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Abstract

Language learning and speech perception are remarkable feats performed by the human brain,

involving complex neural mechanisms that allow us to understand and communicate with one

another. Unravelling the mysteries of these mechanisms has far-reaching implications, from

theories of human cognition to developing effective language learning strategies and advancing

speech technology. By employing a multidisciplinary approach encompassing neural investiga-

tions using EEG signals, behavioural analyses, and machine learning perspectives, this thesis

seeks to shed light on the underlying processes involved in word learning and speech perception.

The thesis is divided into three parts. The first part examines how imitation-based learning

of foreign sounds is captured in the EEG signals. In this listen-and-reproduce setting, subjects

were introduced to words from a foreign language (Japanese) and English. The subjects were

also asked to articulate the words. The results show that time-frequency features and phase in

the EEG signal contain information for language discrimination. Further analysis showed that

speech production improved over time, and the frontal brain regions were involved in language

learning. These findings suggest the potential of EEG for personalized language exercises and

assessing learners’ abilities.

The next part of the thesis investigates what changes in neural patterns occur when seman-

tics are introduced and presented in a sentence context. The participants listen to Japanese

words in an English sentence, once before understanding the semantics of these words and later

with the semantic exposure. We quantify the learning patterns in the EEG signal. Notably,
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Abstract

a delayed P600 component emerges for Japanese words, suggesting short-term memory pro-

cessing, unlike the N400 typically seen for a semantic anomaly in the known language. We

have also shown the association of the P600 amplitude with the similarity of newly learned to

the known language. The brain regions associated with semantic learning are also identified in

this study using the EEG data. These findings demonstrate that there are differences in the

underlying cognitive processes involved in rapid and long-term language learning.

In the final part of the thesis, we analyze the neural mechanisms of human speech com-

prehension using a match-mismatch classification of the continuous speech stimulus and the

neural response (EEG). We make three significant contributions on this front - i) Illustrate the

role of word boundaries in continuous speech comprehension for the first time, ii) Elicit the

encoding of speech data (acoustics) as well as the text data (semantics) in the EEG signal, and,

iii) Increased signature of semantic content (text) in the EEG data in acoustically challenging

environments of dichotic listening. Previous studies focused on fixed-duration segments with-

out considering the variable length processing of speech in the brain. Our approach involved

processing speech and EEG signals with convolutional layers, word boundary-based pooling,

and inter-word context through a recurrent layer. We introduced a novel loss function based

on Manhattan similarity. The findings have potential applications for understanding speech

recognition in noise, brain-computer interfaces, and attention studies.

Overall, this thesis contributes to our understanding of language learning, speech compre-

hension, and the underlying neural mechanisms. Through the analysis of EEG signals, this

work provides valuable insights into the processing of familiar and unfamiliar languages, the

effects of semantic dissimilarity, and the role of word boundaries in sentence comprehension.

These findings have implications for both human language learning and the development of

machine systems aimed at understanding and processing speech.
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Chapter 1

Introduction

1.1 Speech Perception and Word Learning
The field of speech perception and word learning is a multidisciplinary area of research that

aims to understand how humans process and comprehend spoken language. It combines insights

from psychology, neuroscience, linguistics, cognitive science, and computer science to unravel

the complex mechanisms involved in perceiving and interpreting speech.

Speech perception refers to the process by which humans extract and interpret linguistic

information from auditory signals. It involves decoding the acoustic properties of speech sounds,

such as phonemes, prosody, and phonetic cues, to recognize and differentiate words, sentences,

and other linguistic units. Prior works have investigated various aspects of speech perception,

including speech segmentation, phoneme categorization, temporal processing, and the role of

contextual information.

Word learning in a foreign language is a complex cognitive process involving the acquisition

and integration of new vocabulary into an individual’s existing linguistic knowledge. Neural

studies have revealed interesting differences in brain activation when exposed to native and

non-native languages [2].

The process begins with the auditory system processing the acoustic signal of the unfamiliar
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word, analyzing its phonological features like sounds and syllables. The brain then tries to

match these features with known linguistic representations and, if literate, considers the word’s

orthographic form.

