1.5s, 0.75s shift	1.5s, 0.75s shift
	Architecture	7-layers TDNN	7-layers TDNN
Embedding extraction	Train set	SWBD, SRE	Voxceleb 1,2
	Train #speakers	4,285	7,323
extraction	Input features	23D MFCCs	30D MFCCs
	x-vector dimension	128	512
Similarity score	type	PLDA	PLDA
Clustering	type	AHC	AHC

Implementation details

config	СН	AMI
x-vectors/recording	50-700	1000-40
2-layer DNN	128x10	512X3
Learning rate	0.001	0.001
Annealing	No	Yes
Batch	Full	Mini-bat
epochs	5-10	5-10

000 30

tch

Initialization

- Weight initialization and training are file specific.
- Uses processing steps from baseline system.
- First layer is initialized using global PCA computed using held out set followed by length • norm.
- Second layer is initialized using file-level PCA.
- Affinity measure : **Cosine** similarity. •

CH Results

- Performance metric: Diarization Error Rate (DER) (%) •
- Considering only non-overlapping speech regions with tolerance collar (0.25s). •

System	Known N*	Unknown N*	
x-vec + cosine + AHC	8.9	10.0	
x-vec + cosine + SC	9.4	11.9	
x-vec + PLDA + AHC	7.0	8.0	
x-vec + cosine + PIC	7.7	9.3	
SSC-AHC	6.4	8.3	
SSC-PIC	6.4	7.5	
+ Temp. cont.	6.3	7.0	

AMI Results

	Known N*		Unknown N*	
System	Dev.	Eval.	Dev.	Eval.
x-vec + cosine + AHC	34.6	30.2	18.2	15.5
x-vec + cosine +SC	30.2	25.5	40.0	31.1
x-vec + PLDA + AHC (Baseline)	15.7	16.0	13.7	16.3
SSC-PLDA-AHC	9.4	11.1	10.7	11.6
x-vec + PLDA + PIC	9.4	9.3	9.8	10.4
x-vec + cosine + PIC	8.9	7.3	9.0	7.3
SSC-PIC	7.3	7.2	8.1	7.6
+ Temp. cont.	6.2	6.4	6.4	6.7

Prachi Singh and Sriram Ganapathy, "Self-supervised Representation Learning with Path Integral Clustering for Speaker Diarization", IEEE Transactions on Audio Speech and Language Processing, 2021.

Summary

- Proposed self-supervised clustering algorithm using DNN which iteratively updates representation learning and clustering.
- Introduced path integral clustering hierarchical graph clustering for first time for diarization.
- Helped to **increase separation between representations** of different speakers.
- Showed improvements on AMI and CALLHOME dataset.

Proposed Approach 2

Motivation

- **SSC uses cosine similarity** to perform clustering.
- Prior work on clustering performs better with PLDA score than cosine.
- PLDA¹ is a parametric model which is trained to learn speaker distributions. •
- Can we train the SSC with learnable scoring/metric function?

SelfSup-PLDA-PIC

- Self-supervised metric learning with graph-based clustering algorithm (SelfSup-PLDA-PIC) jointly performs representation learning and metric **learning** using the initial clustering results.
- Propose a neural version of PLDA to incorporate deep learning of the PLDA model parameters.

P. Singh and S. Ganapathy, "Self-Supervised Metric Learning with Graph Clustering for Speaker Diarization", IEEE ASRU 2021.

Block diagram: SelfSup-PLDA-PIC

Metric Learning using PLDA model

- Probabilistic Linear Discriminant Analysis (PLDA)¹ is a supervised generative model trained to learn distributions of different speakers.
- It can be used to find pairwise similarity score between embeddings from unseen speakers as follows

$$\begin{array}{ccc} \mathsf{u}_{i} & \longrightarrow & \mathsf{PLDA} \\ \mathsf{Model} \\ \mathsf{u}_{j} & \longrightarrow & s(i,j) = \log\left[\frac{p(u_{i},u_{j})}{p(u_{i}|H_{d})p(u_{i})}\right] \end{array}$$

¹Sergey loffe, Probabilistic linear discriminant analysis, 2006

Same-speaker hypothesis

Metric Learning using PLDA model

• Replacing PLDA model with a learnable parametric model with parameter Ψ

PIC

AMI Results

AMI DER (%) Results – Ignoring overlaps and with collar 0.25s

	Known N*		Unknown N*	
System	Dev.	Eval.	Dev.	Eval.
x-vec + PLDA + AHC	15.9	12.2	13.1	12.3
x-vec + PLDA + PIC	5.1	10.2	5.8	11.4
SSC-Cosine-PIC	5.3	6.2	6.5	8.4
SelfSup-PLDA-AHC	7.9	7.3	7.7	9.4
SelfSup-PLDA-PIC ¹	4.2	6.2	4.4	6.9
_ + Temporal continuity	4.2	4.2	4.4	4.9
SelfSup-PLDA-PIC + VBx ²	-	_	2.9	4.2

¹P. Singh and S. Ganapathy, "Self-Supervised Metric Learning with Graph Clustering for Speaker Diarization", IEEE ASRU 2021. ²Diez et al., Bayesian HMM based x-vector clustering for speaker diarization, 2019

AMI Visualization

Similarity score matrices comparison for 4-speaker recording from AMI development set

DIHARD Results

Average DER (%) on the DIHARD dataset considering overlapping regions with no tolerance collar.

