

Graph Clustering approaches for Speaker Diarization of Conversational Speech

PhD Thesis Colloquium 21st July 2023

Prachi Singh

PhD Student,

Learning and Extraction of Acoustic Patterns (LEAP) Lab, Electrical Engineering, Indian Institute of Science, Bangalore.

Advisor: Dr. Sriram Ganapathy

Outline

- Introduction
 - Motivation
 - Methodology
 - Contributions
- Background study
 - Related work
 - Performance metrics
 - Datasets
- Proposed Graph Clustering approaches
- Conclusion and Future Directions

Introduction

Motivation

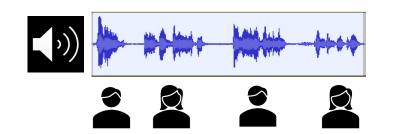
What is a conversational speech?

Conversational audio contains multiple speakers engaged in a conversation.

Modelling of such audio requires understanding speakers' characteristics and content

Motivation

Transcribing audio into text using speaker information generates much meaningful text



Hello. How are you Nitin?

I am doing great. How are you Meenu?

I am doing also great.

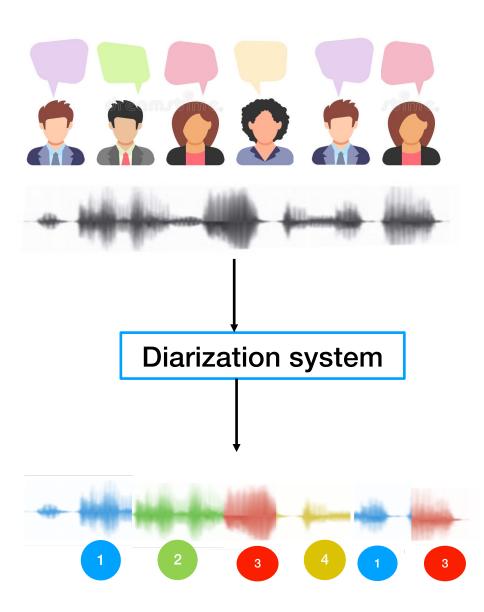
The task of finding "who spoke when" is called Speaker Diarization.

Transcribing meeting

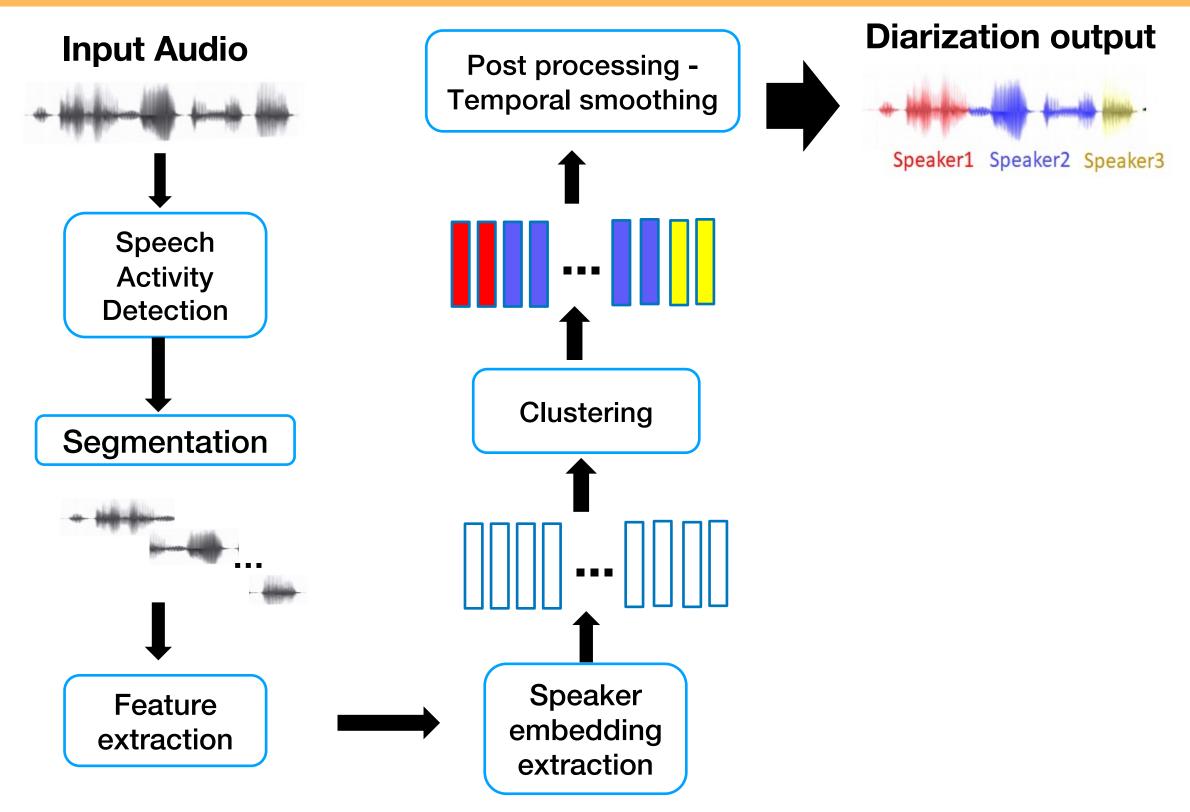
Call center interactions **Analysis**

Definition

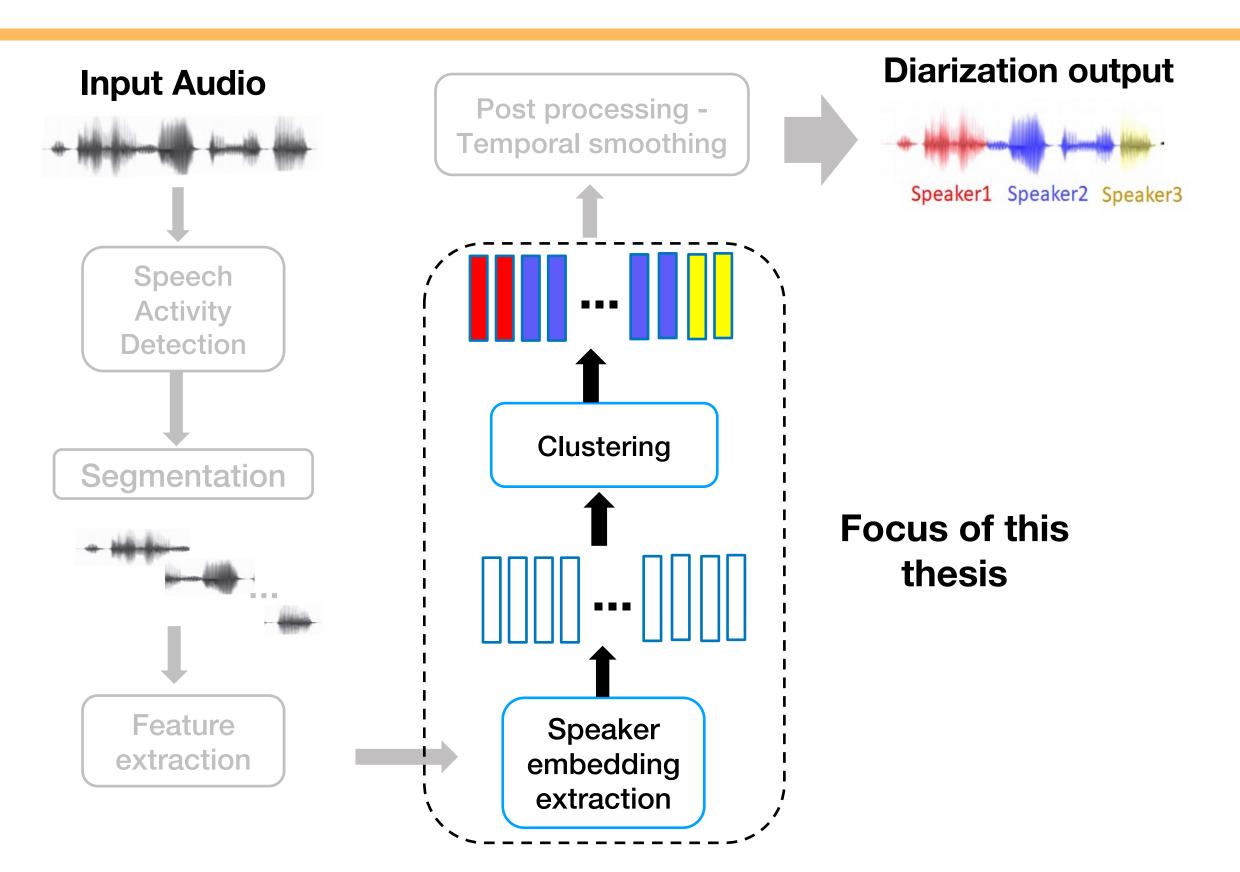
Speaker diarization is the task of partitioning an input audio recording into segments based on speakers and assign relative speaker labels.



Methodology



Contributions outline



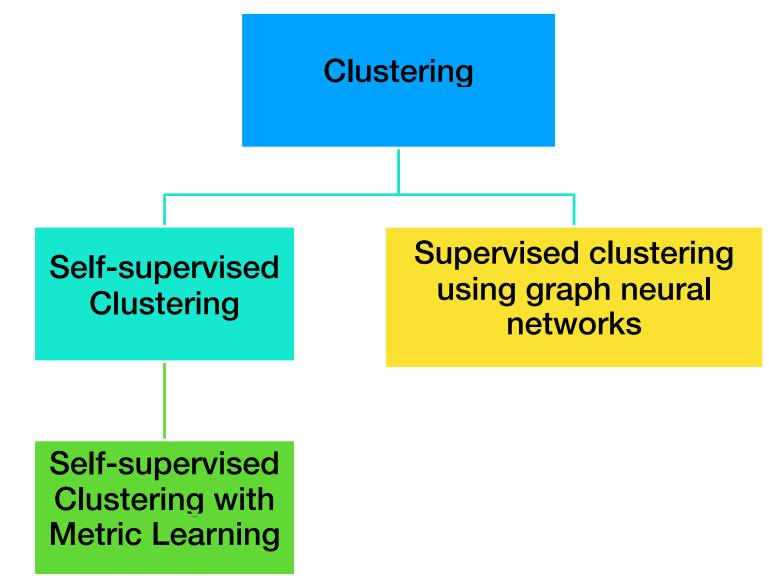
Contributions outline

- Clustering is a crucial step in speaker diarization as it enables
 - Accurate speaker segmentation
 - Turn-taking detection
 - Speaker model creation
 - Speaker adaptation, and evaluation
- Improving speaker embeddings can help improve clustering

Contributions outline

Application of graph models to temporal segmentation of speech is the first of its kind.