As learners become more familiar with the foreign word, neural plasticity comes into play.

This is the brain’s capacity to reorganize and form new neural connections to accommodate the

newly acquired knowledge. Studies in bilingual language acquisition, memory, attention, and

perception have demonstrated ongoing neuroplasticity for language learning in the adult brain,

which was previously not well understood [3, 4, 5, 6, 7].

Furthermore, context significantly influences word learning, and the brain relies on contex-

tual cues to grasp the meaning and usage of foreign words. The dynamic interaction among

various brain regions facilitates gradually incorporating new vocabulary into the learner’s lan-

guage repertoire. This thesis focuses on comprehending how adults acquire and learn words

from a foreign language.

Research in the field of speech perception and word learning employs various methodolo-

gies to explore the underlying neural and cognitive processes. These methodologies include

behavioural experiments, psycholinguistic studies, neuroimaging techniques (such as functional

magnetic resonance imaging (fMRI) and electroencephalography (EEG)), computational mod-

elling, and machine learning approaches. Researchers can use these methods to investigate

the intricate connections between brain mechanisms, linguistic representations, and cognitive

processes involved in speech perception and language understanding.

Understanding the neural encoding of speech perception and language learning has impor-

tant implications for various areas. It can enhance our understanding of language disorders

such as dyslexia, aphasia, and developmental language impairments [8, 9, 10, 11]. It can also

inform the development of assistive technologies for individuals with speech and language dis-

abilities. In addition to language disorders, this understanding can also be used to improve

the design of hearing aids and cochlear implants [12, 13]. By understanding how the brain en-
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codes speech sounds, researchers can develop more effective devices for restoring hearing [14].

Furthermore, studying the neural mechanisms underlying speech perception and word learning

can contribute to improving speech technologies like automatic speech recognition systems [15],

natural language processing algorithms, and machine translation tools.

Word learning and speech perception are intricate processes that engage multiple neural

mechanisms distributed across various brain regions. From the initial perception of speech

sounds to the integration of semantic and contextual information, these mechanisms work to-

gether to enable the acquisition and understanding of spoken language. Further research in this

field will continue to uncover additional details about the neural mechanisms underlying word

learning and speech comprehension, contributing to our understanding of human communica-

tion.

In recent years, there has been a growing interest in using artificial neural networks to model

the neural mechanisms of word learning and speech comprehension [16, 1, 17]. Neural networks

are a type of artificial intelligence that can learn to perform tasks by analyzing data. They are

effective in modelling a variety of cognitive functions, including language processing. They offer

a promising new approach to understanding the neural mechanisms of language processing.

1.2 Relevant Background

1.2.1 Human Brain Anatomy

The brain is a complex organ that controls thought, memory, emotion, touch, motor skills,

vision, breathing, temperature, hunger and every process that regulates our body. At a high

level, the brain can be divided into the cerebrum, brainstem and cerebellum. Cerebrum is the

largest part of the brain and is composed of right and left hemispheres. It performs higher

functions like interpreting touch, vision, and hearing, as well as speech, reasoning, emotions,

learning, and fine control of movement.

The cerebral hemispheres have distinct fissures, which divide the brain into lobes. Each
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Figure 1.1: Human Brain Anatomy: The cerebrum is divided into four lobes: frontal, parietal,
occipital, and temporal. (©Mayfield Clinic)

hemisphere has 4 lobes: frontal, temporal, parietal, and occipital (Figure 1.1). Each lobe

may be divided, once again, into areas that serve very specific functions. It’s important

to understand that each lobe of the brain does not function alone. There are very complex

relationships between the lobes of the brain and between the right and left hemispheres.

1.2.2 Language Learning and Brain

Broca’s area and Wernicke’s area are the main language-related regions in the brain. Broca’s

area is in the left frontal lobe, and Wernicke’s is in the superior temporal lobe, between the

primary auditory cortex and the angular gyrus. These areas play a crucial role in regulating

the speech process [18, 19]. When recruiting the Broca’s area, there is a significant difference in

the usage between one’s native language and a foreign language, which indicates the challenge

of speaking a foreign language as fluently as one’s native tongue [20, 21].