For recordings with \leq 7 speakers and > 7 speakers.

	\leq 7 speakers		> 7 speakers	
System	Dev.	Eval.	Dev.	Eval.
X-vec + PLDA + AHC	18.0	19.3	36.6	27.1
X-vec + PLDA + PIC	17.7	17.8	36.5	24.0
SelfSup-PLDA-PIC	17.0	17.2	39.5	28.1

Performance degraded as number of speakers increases as initial clustering becomes unreliable.

Summary

- Proposed self-supervised metric learning approach using PLDA.
- Adapted similarity scores for each test recording.

Proposed Approach 3

Motivation

- Self-supervised clustering is less reliable when recording contains higher number of speakers (>7).
- The end goal is to minimize the clustering errors to improve performance
- **Can we train a supervised model with the clustering objective**?

Supervised HierArchical GRaph Clustering (SHARC)

- Performs supervised clustering using Graph Neural Networks (GNN).
- Represents the speaker embeddings using graph.
- Clustering loss is used to update edges of the graph.
- Generates node labels based on clustering performed on updated edges at each level of hierarchy.
- **E-SHARC**: Joint learning of embedding extractor and GNN

Block diagram: E-SHARC Inference

GNN scoring

- GNN scoring function Ψ a learnable GNN module designed for supervised clustering.
- Output: edge prediction probability p_{ij} between node i and j.
- N_i^k k-nearest neighbors of node vi,

$$\hat{e}_{ij} = 2p_{ij} - 1 \in [-1, 1] \forall j \in N_i^k$$

- Density of node i :
- Ground truth:

$$d_i = \frac{1}{k} \sum_{j \in N_i^k} e_{ij} \boldsymbol{S}_r(i, j)$$

 $\hat{d}_i = rac{1}{k} \sum_{j \in N_i^k} \hat{e}_{ij} \boldsymbol{S}_r(i, j)$

Predicted:

GNN Module

Clustering

At each level of hierarchy m, it creates a candidate edge set $\varepsilon(i)$ •

$$\varepsilon(i) = \{j | (v_i, v_j) \in E_m, \quad \hat{d}_i \leq \hat{d}_j \text{ and } p_{ij}\}$$

- For any i, if $\varepsilon(i)$ is not empty, we pick $j = \operatorname{argmax}_{j \in \varepsilon(i)} \hat{e}_{ij}$
- A set of connected components C_t^m , forms clusters for the next level (m + 1). •

$\geq p_{\tau}$

Training loss

• Loss:
$$L = L_{conn} + L_{den}$$

•
$$L_{conn} = \frac{1}{|E|} \sum_{i,j \in E} p_{ij} \log \hat{p}_{ij} + (1 - p_{ij}) \log \hat{p}_{ij}$$

 p_{ij} - Ground truth edge labels, \hat{p}_{ij} - predicted edge labels

•
$$L_{den} = \frac{1}{|V|} \sum_{i=1}^{|V|} ||d_i - \hat{d}_i||_2^2$$
 $\forall i \in \{1, ..., the cardinality of V\}$

• d_i : ground truth node density, \hat{d}_i : predicted node density

- $g\left(1 \hat{p}_{ij}\right)$

- ., |V |}, where |V| is

• What about overlapping speech ?

Block diagram: E-SHARC-Overlap Inference

Experiments

Datasets

AMI : Meeting dataset

Voxconverse: Youtube videos

DISPLACE 2023 dataset¹: Natural multilingual, multispeaker speech recordings.

- #Recordings- dev set: 27 and eval set: 29.
- Duration: 30-60 mins
- #speakers varies from 3-5, and #languages varies from 1-3.

¹Baghel et al., Interspeech 2023

Results

Performance : DER (%) (lower the better)

AMI Dataset

53% relative improvement over best baseline

P. Singh, A. Kaul and S. Ganapathy, "Supervised Hierarchical Clustering using Graph Neural Networks for Speaker Diarization", IEEE ICASSP 2023.