- Novel hierarchical graph clustering
- Self-supervised metric learning to generate similarity for clustering
- Supervised hierarchical graph clustering



Background study

Related work

Unsupervised Clustering approaches

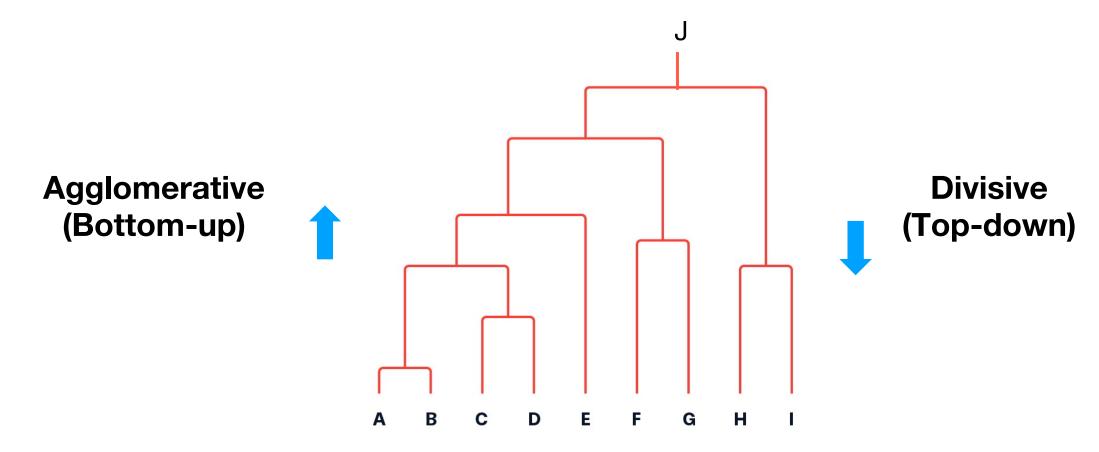
Forming groups based on hidden patterns in the unlabeled data

- Hierarchical clustering
- Graph Clustering

Unsupervised Clustering approaches

Hierarchical clustering

 Clusters are visually represented in a hierarchical tree called a dendrogram.



Example: Agglomerative Hierarchical clustering (AHC)

Clustering approaches

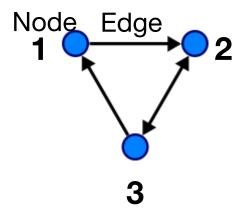
Graph

- A graph G can be well described by the set of vertices V and edges E it contains. G=(V,E)
- The vertices are often called nodes.
- Adjacency matrix (A) captures connections between nodes,
- $A_{ij} = 1$, if Node i is connected to j by an edge
- $A_{ij} = 0$, if Node i and j are not connected
- A with real weights to the edges is called as weighted adjacency matrix.

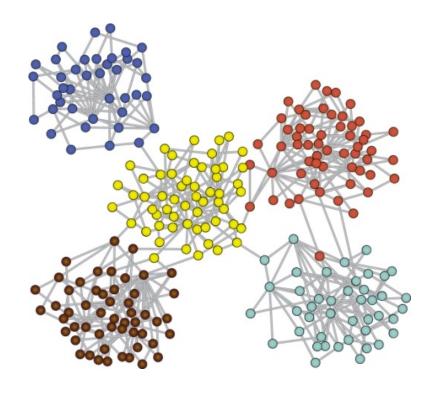
Graph clustering

Clustering the nodes such that many edges are present within each cluster and fewer edges between the clusters.

Example: Spectral Clustering (SC)



$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$



Can we combine the two?

- Why not!
 - Hierarchical Graph Clustering

Related work

- Speaker embeddings/representations
 - i-vector¹ statistical model
 - d-vector² Deep Neural Network
 - x-vector³ –Time delay Neural Network (widely used)
- Similarity measure
 - Cosine⁴
 - PLDA⁵ (widely used)

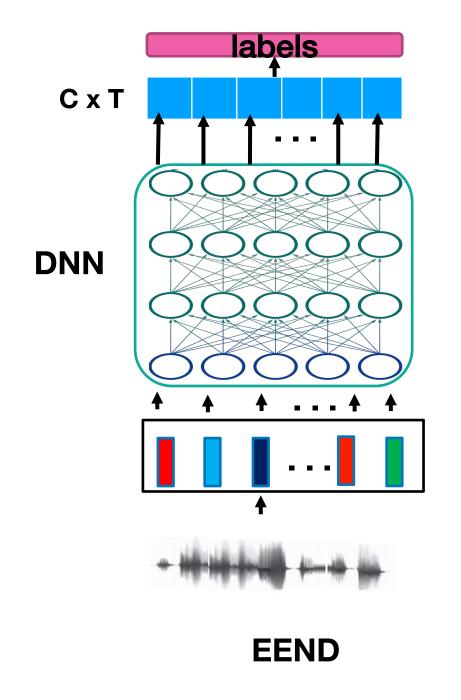
Related work

End to end neural diarization (EEND)¹

- Transformer is used to perform speaker activity detection
- Takes input as F-dimensional audio features and generate C speaker labels

Cons:

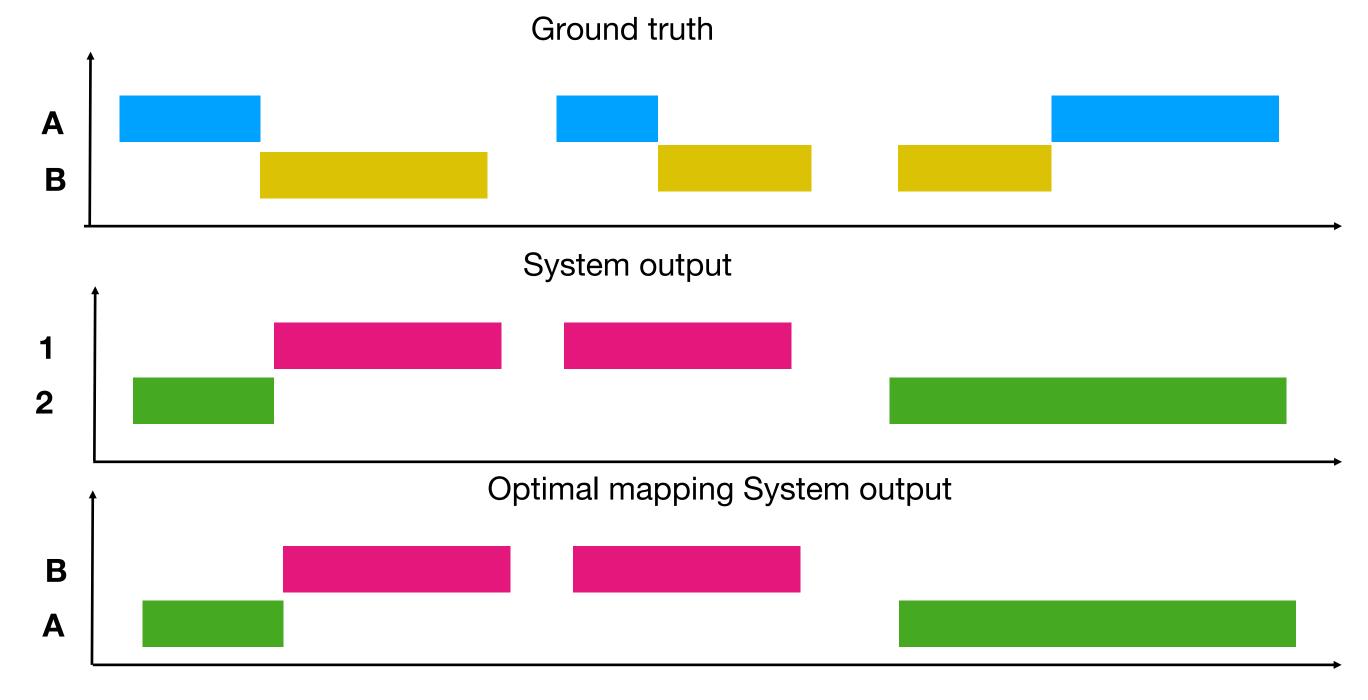
- Requires huge amount of labelled data for training.
- Difficult to generalize for higher number of speakers.
- Cannot handle long duration recording at a time.



¹Horiguchi et. al., "End-to-End Speaker Diarization for an Unknown Number of Speakers with Encoder-Decoder Based Attractors

Performance metric

Optimal mapping: $argmax(A \cap 1, A \cap 2)$, $argmax(B \cap 1, B \cap 2)$



Performance metric

- Diarization error rate (DER) is the standard metric for evaluating and comparing speaker diarization systems.
- It is defined as follows:

$$DER = \frac{false\ alarm + miss\ detection + speaker\ confusion}{total\ speakers\ duration}$$

- false alarm duration of non-speech predicted as speech
- miss detection duration of speech of a speaker predicted as non-speech
- speaker confusion duration of a reference speaker predicted as another speaker in system output after optimal mapping
- total speakers duration total duration of all the speakers present

Test Datasets

Narrowband (sampling rate: 8kHz)

Wideband (sampling rate: 16kHz)

CALLHOME (CH) [1]

- Multi-lingual telephone data
- Recordings -500, CH1 – 250, CH2- 250,
- 2-5 mins
- o 2-7 speakers

AMI [2]

- Augmented Multiparty Interactions
- Recorded at four different sites (Edinburgh, Idiap, TNO, Brno)
- Recordings Dev set: 18, Eval set: 16
- o 20-60mins
- o 3-4 speakers

DIHARD III [3]

- Speech diarization challenge data
- 9-11 domains e.g, audiobooks, telephone recording, meetings, web videos.
- Recordings Dev set:254, Evalset:259
- o 0.5-10 mins
- o 1-10 speakers

Voxconverse [4]

- Voxconverse challenge data
- Conversational dataset extracted from YouTube videos.
- dev set: 216 and eval set:232
- o 22s 20mins.
- o 1-21 speakers.