The critical period for infants to learn languages effectively is around the age of twelve [22].

Before reaching this age, children can acquire both their native and foreign languages using

the same language-related brain areas. However, after the age of twelve, they may employ
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other areas to learn new languages. Consequently, they need to adopt a new efficient strategy.

Children under twelve learn through imitation, displaying greater flexibility, spontaneity, and

openness to new experiences, whereas adults tend to study the new language more consciously.

1.2.3 Learning and Memory

In theory, external stimuli can potentially modify the brain’s structures and functions to facil-

itate complex cognitive processes like learning a new language [21]. Learning can trigger the

brain’s stem cells to generate new cells and create new neural connections. This phenomenon,

known as brain plasticity, enables learners to overcome difficulties even after the age of twelve

by selecting efficient learning methods.

Memory exists in two main forms: short-term memory and long-term memory [23]. Short-

term memory is easily forgettable and lasts only briefly, ranging from a few seconds to a few

hours. On the other hand, long-term memory can persist for days, months, or even years.

Memories are initially stored as short-term but can be converted into long-term through repet-

itive and intense stimulation. When using their native language, people predominantly rely on

long-term memory, while declarative memory comes into play when speaking a foreign language.

Memory can be broadly categorized into declarative memory and non-declarative memory

[24]. Declarative memory is used to recall stored information about past events, while proce-

dural memory does not involve conscious recollection. Declarative memory forms and fades

relatively quickly, whereas non-declarative memory is more durable and requires repetition

and significant time to establish. When using their native language, individuals mainly rely

on non-declarative memory, whereas declarative memory is employed when speaking a foreign

language.

1.2.4 Electroencephalography

One of the simplest ways of furthering the understanding of speech perception is by recording

neural responses using electroencephalography (EEG). The EEG is a non-invasive neural imag-
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ing technique that measures electrical activity in the brain by placing electrodes on the scalp

[25]. It has been demonstrated that the EEG signal recorded during a speech listening task

contains information about the stimulus [26, 27, 28, 29]. [26] demonstrates that EEG reflects

categorical processing of phonemes within continuous speech. Additionally, [28] shows that

EEG captures linguistic representations such as semantic dissimilarity. Similarly, [27] reveals

that the EEG recorded during the listening state carries language information of the stimulus.

Electrical signals resulting from cortical synaptic activity fluctuate within the range of 10 to

100 milliseconds. EEG and MEG (magnetoencephalography) are widely accessible technologies

capable of tracking these rapid dynamic changes due to their adequate temporal resolution. But

they have limited spatial resolution compared to other brain imaging methods like computer to-

mography (CT), positron-emitted tomography (PET) and magnetic resonance imaging (MRI).

EEG has excellent temporal resolution compared to most neuroimaging techniques, aside from

being comparatively inexpensive.

1.2.5 Event-Related Potential

Event-related potentials (ERPs) refer to changes in voltage observed in the ongoing electroen-

cephalogram (EEG) that are time-locked to specific events, such as the onset of a stimulus or

the execution of a manual response [30]. These ERPs are obtained by averaging the EEG data

from several epochs, each time-aligned to the event of interest. As more trials are added to the

average, the random noise present in the data diminishes, while the consistent signal related to

the event gradually emerges from the background noise.

It is crucial to understand that while the ERP waveform at a given moment reflects synaptic

activity at that time, it does not exclusively represent neural activity that started precisely at

that moment [31]. The resulting positive and negative deflections’ amplitude, latency, and

topography are used as indicators of the underlying mental processes. ERPs are valuable

tools for investigating cognitive processes involved in perception, language, attention, memory,

and other mental functions. Important ERP components pertaining to language research are
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explained in chapter 3.

1.2.6 Machine Learning Methods

We will be utilizing various machine learning algorithms and models to analyze EEG data in

the upcoming chapters. The following section will offer a concise background on pertinent

techniques.

1.2.6.1 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning algorithm used in machine learning

for classification and regression tasks. It excels particularly in binary classification problems,

where the goal is to categorize elements into two groups.