Results

Performance : DER (%) (lower the better) •

41% relative improvement over best baseline

Voxconverse Dev set

Overlap Results

DER* - with overlap + no collar

Overlap detector: Bredin et al., pyannote.audio: neural building blocks for speaker diarization, 2020

AMI

AHC + overlap

SC + overlap

SHARC + overlap

E-SHARC + overlap

Voxconverse

AHC + overlap

SC + overlap

SHARC + overlap

E-SHARC + overlap

DISPLACE

AHC + overlap

SC + overlap

SHARC + overlap

E-SHARC + overlap

Eval DER* (%)	
26.67	
20.36	
19.50	
17.99	
Eval DER* (%)	
12.05	
13.73	
12.56	
11.42	
Eval DER* (%)	
40.47	
40.65	
32.73	Æ
32.45	N/A BO

Recent works Results

- DER without overlap + 0.25s collar
- DER* with overlap + no collar

AMI SDM System	DER*	DER
Pyannote [1]	29.1	-
x-vec+AHC+VBx [2]	27.4	12.6
SelfSup-PLDA-PIC +VBx [3]	23.8	5.5
Raj et al. [4]	23.7	-
Plaquet et al. [5]	22.9	-
GAE-based+ SC [6]	-	5.5
GADEC-based [6]	-	4.2
E-SHARC (proposed)	19.83	2.9
E-SHARC-Ovp +VBx (prop.)	17.2	2.6

- [1] Bredin et al., Interspeech, 2021
- [2] Landini et al., 2020
- [3] Singh et al., ASRU, 2021
- [4] Raj et al., arxiv, 2022
- [5] Plaquet et al., Interspeech, 2023
- [6] Wei et al., Speech Communications, 2023

Recent works Results

- DER without overlap + 0.25s collar
- DER* with overlap + no collar

Voxconverse System	DER*	DER
Pyannote [1]	11.9	-
Plaquet et al. [2]	10.4	-
GAE-based+ SC [3]	-	8.0
GADEC-based [3]	-	7.6
E-SHARC (prop.)	11.68	7.6
E-SHARC-Ovp +VBx (proposed)	10.1	6.3
DISPLACE System		
DISPLACE Baseline [4]	32.2	14.6
E-SHARC-Ovp +VBx (prop.) + Baseline SAD	31.4	13.0
Winning system [4]	27.8	7.3

- [1] Bredin, Interspeech, 2021
- [2] Plaquet et al., Interspeech, 2023
- [3] Wei et al., Speech Communications, 2023
- [4] Baghel et al., 2023

Summary

- Introduced supervised hierarchical clustering for speaker diarization for the first time.
- Designed an end-to-end approach to perform speaker diarization using Graph Neural Networks.
- Introduced overlapped speaker prediction.
- Achieved state-of-the-art performance on benchmark datasets. •

Conclusion and Future Directions

Concluding remarks

Proposed Approaches	Novelties
SSC	 Introduced self-supervised clustering using DNN Introduced PIC graph clustering for the first time to improve diarization.
SelfSup-PLDA-PIC	 Introduced self-supervised metric learning
SHARC	 First time performed supervised hierarchical clustering for diarization

Limitations

• Similarity scoring is not learnable (cosine)

- Performance depends on initial clustering
- Degrades with higher number of speakers
- Increased training time
- Require domain specific training
- Not purely end-to-end

Future Directions

Multilingual conversation Diarization

Source: https://displace2023.github.io/

Use Multi-edge graph to perform multi-task learning

Future Directions

Target speaker identification in conversational speech

- Need to handle channel mismatch
- Avoid clustering within target speaker recording

Yes

Yes

Publications based on the thesis

Peer-reviewed Journals:

- **1.** P. Singh and S. Ganapathy, "Self-supervised Representation Learning With Path Integral Clustering For Speaker Diarization", IEEE/ACM Transactions on Audio, Speech, and Language Processing (2021). 2. P. Singh and S. Ganapathy, "Speaker Diarization with Graph Based Supervised Hierarchical Clustering"
- (under review).

Peer-reviewed Conferences:

- **1.** P. Singh, A. Kaul and S. Ganapathy, "Supervised Hierarchical Clustering using Graph Neural Networks for Speaker Diarization", IEEE ICASSP 2023.
- **2. P. Singh** and S. Ganapathy, "Self-Supervised Metric Learning with Graph Clustering for Speaker Diarization", IEEE ASRU 2021.
- **3.** P. Singh, R. Varma, V. Krishnamohan, S. R. Chetupalli, and S. Ganapathy. "LEAP Submission for the Third" DIHARD Diarization Challenge", INTERSPEECH 2021.
- **4. P. Singh** and S. Ganapathy, "Deep Self-Supervised Hierarchical Clustering for Speaker Diarization", **INTERSPEECH 2020.**
- 5. P. Singh, Harsha Vardhan MA, S. Ganapathy, A. Kanagasundaram, "LEAP Diarization System for the Second DIHARD Challenge", INTERSPEECH 2019.

Indian Institute of Science

"Since 1909, when it came to be,

thousands have drunk in its glory;

Getting in is tough but

leaving it is more rough,

such is the charm of IISc."

- Anonymous

Thank you for your attention !