- [3] Ryant et al., The Third DIHARD Diarization Challenge, 2020
- [4] Chung et al., Spot the Conversation: Speaker Diarisation in the Wild, 2020

^[1] Mark et al., 2000 NIST Speaker Recognition Evaluation

^[2] McCowan et al., The AMI meeting corpus, 2005

Graph Clustering Introduced **self-supervised** Supervised clustering Self-Supervised learning using DNN. using graph neural Clustering Introduced hierarchical networks graph clustering. Metric Learning

Proposed Approach 1

Motivation

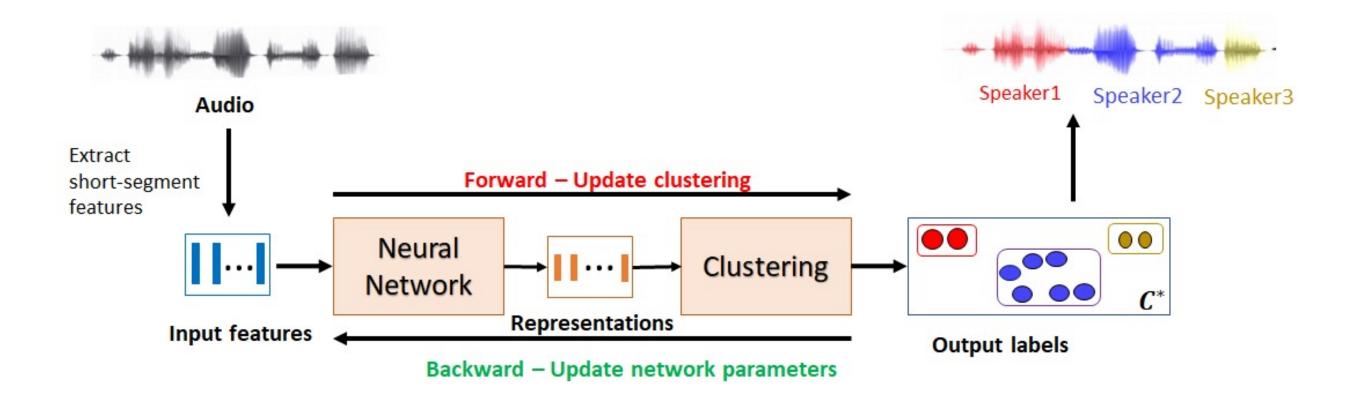
- The clustering approaches extract short-segment speaker embeddings from a pre-trained network (x-vectors) and perform unsupervised clustering.
- Each stage (embedding extraction and clustering) is optimized independently.
- The test set will contain unseen domains and speakers.

Motivation

- Succinct speaker representations are beneficial for clustering while clustering results can provide self-supervisory targets for representation learning¹.
- Creating a feedback loop from the output of the clustering algorithm to the input can help improve the representations used for clustering.
- This is referred to as self-supervised clustering (SSC).
- The data itself provides supervision labels for model learning

Self-supervised clustering

Self-Supervised Clustering alternates between merging the clusters for a fixed embedding representation and learning the representations using the given cluster labels, till we reach the required number of clusters/speakers.



SSC Algorithm

Variables:

 $X = \{x_1, ..., x_{N_r}\} \in \mathbb{R}^D$: X-vectors sequence of recording r

 $\mathbf{Y} = \{y_1, \dots, y_{N_r}\} \in \mathbb{R}^d$: lower dimensional representations

 $\mathbf{z} = \{z_1, \dots, z_{N_r}\} \in \mathbb{R}$: segment labels

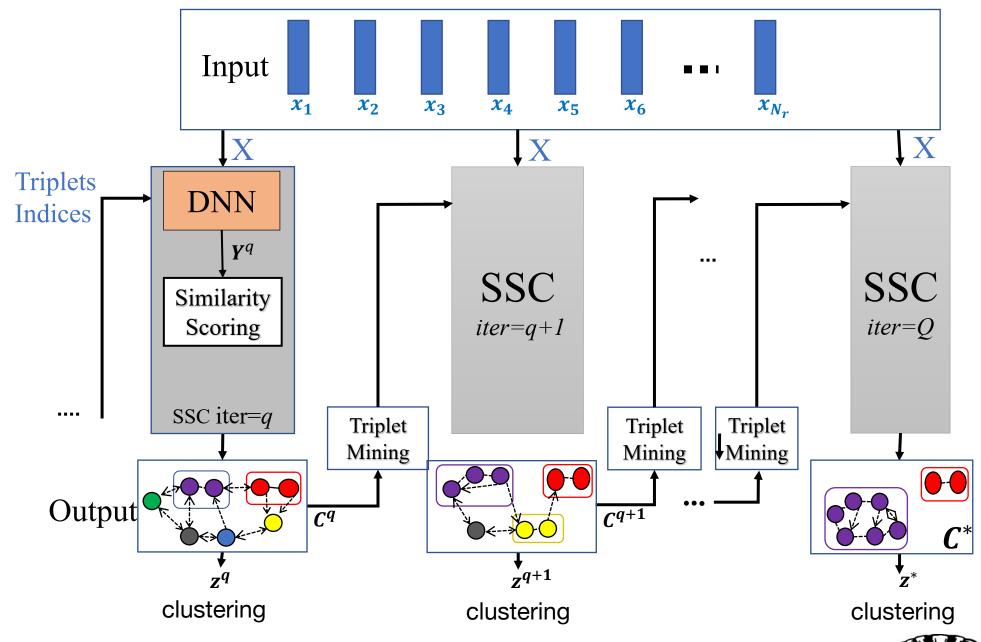
 θ : DNN parameters

 $(\mathbf{Y}^q, \mathbf{z}^q, \boldsymbol{\theta}^q)$: refer to variables at iteration q

 N^q : Number of clusters at iteration q

 N^* : target number of clusters

For DNN training at iteration q, use clustering results from q-1 to sample positive and negative pairs of triplets.



P. Singh and S. Ganapathy, "Self-supervised Representation Learning With Path Integral Clustering For Speaker Diarization", IEEE TASLP (2021).

DNN training—Triplet loss

- For each cluster C_i^q , pick two elements as anchor and positive $\{y_i, y_j\}$.
- For negative pair, element (y_l) is selected randomly from any other cluster.
- Triplet loss:

$$\theta^{q} = argmax_{\theta} \sum_{i,j,l} [s(i,j) - \alpha(s(i,l) + s(j,l))]$$

Agglomerative clustering

AHC

Merging Criterion:

In an AHC algorithm, the merging criterion for merging two clusters C_a^q and C_b^q where q is the iteration index is given as

$$\{C_a^q, C_b^q\} = \arg\max_{C_i, C_j \in C, i \neq j} A(C_i, C_j)$$

(where, A denote the affinity measure between two clusters.)

Agglomerative clustering

Path integral clustering (PIC)

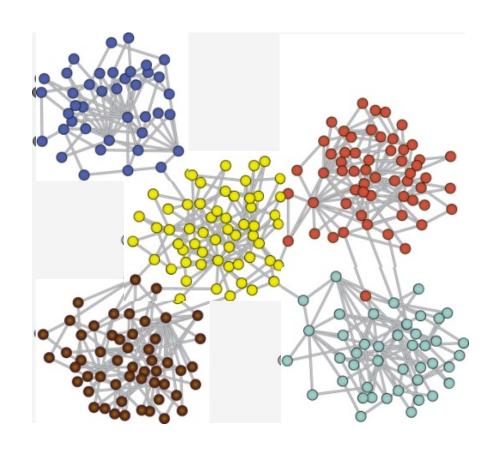
Graph-structural based agglomerative clustering algorithm where graph encodes the structure of the embedding space.

- 1. Measures the affinity of clusters based on the neighborhood graph hence is more robust to noisy distances.
- 2. Uses robust graph structural merging strategy for noisy links.
- It does not assume anything on the underlying data distributions and only need the pairwise similarities of samples.

Path Integral Clustering (PIC)

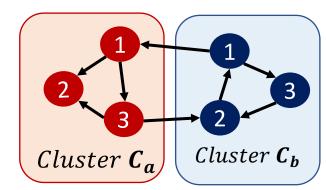
- Given a set of vectors $X = \{x_1, x_2, ..., x_n\}$, it involves creation of directed graph G = (V, E)
 - Weighted Graph Adjacency matrix (W) given as, $w_{ij} = S(i,j) \text{ if } x_j \in N_i^K$ = 0 otherwise

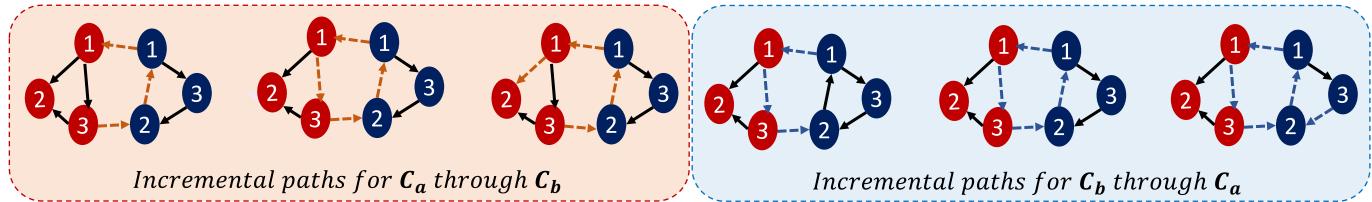
where, S(i,j) is the pairwise similarity between x_i and x_i , N_i^K is the set of K nearest neighbour of x_i



PIC illustration

$$\mathcal{A}_{\mathcal{C}_a,\mathcal{C}_b} = (\mathcal{S}_{\mathcal{C}_a|\mathcal{C}_a\cup\mathcal{C}_b} - \mathcal{S}_{\mathcal{C}_a}) + (\mathcal{S}_{\mathcal{C}_b|\mathcal{C}_a\cup\mathcal{C}_b} - \mathcal{S}_{\mathcal{C}_b}).$$





$$S_{C_a|C_aUC_b}-S_{C_a}$$

$$S_{C_b|C_aUC_b}-S_{C_b}$$

Baselines¹²

Step	Parameter	СН	AMI	
_	Sampling rate	8kHz	16kHz	
Segmentation	Window size	1.5s, 0.75s shift	1.5s, 0.75s shift	
	Architecture	7-layers TDNN	7-layers TDNN	
Embedding	Train set	SWBD, SRE	Voxceleb 1,2	
extraction (x-vector)	Train #speakers	4,285	7,323	
(x-vector) extraction	Input features	23D MFCCs	30D MFCCs	
	x-vector dimension	128	512	
Similarity score	type	PLDA	PLDA	
Clustering	type	AHC	AHC	

Implementation details

config	СН	AMI
x-vectors/recording	50-700	1000-4000
2-layer DNN	128x10	512X30
Learning rate	0.001	0.001
Annealing	No	Yes
Batch	Full	Mini-batch
epochs	5-10	5-10

Initialization

- Weight initialization and training are file specific
- Uses processing steps from baseline system for PLDA scoring
- First layer is initialized using global PCA computed using held out set followed by length norm.
- Second layer is initialized using file-level PCA
- Affinity measure : Cosine similarity

CH Results

- Performance metric: Diarization Error Rate (DER) (%)
- Considering only non-overlapping speech regions with tolerance collar (0.25s).