SVM [32] classifies data by determining the optimal decision boundary that maximally

separates different classes. It seeks the best hyperplane to maximize the margin between support

vectors, which are the data points closest to the decision boundary.

The distinguishing feature of SVM is its ability to handle both linear and non-linear clas-

sification problems. This is achieved through the use of a kernel trick, which implicitly maps

input data into a higher-dimensional space. For linear datasets, the kernel can be set as ‘linear’,

while for non-linear datasets, options include ‘rbf’ (radial basis function) and ‘polynomial’. This

flexibility allows SVM to effectively capture complex relationships within the data.

1.2.6.2 Correlation Analysis

Correlation analysis is a statistical method used to evaluate the strength and direction of

the linear relationship between two variables. The goal is to quantify how changes in one

variable correspond to changes in another. The result of a correlation analysis is expressed as

a correlation coefficient, typically denoted by “r”.

The correlation coefficient “r” is calculated using the following formula:
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where,

• n is the number of data points,

• Σ represents the summation symbol,

• x and y are the individual data points of the two variables.

This formula computes the correlation coefficient by considering the covariance between the

two variables and normalizing it by the product of their standard deviations. The coefficient

ranges from -1 to 1, where 1 signifies a perfect positive correlation (both variables move in

the same direction), -1 represents a perfect negative correlation (variables move in opposite

directions), and 0 indicates no linear correlation. However, it’s important to note that correla-

tion does not imply causation, meaning that even if two variables are correlated, one does not

necessarily cause the other to change.

1.2.6.3 Convolutional Layer

A Convolutional Layer is a fundamental component in Convolutional Neural Networks (CNNs)

[33], a class of deep learning models widely used for image and video analysis. The convolutional

layer is designed to automatically and adaptively learn hierarchical representations of input

data. The key operation in a convolutional layer is convolution, where a small filter (also

known as a kernel or receptive field) slides or convolves across the input data. At each position,

the filter computes the dot product between its weights and the corresponding region of the

input.

Convolutional layers are effective for several reasons. They share parameters, reducing the

number of weights compared to fully connected layers, which is particularly advantageous when

dealing with high-dimensional inputs. Moreover, the hierarchical structure enables the network
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to learn complex features by combining simpler ones, enhancing its ability to capture spatial

hierarchies and patterns.

1.2.6.4 LSTM

LSTM stands for Long Short-Term Memory, representing a type of recurrent neural network

(RNN) commonly employed in deep learning. LSTMs excel at capturing long-term dependen-

cies, making them particularly well-suited for sequence prediction tasks involving text, speech,

and time series data. Introduced in 1997 by Hochreiter & Schmidhuber [34], LSTMs have

undergone refinement and widespread adoption in the deep learning community.

LSTMs are designed to address the vanishing gradient problem that’s present in traditional

RNNs. The distinguishing feature of LSTMs is their ability to selectively retain or discard

information over long sequences. Each LSTM unit contains a memory cell, input gate, forget

gate, and output gate. The memory cell stores information over extended periods, while the

gates regulate the flow of information into and out of the cell.

1.3 Thesis Outlook: Neural, Behavioral and Machine

Learning Perspectives

1.3.1 Isolated Word Learning

When ones start learning a language, one imitates the sounds they hear without deliberate

thinking. As one improves their learning, they rely more on the context to understand what

words mean. Further, the mechanisms of first language (L1) and second language (L2) ac-

quisition, as well as their perception, exhibit significant differences [35]. For instance, a child

may be exposed to their native language throughout the day, every day, whereas an adult may

encounter the foreign language primarily in the classroom setting. The way we learn our first

language and a second language is different, and how we hear and understand them is different,

too [36]. Certainly, the process of word learning continues throughout a person’s life, and the
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vast majority of their vocabulary is acquired after early childhood [37, 38].

The study conducted by Kuhl et al. [39] describes the development of language during the

early years of life and the underlying mechanisms. During the first year of life, infants experi-

ence two notable changes in their speech perception skills. Firstly, their ability to distinguish

phonetic sounds in a non-native language decreases, and secondly, they show improvement in

recognizing phonetic sounds in their native language. However, it remains unclear whether

similar changes can be observed in adults when they are learning a new language.