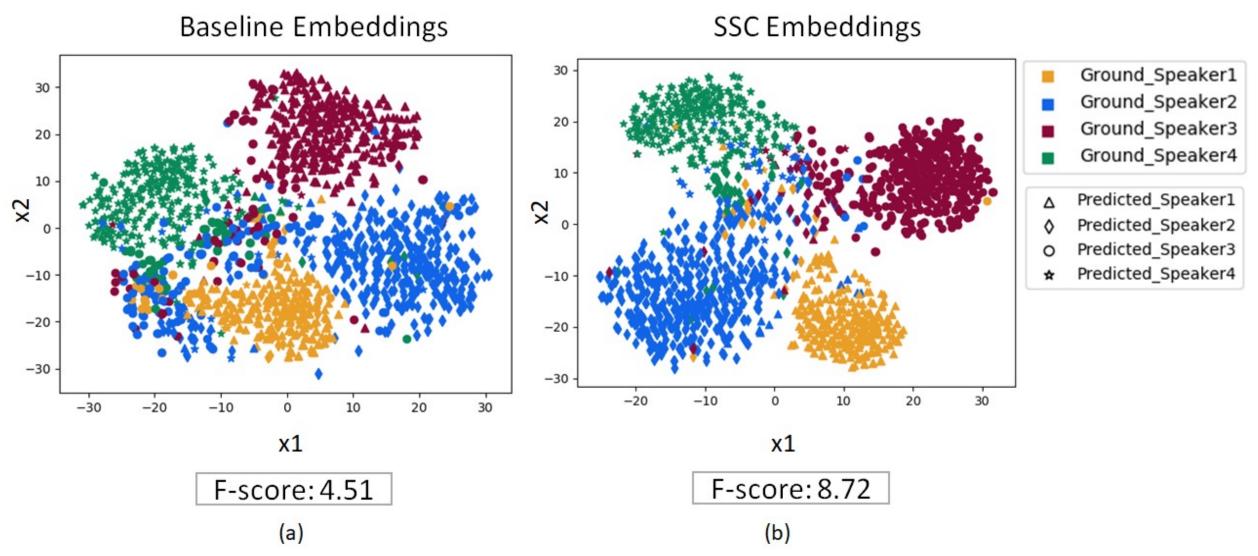
System	Known N*	Unknown N*	
x-vec + cosine + AHC	8.9	10.0	
x-vec + cosine + SC	9.4	11.9	
x-vec + PLDA + AHC	7.0	8.0	
x-vec + cosine + PIC	7.7	9.3	
SSC-AHC	6.4	8.3	
SSC-PIC	6.4	7.5	
+ Temp. cont.	6.3	7.0	

AMI Results

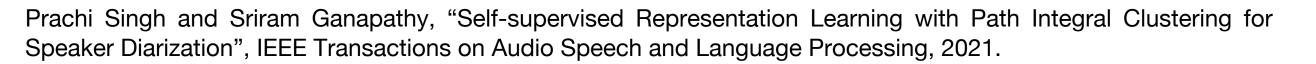
	Known N*		Unknown N*	
System	Dev.	Eval.	Dev.	Eval.
x-vec + cosine + AHC	34.6	30.2	18.2	15.5
x-vec + cosine +SC	30.2	25.5	40.0	31.1
x-vec + PLDA + AHC	15.7	16.0	13.7	16.3
(Baseline)				
SSC-PLDA-AHC	9.4	11.1	10.7	11.6
x-vec + PLDA + PIC	9.4	9.3	9.8	10.4
x-vec + cosine + PIC	8.9	7.3	9.0	7.3
SSC-PIC	7.3	7.2	8.1	7.6
+ Temp. cont.	6.2	6.4	6.4	6.7

Prachi Singh and Sriram Ganapathy, "Self-supervised Representation Learning with Path Integral Clustering for Speaker Diarization", IEEE Transactions on Audio Speech and Language Processing, 2021.

AMI Visualization



t-SNE based visualization of embeddings extracted on 1.5s audio segments from the meeting dataset.



AMI Results

DER comparison with other published works

System	Known N*		Unknown N*	
	Dev.	Eval.	Dev.	Eval.
Semi-sup learning ¹	-	_	17.5	22.0
Incremental ² learning	-	15.6	-	20.0
GAN clustering ³	10.2	10.1	11.0	11.3
2D self-attention ⁴	-	-	12.2	13.0
Baseline	14.4	16.5	12.9	13.6
SSC-PIC	4.6	6.5	5.2	5.4

⁴Sun et al., Speaker diarisation using {2D} self-attentive combination of embeddings, 2019

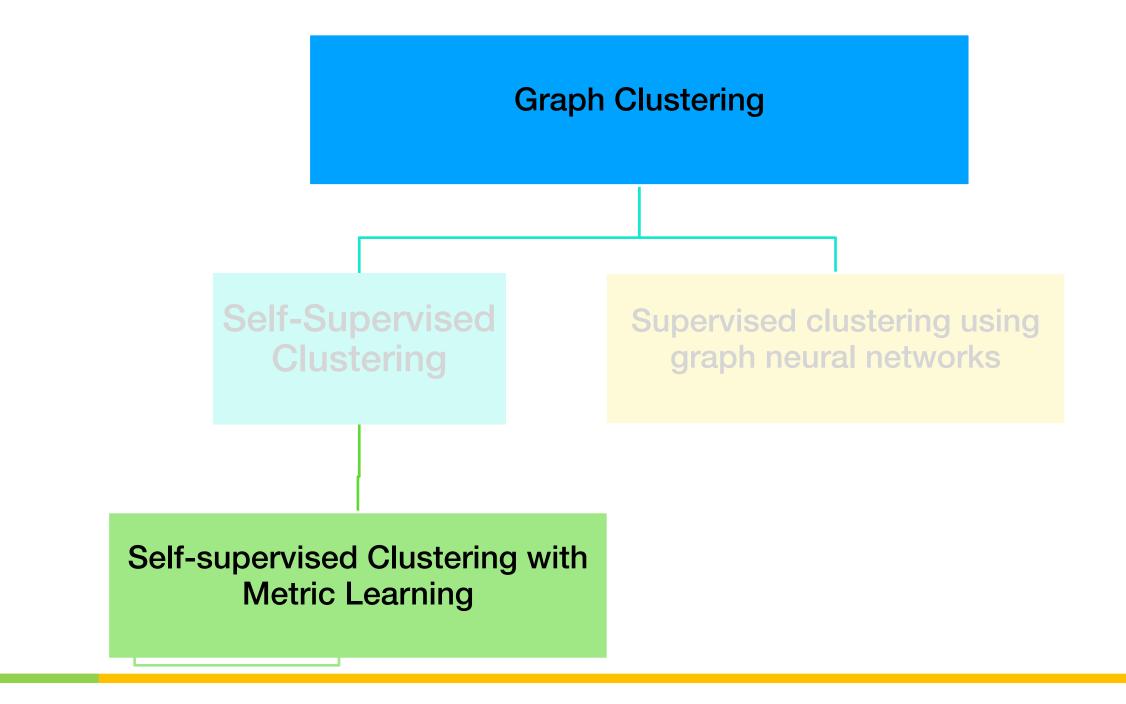
¹Pal et al., A study of semi-supervised speaker diarization system using GAN mixture mode, 2019

²Dawalatabad et al., Incremental Transfer Learning in Two-pass Information Bottleneck Based Speaker Diarization System for Meetings, 2019

³Pal et al., Speaker diarization using latent space clustering in generative adversarial network, 2020

Summary

- Proposed self-supervised clustering algorithm using DNN which iteratively updates representation learning and clustering.
- Introduced path integral clustering hierarchical graph clustering for first time for diarization.
- Encourages separation between representations of different speakers.
- Improvements on AMI and CALLHOME dataset.



Proposed Approach 2

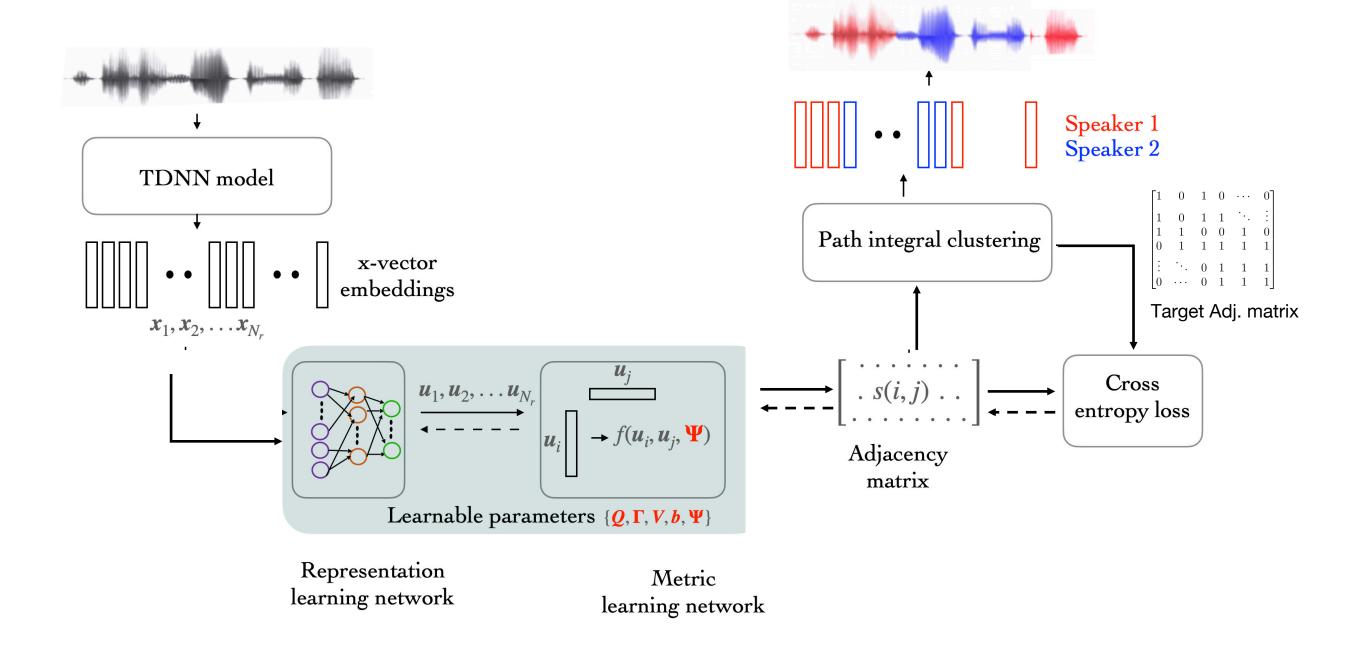
Motivation

- SSC uses cosine similarity to perform clustering.
- Prior work on clustering performs better with PLDA score than cosine.
- PLDA¹ is a parametric model which is trained using Expectation Maximization (EM).
- Can we train the SSC with learnable scoring/metric function?
 - Yes. SelfSup-PLDA-PIC.

SelfSup-PLDA-PIC

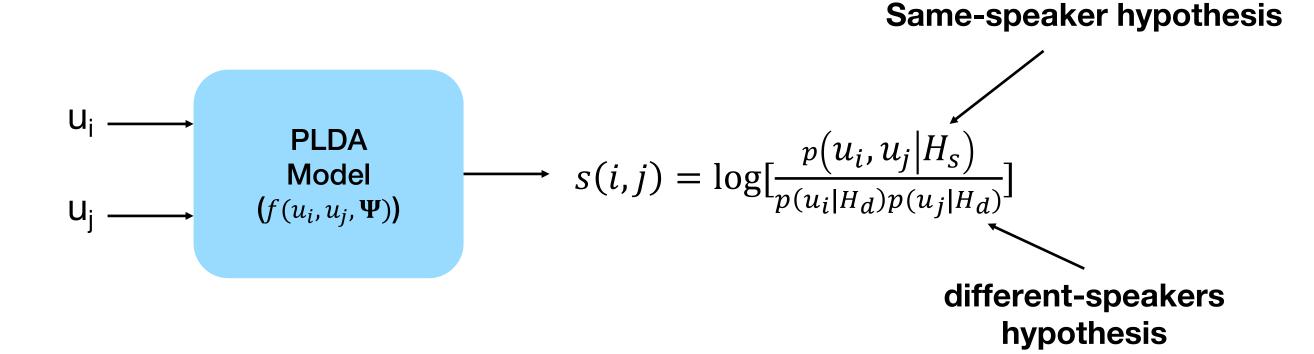
- Self-supervised metric learning with graph-based clustering algorithm (SelfSup-PLDA-PIC) jointly performs representation learning and metric learning using the initial clustering results.
- Propose a neural version of PLDA to incorporate deep learning of the PLDA model parameters.

Block diagram: SelfSup-PLDA-PIC



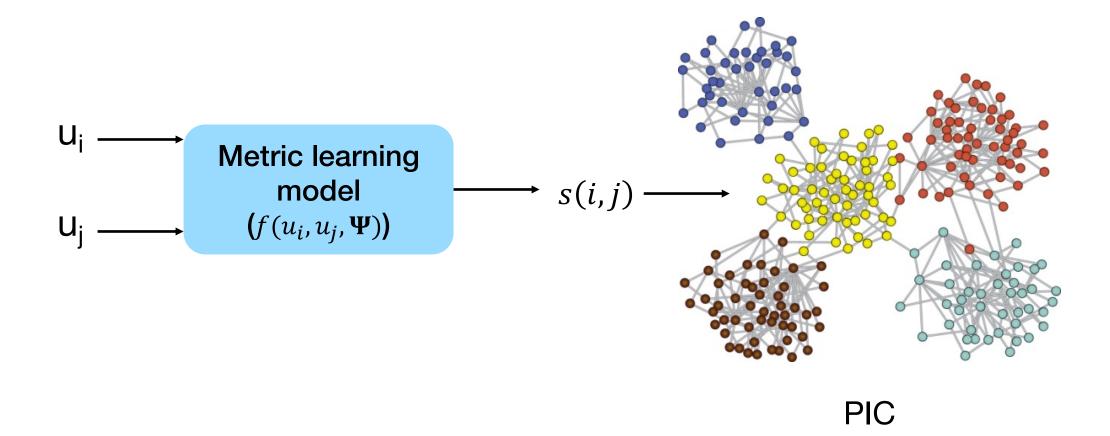
Metric Learning using PLDA model

- Probabilistic Linear Discriminant Analysis (PLDA)¹ is a supervised generative model trained to learn distributions of different speakers.
- It can be used to find pairwise similarity score between embeddings from unseen speakers as follows



Metric Learning using PLDA model

 Replacing PLDA model with a learnable parametric model with parameter Ψ



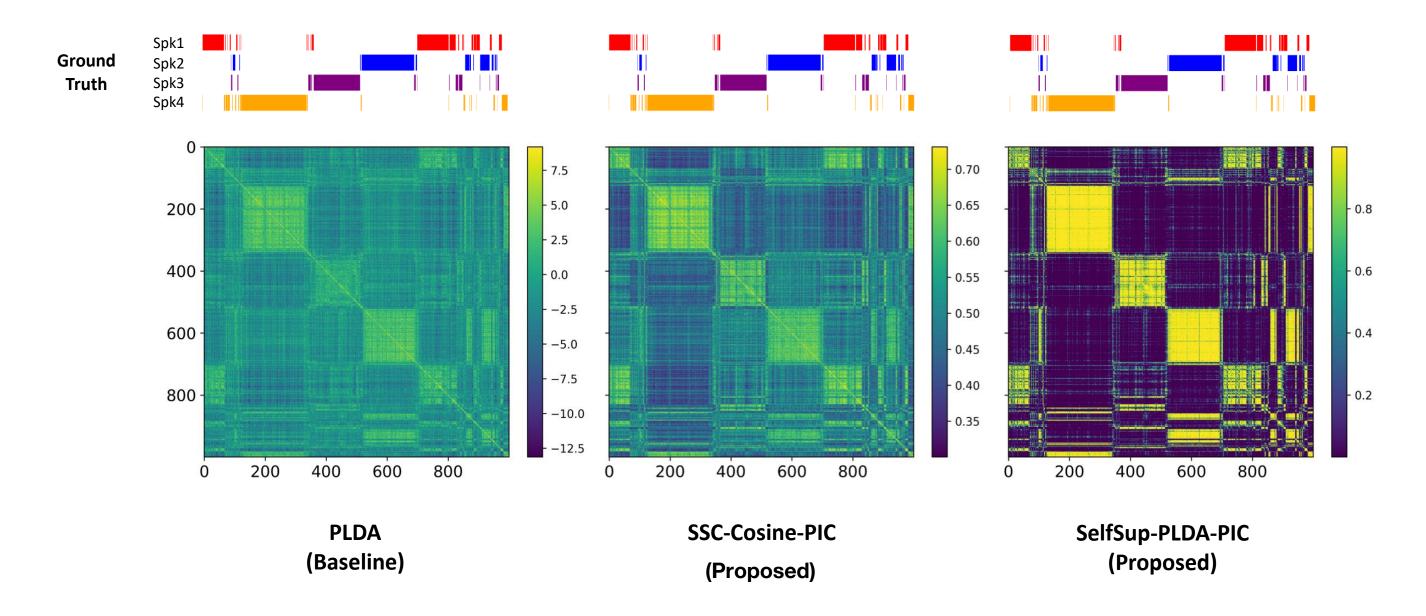
AMI Results

AMI DER (%) Results – Ignoring overlaps and with collar 0.25s

	Known N*		Unknown N*	
System	Dev.	Eval.	Dev.	Eval.
x-vec + PLDA + AHC	15.9	12.2	13.1	12.3
x-vec + PLDA + PIC	5.1	10.2	5.8	11.4
SSC-Cosine-PIC	5.3	6.2	6.5	8.4
SelfSup-PLDA-AHC	7.9	7.3	7.7	9.4
SelfSup-PLDA-PIC ¹	4.2	6.2	4.4	6.9
_ + Temporal continuity	4.2	4.2	4.4	4.9
SelfSup-PLDA-PIC + VBx ²	_	-	2.9	4.2

¹P. Singh and S. Ganapathy, "Self-Supervised Metric Learning with Graph Clustering for Speaker Diarization", IEEE ASRU 2021. ²Diez et al., Bayesian HMM based x-vector clustering for speaker diarization, 2019

AMI Visualization



Similarity score matrices comparison for 4-speaker recording from AMI development set