To explore these differences and gain a better understanding of the learning process through

imitation, the thesis investigates the evolution of neural representations in individuals who are

repeatedly exposed to unfamiliar words. By examining this phenomenon, we aim to address the

fundamental question of whether the acquisition of speech sounds is reflected in the recorded

EEG responses. Furthermore, our investigation seeks to determine whether EEG has the capa-

bility to detect and differentiate language-specific features, thereby providing valuable insights

into the neural mechanisms underlying language discrimination. Through this line of inquiry,

we aim to understand how imitation contributes to language learning and to advance the un-

derstanding of EEG as a potential tool for studying language acquisition processes.

1.3.2 Learning Words in Context

After examining these fundamental questions, the thesis shifts towards exploring how learning

patterns change when semantics are introduced. This investigation holds the potential to

uncover the neural signatures associated with rapid semantic learning. We aim to examine

how neural responses evolve when newly acquired words are integrated into the context of a

sentence, shedding light on the cognitive processes involved in sentence-level comprehension. To

conduct these experiments, we will utilise words from a foreign language as unfamiliar stimuli,

thus providing an opportunity to investigate the neural dynamics underlying the acquisition and

utilisation of foreign vocabulary. By delving into these investigations, our aim is to enhance our

understanding of how semantic knowledge is integrated into language learning and to uncover
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the neural mechanisms that support this process.

A significant portion of research on lexical acquisition in children has focused on under-

standing the cognitive processes involved in explicitly learning names for objects and actions

and whether these processes are specific to language [40, 41, 42, 43]. On the other hand, studies

on lexical acquisition in adults have predominantly revolved around second language acquisi-

tion. Lexical acquisition refers to the process by which individuals acquire and learn words,

particularly in the context of language development. This research has emphasized exploring

the cognitive and neural similarities (and differences) between word learning in an individual’s

native language and their second language [44, 45, 46, 47].

While these areas of research have provided valuable insights into how young children and

bilingual adults learn words, the process of word learning in adults for their native language

likely exhibits similarities and differences compared to that of young children and adult bilin-

guals. For example, growing evidence from electrophysiological studies suggests that infants

may process novel and known word meanings using neural mechanisms similar to those in

adults [48, 49, 50, 51]. However, there are important distinctions in how children and adults

are exposed to words and how they learn them. Studies on preliterate children often investigate

word learning in explicit training contexts, such as learning to name a novel object. In con-

trast, older children and adults primarily acquire words incidentally, especially during reading

[52, 53, 38]. Given the prevalence of adult word learning and its differences compared to child

lexical learning, it is not surprising that there is an increasing interest in this topic.

Word representations are intricate and multifaceted. Additionally, the word’s meaning needs

to be appropriately situated within the context of the mental lexicon’s semantic landscape.

For example, when learning the name of a new bird, the learner not only acquires specific

information about the bird’s characteristics (e.g., colour, size, feeding habits) but also links this

knowledge to their existing understanding of birds and other creatures [54, 55]. Furthermore, the

learner needs to grasp the contextual usage of the word, including how the novel noun interacts
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with other words like verbs or modifiers to be correctly used in sentences and discourse. Much

of this understanding cannot be effectively measured through simple associations of novel words

with objects.

The surrounding linguistic context in which a word is initially encountered plays a crucial

role in the process of acquiring its meaning. Both children and adults have been shown to

successfully fast-map novel word-object associations using recognition and comprehension tasks.

However, little is known about the time course of this knowledge acquisition. To delve into this

aspect of word learning, the researchers employ an electrophysiological index of word recognition

called the N400, as detailed in our study (See chapter 3). This measure is sensitive to aspects

of learning and memory utilization that may not always be evident in behavioural measures.

1.3.3 EEG Decoding of Continous Speech Perception

Having gained an understanding of the acquisition of novel sounds and words with their se-

mantics, the thesis delves into investigating the neural correlates associated with continuous

speech. In naturalistic speech, the listening cues are integrated in a continuous acoustic stream.