DIHARD Results

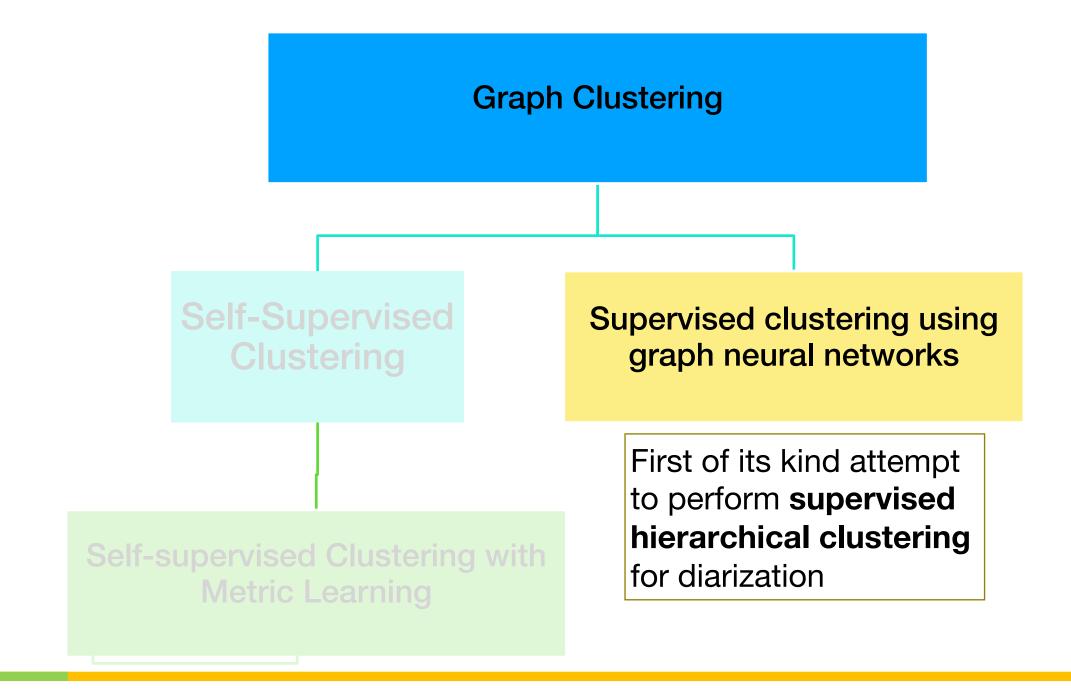
Average DER (%) on the DIHARD dataset considering overlapping regions with no tolerance collar.

For recordings with ≤ 7 speakers and > 7 speakers.

	≤ 7 speakers		> 7 speakers	
System	Dev.	Eval.	Dev.	Eval.
X-vec + PLDA + AHC	18.0	19.3	36.6	27.1
X-vec + PLDA + PIC	17.7	17.8	36.5	24.0
SelfSup-PLDA-PIC	17.0	17.2	39.5	28.1

Summary

- Proposed self-supervised metric learning approach using PLDA.
- Increases inter-speaker distance and decreases intra-speaker distance.
- Performance degrades as number of speakers increases as initial clustering becomes unreliable.



Proposed Approach 3

Motivation

- Self-supervised clustering is less reliable when recording contains higher number of speakers (>7).
- The end goal is to minimize the clustering errors to improve performance
- Can we train a model with the clustering objective?

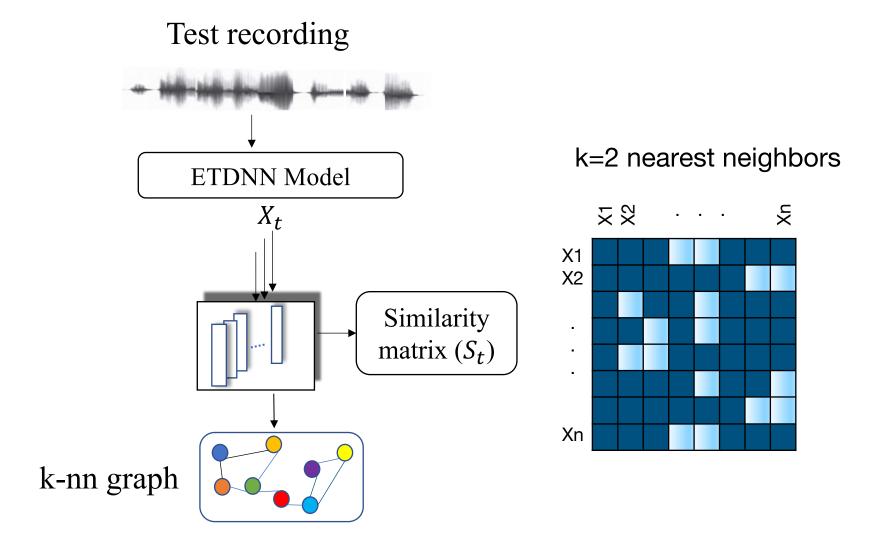
Supervised HierArchical GRaph Clustering (SHARC)

- Performs supervised clustering using Graph Neural Networks (GNN).
- Represents the speaker embeddings using graph.
- Clustering loss is used to update edges of the graph.
- Generates node labels based on clustering performed on updated edges at each level of hierarchy.

SHARC components

- Graph Generation
- GNN scoring
- Clustering
- Aggregation

Graph generation



GNN scoring

- GNN scoring function Ψ a learnable GNN module designed for supervised clustering.
- Output: edge prediction probability p_{ij} between node i and j.
- N_i^k k-nearest neighbors of node vi,

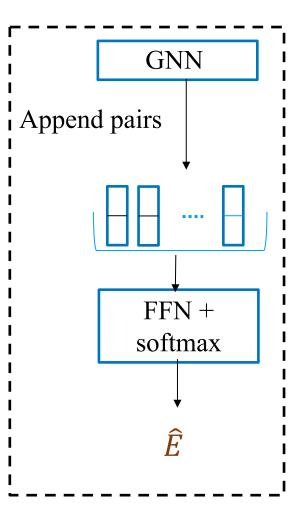
$$\hat{e}_{ij} = 2p_{ij} - 1 \in [-1, 1] \forall j \in N_i^k$$

Density of node i :

• Ground truth:
$$d_i = \frac{1}{k} \sum_{j \in N_i^k} e_{ij} \boldsymbol{S}_r(i,j)$$

• Predicted: $\hat{d}_i = rac{1}{k} \sum_{j \in N_i^k} \hat{e}_{ij} m{S}_r(i,j)$

GNN Module

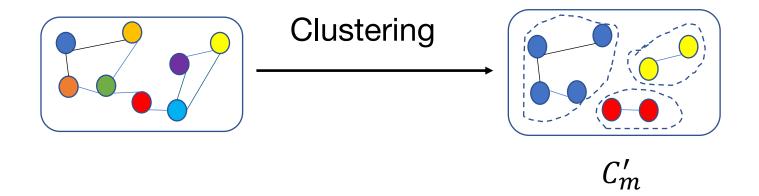


Clustering

At each level of hierarchy m, it creates a candidate edge set ε(i)

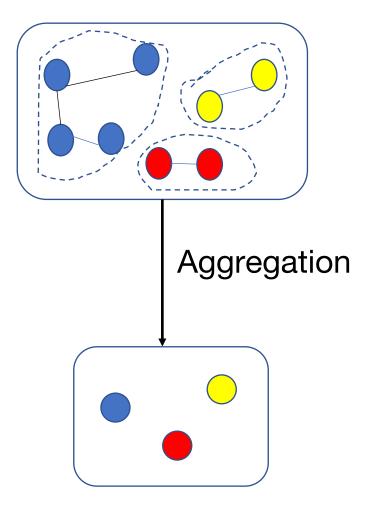
$$\varepsilon(i) = \{j | (v_i, v_j) \in E_m, \quad \hat{d}_i \le \hat{d}_j \quad \text{and} \quad p_{ij} \ge p_\tau \}$$

- For any i, if ε (i) is not empty, we pick $j = \operatorname{argmax}_{j \in \varepsilon(i)} \hat{e}_{ij}$ and add (vi,vj) to E'_m
- A set of connected components C'_m , forms clusters for the next level (m + 1).

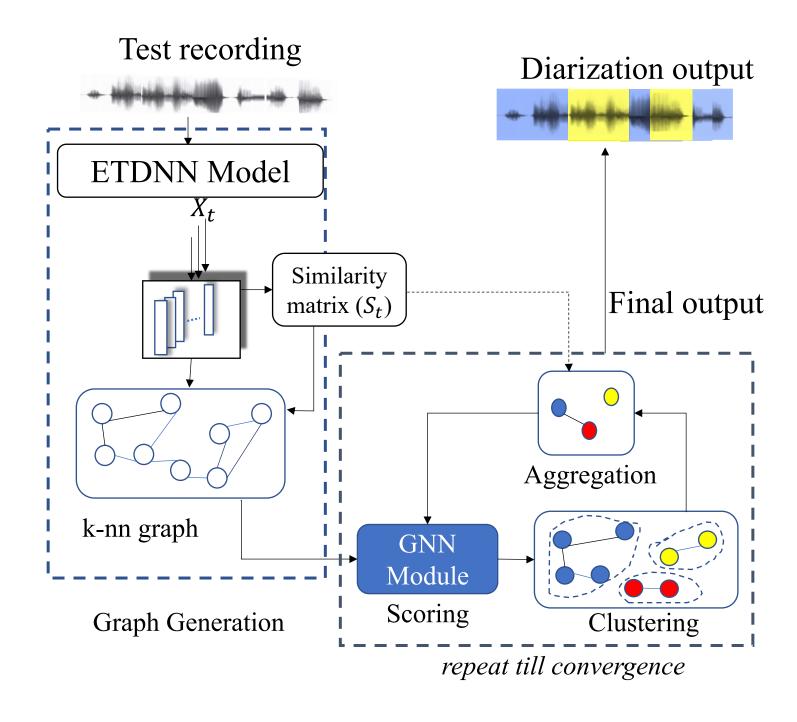


Feature Aggregation

The aggregation function Ψ - obtain node representations for next level.



Block diagram: SHARC Inference



SHARC Components

- 1. Graph Generation
- 2. GNN scoring
- 3. Clustering
- 4. Aggregation

Training loss

- Loss: $L = L_{conn} + L_{den}$
 - $L_{conn} = \frac{1}{|E|} \sum_{i,j \in E} q_{ij} \log p_{ij} + (1 q_{ij}) \log (1 p_{ij})$

 q_{ij} - Ground truth edge labels, p_{ij} - predicted edge labels

• $L_{den}=\frac{1}{|V|}\sum_{i=1}^{|V|}||d_i-\hat{d}_i||_2^2$ $\forall i\in\{1,...,|V|\},$ where |V| is the cardinality of V

Experiments

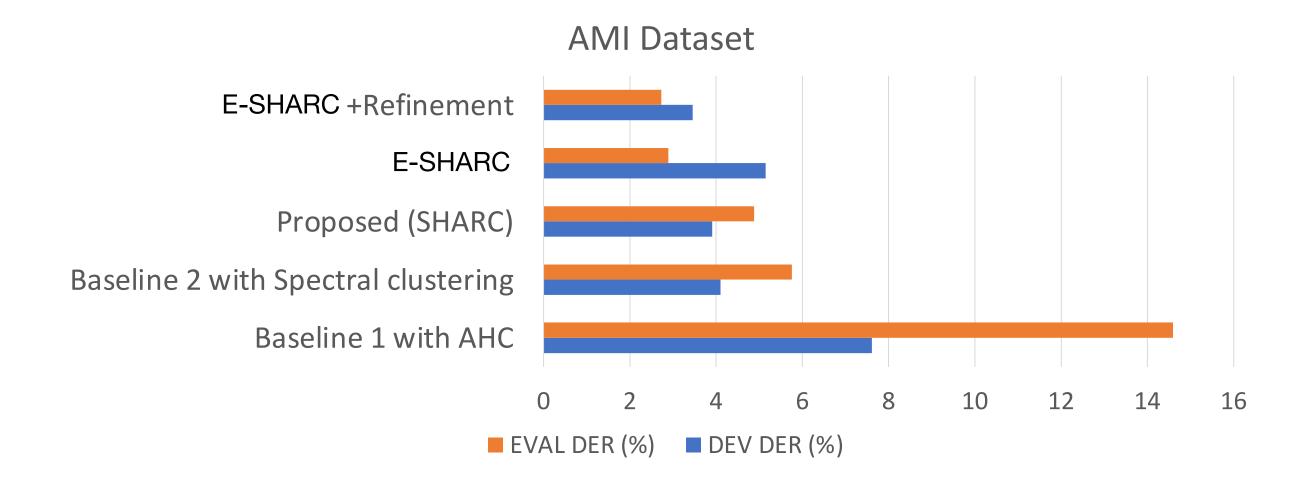
Datasets

AMI: Meeting dataset

Voxconverse: Youtube videos

Results

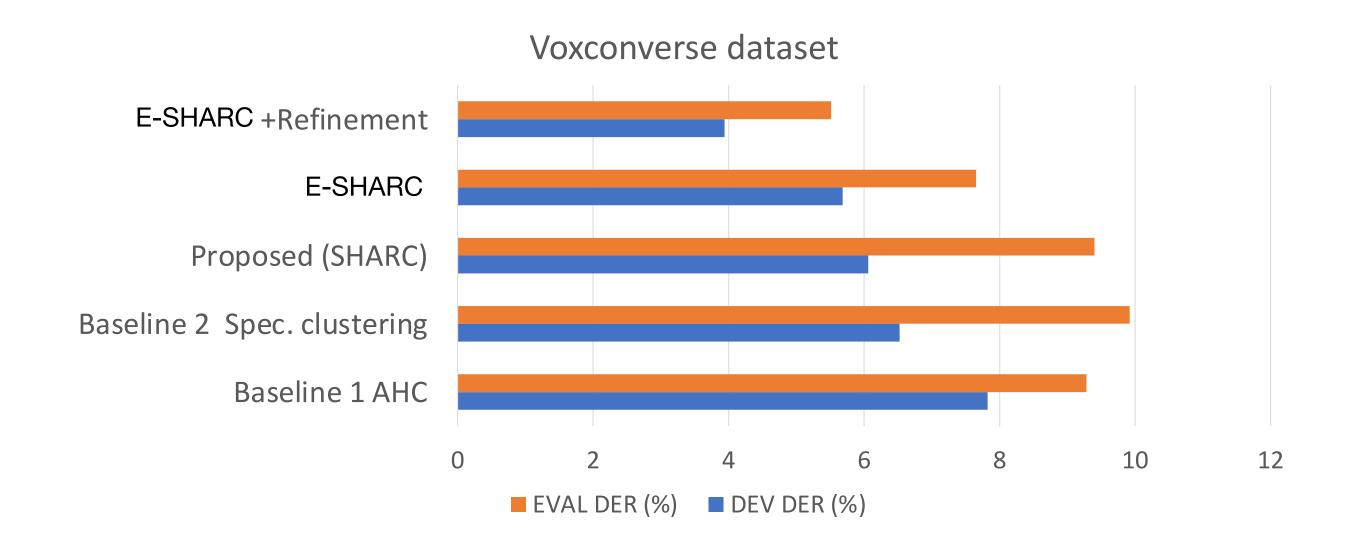
Performance : DER (%) (lower the better)



53% relative improvement over best baseline

Results

Performance : DER (%) (lower the better)



Cluster Purity and Coverage

Purity: The percentage of segments from predicted speaker belong to one speaker in ground truth

Coverage: The percentage of segments from ground truth speaker is covered by predicted speaker.

Voxconverse

Method	Purity	Coverage
Baseline with AHC	93.5	89.5
Baseline with SC	92.0	92.3
SHARC	93.0	92.4
E-SHARC	93.0	92.9

Results

Results with pyannote overlap detection¹

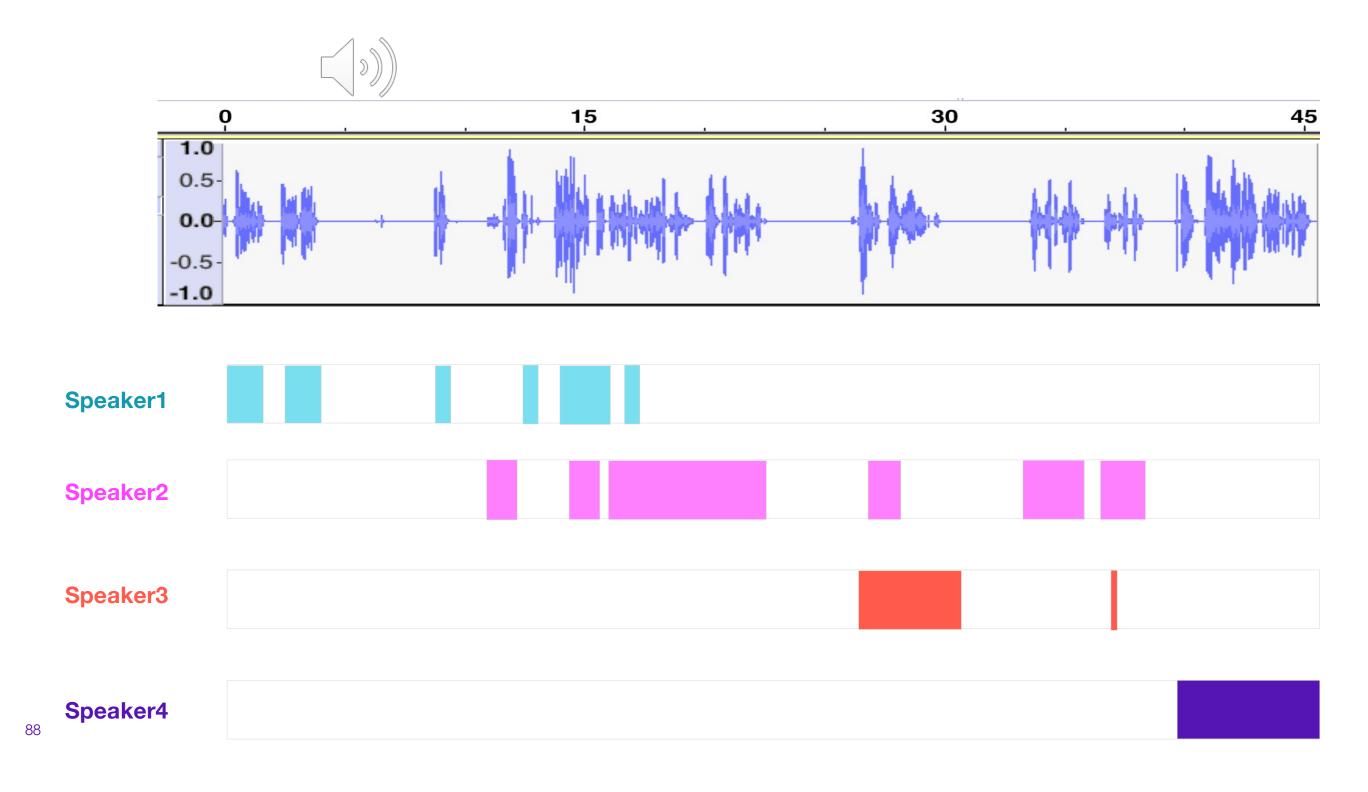
AMI	Eval DER (%)
AHC + overlap	26.30
SC + overlap	18.10
SHARC + overlap	19.32
E-SHARC + overlap	17.95
Voxconverse	Eval DER (%)
Voxconverse AHC + overlap	Eval DER (%) 11.66
AHC + overlap	11.66