To interpret and process this information in real time, the neural encodings representing these

cues in terms of spatial, temporal, and rate factors need to be decoded by mechanisms that are

not likely continuous [56]. The initial stage of these neural parsing and decoding mechanisms

involves discretizing the continuous input signal and its initial neural representation. The idea

that perception is “discrete” has been supported and explored in various contexts [57, 58].

The thesis explores the significance of word boundaries in speech perception in the final part.

We develop deep learning-based models for stimulus (auditory) - response (EEG) modelling to

accomplish this. In contrast to employing multi-trial analysis techniques, we propose utilizing

single-trial analysis for continuous speech stimuli. Furthermore, we leverage machine learning

models to examine the influence of word boundary information in more complex listening en-

vironments and its impact on speech perception. In the course of our investigation, we aim to

uncover potential differences in the weighting of input cues, such as acoustics versus semantics,
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in speech perception under different listening conditions. This endeavour holds the potential

to shed light on the hierarchical levels of speech perception and deepen our understanding of

how different cues contribute to our comprehension of spoken language.

Taking these factors into account, the primary objectives of this thesis are formulated and

outlined in the following section.

1.4 Problem Statement
This thesis aims to investigate the neural mechanisms underlying language processing and

learning by analyzing electroencephalography (EEG) signals. The thesis attempts to address

the following research questions:

1. What are the neural correlates of word discrimination in adults who are learning a new

language?

2. How do the neural responses to known and unknown words change over the course of a

word-learning task?

3. What are the effects of semantic dissimilarity on EEG signals during rapid foreign lan-

guage word learning?

4. What is the role of word boundary information in sentence processing and its impact on

EEG-based neural mechanisms of speech comprehension?

5. In the context of a dichotic listening task, what are the relative roles of semantics and

acoustic cues in speech perception?

1.5 Analysis Techniques
As mentioned above, this thesis aims to investigate the neural mechanisms underlying language

processing and learning by analyzing electroencephalography (EEG) signals. To achieve these
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goals, a comprehensive research methodology has been designed, combining multi-trial and

single-trial analysis paradigms. Correlation analysis, ERP analysis, and machine learning tech-

niques are employed to analyze the collected EEG data. This methodology has been chosen for

its appropriateness in addressing the research objectives and providing insights into the neural

correlates of language processing and learning.

The multi-trial analysis approach is utilized to examine the neural responses associated with

word discrimination in adults learning a new language, as well as to investigate the changes in

neural responses to known and unknown words over the course of a word-learning task. This

approach is suitable for capturing averaged brain responses across multiple trials, providing

reliable and reproducible findings regarding the neural correlates of word discrimination and

learning.

To further explore the collected EEG data, correlation analysis is conducted to assess the

relationships between different neural measures and behavioural variables. This analysis helps

elucidate the associations between brain activity patterns and language processing performance,

providing a deeper understanding of the neural mechanisms underlying language learning.

Moreover, ERP analysis is applied to investigate the effects of semantic dissimilarity on EEG

signals during rapid foreign language word learning. This analysis allows for the examination

of the time-locked neural responses associated with semantic processing and the impact of

semantic relatedness on the neural mechanisms of word learning.

The single-trial analysis paradigm is employed specifically for the analysis of continuous

speech. This approach allows for examining the temporal dynamics of brain activity at the level

of individual trials, enabling the investigation of the importance of word boundary detection in

human speech perception. The single-trial analysis provides valuable insights into the dynamic

nature of language processing and learning.

Machine learning techniques are utilized to analyze the EEG data and extract meaningful

features that can contribute to the classification and prediction of language processing and
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learning outcomes. These techniques enable the identification of relevant patterns in the data

and potentially uncover novel insights into the neural basis of language processing.

By employing this comprehensive research methodology, combining multi-trial analysis,

single-trial analysis (for continuous speech) and then analyzing the collected EEG data using

correlation analysis, ERP analysis, and machine learning techniques, this thesis aims to address

a few research questions regarding the neural mechanisms underlying language processing and

learning.

1.6 Key Contributions
The major contributions of this thesis are given below:

1. The thesis provides new insights into the neural representations of known and unknown

languages, as well as the evolution of neural responses in the brain for a language learn-

ing task. This is done by using electroencephalography (EEG) signals recorded while

human subjects listen to English (familiar), Japanese (unfamiliar), and Hindi (native)

language stimuli. The results show that time-frequency features and phase contain sig-

nificant language discriminative information and identify brain regions responsible for

language discrimination and learning. The thesis also provides evidence for consistent

EEG representations and pattern formation during the language learning task and iden-

tifies the neural basis for the improvement of pronunciation over the course of trials for

the Japanese language.

2. The thesis investigates the event-related potential (ERP) of EEG signals during rapid

language learning in subjects who had no prior exposure to the Japanese language. The

results show that semantically matched and mismatched end-words in English sentences

elicit different EEG patterns even for newly learned Japanese words, similar to the native

language case. The thesis also identifies the presence of a P600 component (delayed

and opposite in polarity to those seen in the known language) and its topographical
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distribution in the parietal region and left hemisphere. The thesis provides evidence

for the absence of the N400 component in this rapid learning task, which suggests the

association of N400 with long-term memory processing.

3. The thesis demonstrates the significance of word boundary information in sentence pro-

cessing by relating EEG to speech input using a network of convolution layers and recur-

rent layers. The thesis uses word boundary-based average pooling to incorporate inter-

word context and improve the match-mismatch (MM) classification accuracy to 93% on

a publicly available speech-EEG dataset. The thesis shows that previous efforts achieved

an accuracy of only 65-75% for this task, indicating the effectiveness of the proposed ap-

proach. The thesis also provides evidence for the importance of considering the discrete

processing of speech in the brain for accurate analysis of neural mechanisms of speech

comprehension.

4. The thesis extends this proposed MM task approach to more complex listening conditions

like dichotic listening. The dichotic speech listening task revealed that EEG signals encode

higher-level semantic information more effectively than acoustic envelope information,

suggesting that the brain gives more importance to the semantic content of the auditory

input under acoustically challenging environments.

5. The proposal of a multi-modal architecture for the MM task in mono-aural and dichotic

listening scenarios is a major contribution of this study. The results indicate that the EEG

signal jointly encodes the semantic and acoustic content of the stimulus, outperforming

individual modalities of text and speech. This highlights the importance of considering

multi-modal approaches when analyzing EEG responses to auditory stimuli. The formu-

lation of a novel paradigm, exploration of different listening scenarios, the introduction

of a new loss function, and the adoption of a multi-modal architecture all contribute to

the field’s progress.
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Overall, the thesis makes significant contributions to the field of cognitive neuroscience by

providing new insights into the neural basis of language learning and sentence processing. The

thesis also proposes novel experimental paradigms and machine-learning models that can be

used to study these cognitive processes further.

1.7 Key Assumptions and Scope of the Thesis
1. Sample size and diversity: The study was conducted with a limited sample size based on

availability and time constraints. The participants mainly consisted of youth, particularly

students from our institute campus. We assume that this sample will adequately represent

the broader adult community. Appropriate statistical tests were employed for evaluation

to establish the significance of the results.

2. Language stimuli: The study discussed in chapter 2 focuses on three languages English

(L2), Hindi (L1) and Japanese (unknown) languages and chapter 3 focuses on two lan-

guages: English and Japanese. Hindi was chosen as the L1 language because it is the

most widely used language in India, spoken by 41% of the population according to the

2011 census [59]. Subjects whose mother tongue is Hindi were recruited for that specific

experiment. Japanese was selected as the unknown language due to its dissimilarity from

both the L1 and L2 languages used in the study. Consequently, we assume that results

based on Japanese stimuli will provide generalizability regarding novel language learning.

Japanese does not belong to the same language family as English or Indian languages,

presenting a notable contrast. It is not classified into major language families prevalent in

India, such as Indo-Aryan or Dravidian. Instead, Japanese belongs to the distinct Japonic

language family [60], considered unique and unrelated to other major language families.