Summary

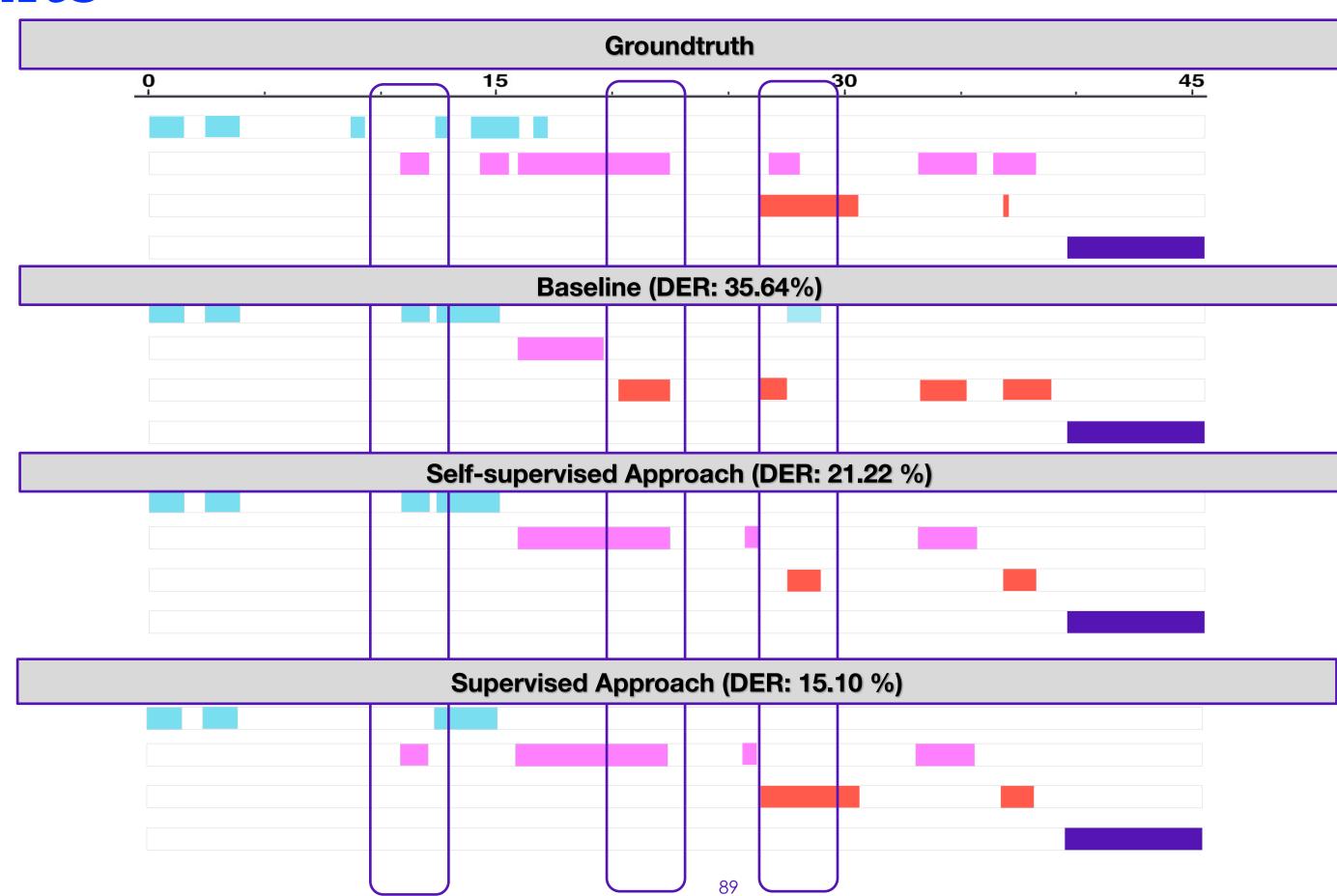
- Introduced supervised hierarchical clustering for speaker diarization for the first time.
- Designed an end-to-end approach to perform speaker diarization using Graph Neural Networks.
- Achieved state-of-the-art performance on two benchmark datasets.

Conclusion and Future Directions

Real world Example



Results

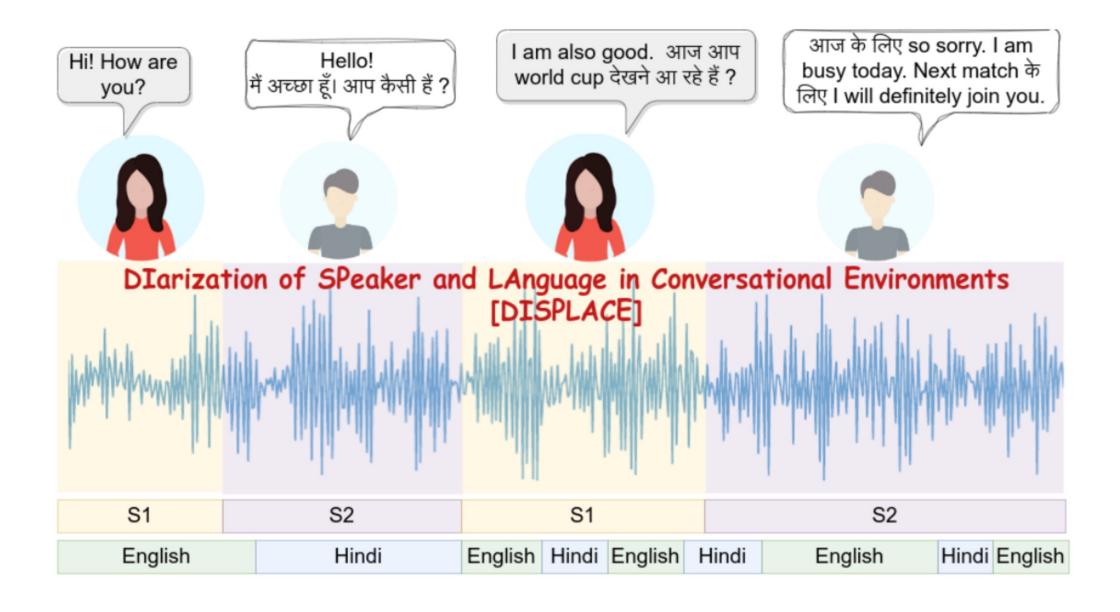


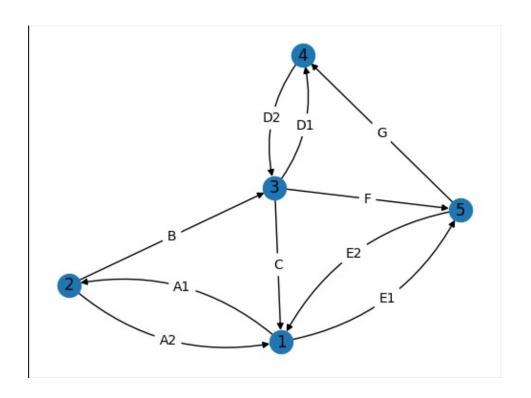
Concluding remarks

Proposed Approaches	Novelties	Limitations
SSC	 Introduced self-supervised clustering using DNN Introduced PIC graph clustering for the first time to improve diarization. 	Similarity scoring is not learnable (cosine)
SelfSup-PLDA-PIC	Introduced self-supervised metric learning	 Performance depends on initial clustering Degrades with higher number of speakers
SHARC	 First time performed supervised hierarchical clustering for diarization 	 Increased training time Require domain specific training Not purely end-to-end Overlap detection can be added

Future Directions

Multilingual conversation Diarization

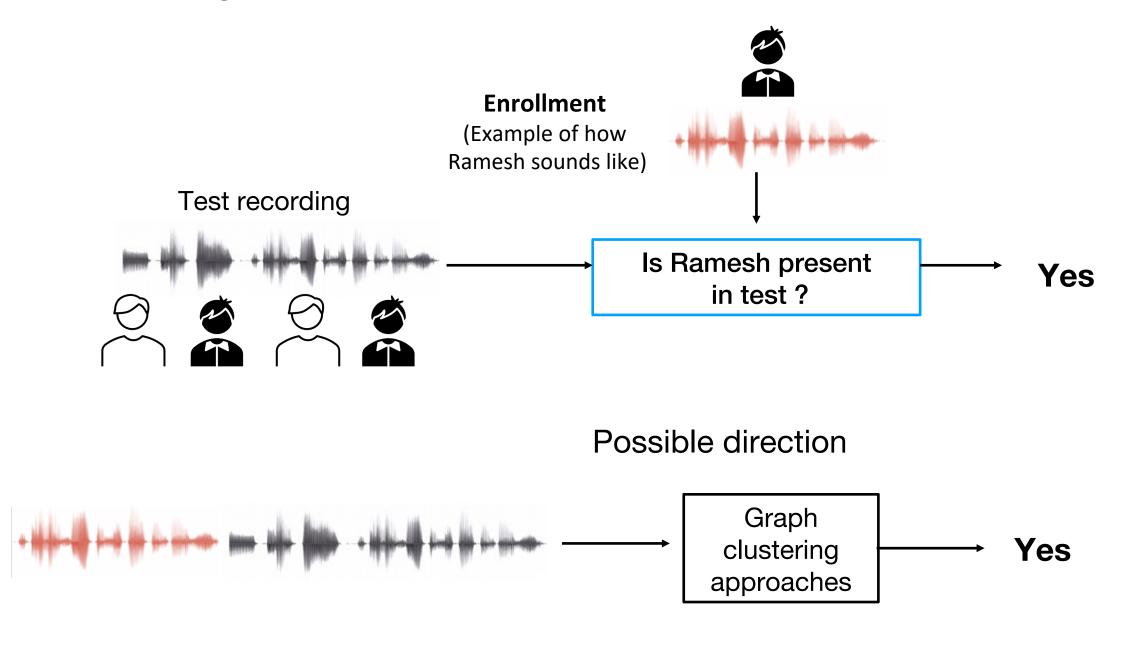




Use Multi-edge graph to perform multi-task learning

Future Directions

Target speaker identification in conversational speech



- Need to handle channel mismatch
 - Avoid clustering within target speaker recording

Publications based on the thesis

Peer-reviewed Journals:

- **P. Singh** and S. Ganapathy, "Self-supervised Representation Learning With Path Integral Clustering For Speaker Diarization", IEEE/ACM Transactions on Audio, Speech, and Language Processing (2021).
- P. Singh and S. Ganapathy, "Speaker Diarization with Graph Based Supervised Hierarchical Clustering" (under preparation).

Peer-reviewed Conferences:

- **P. Singh**, A. Kaul and S. Ganapathy, "Supervised Hierarchical Clustering using Graph Neural Networks for Speaker Diarization", **IEEE ICASSP 2023**.
- **P. Singh** and S. Ganapathy, "Self-Supervised Metric Learning with Graph Clustering for Speaker Diarization", **IEEE ASRU 2021**.
- **P. Singh**, R. Varma, V. Krishnamohan, S. R. Chetupalli, and S. Ganapathy. "LEAP Submission for the Third DIHARD Diarization Challenge", **INTERSPEECH 2021**.
- P. Singh and S. Ganapathy, "Deep Self-Supervised Hierarchical Clustering for Speaker Diarization",
 INTERSPEECH 2020.
- P. Singh, Harsha Vardhan MA, S. Ganapathy, A. Kanagasundaram, "LEAP Diarization System for the Second DIHARD Challenge", INTERSPEECH 2019.