Our intention was to have subjects with no prior exposure to the novel language before

our experiment. Finding subjects not exposed to Japanese was comparatively easier than

finding those unexposed to Western languages in an Indian campus community.
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3. EEG as a measure of neural activity: EEG provides superior temporal resolution but

has limited spatial resolution compared to other neuroimaging techniques like fMRI. As a

result, the scalp topography plots do not directly represent specific brain regions; rather,

they indicate activations at the corresponding scalp electrode locations.

4. The studies discussed in this thesis focus on healthy adults. Hence, further research is

warranted to extend the findings of this thesis to infants or the patient population.

5. The study was conducted in a laboratory setting, which may not fully reflect the real-

world experience of learning a new language.

1.8 Organization of the thesis
The main findings of the thesis are organized into five chapters. Each chapter begins with a

brief introduction that covers the background, challenges, and relevant literature on the topic

addressed in the chapter. The introduction is followed by a description of the stimuli used, the

subjects involved, and the data acquisition methods. The next section of each chapter explains

the methods used or developed for the work. The results of the study are then presented and

discussed in detail. Each chapter concludes with a summary of the key findings. The overall

flow of the thesis is illustrated in Figure 1.2.

Chapter 2: Evolution of Neural Responses during Word Learning In Chapter

2, the focus is on the empirical findings obtained from the word learning task. This chapter

presents an in-depth analysis of the neural responses recorded during the task. It explores the

evolution of these neural responses over time, providing insights into the cognitive processes

underlying word learning. The chapter discusses the implications of these findings and their

contribution to our understanding of language processing and learning.

Chapter 3: ERP Evidences of Rapid Semantic Learning In Foreign Language

Word Acquisition Chapter 3 examines the neural representations in known and unknown
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Figure 1.2: Overview of the thesis.

languages observed during the language learning task. The analysis explores the similarities and

differences in EEG patterns between these languages, shedding light on the neural mechanisms

underlying language familiarity and acquisition. The chapter draws connections between the

findings and the research question of neural representations in known and unknown languages,

providing a deeper understanding of language learning processes.

Chapter 4: Impact of Word Boundary Detection in Speech Comprehension

Chapter 4 centres around the role of word boundary information in sentence processing and

its impact on EEG-based neural mechanisms of speech comprehension. It presents the findings

from the analysis of EEG signals, elucidating how word boundaries influence the neural pro-

cessing of natural speech and speech in dichotic listening conditions. The chapter discusses the

implications of these findings and their significance in understanding the cognitive aspects of

speech comprehension.

Chapter 5: Conclusion and Future Directions The thesis concludes with chapter 5

summarising the main findings and their implications. This chapter revisits the research ques-

tions posed at the beginning and discusses how they have been addressed through empirical

investigations. It highlights the thesis’s contributions to the language learning field and identi-

fies the proposed research’s limitations. Furthermore, chapter 5 suggests potential avenues for
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future research, indicating the possibilities for expanding upon the current findings.

1.9 Chapter Summary
In this chapter, we have defined the problem statements of interest and given a birds-eye view

of where the problem lies in the big picture of auditory neuroscience and speech processing. We

also provide a broad overview of the signal processing and machine learning techniques used

to understand neural mechanisms. The chapter outlined the thesis contributions and discussed

the organization of the rest of the thesis.
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Chapter 2

An EEG Study On The Brain

Representations in Foreign Word

Learning

2.1 Introduction
Speech is the easiest and most effective way of communication used by humans. Humans

are inherently capable of distinguishing between sounds from familiar and unfamiliar languages

when they listen to them. Prior works have shown that humans can instantaneously differentiate

while listening to songs from known and unknown languages [61]. Also, the studies on brain

activations showed interesting differences in the areas of the brain that are activated when

exposed to native and non-native languages [2].

With the use of function magnetic resonance imaging (fMRI), it was seen that cerebral

activations in the brain are more pronounced when presented with a foreign language compared

to a known language [62]. Similarly, in speech production, the right frontal areas are more

involved when the subject is attending to speak a new language. The activity in the right

pre-frontal cortex was also found to be indicative of the language proficiency of the subject
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[63].

The difference in response of the human brain to known and unknown stimuli has been

of significant interest to facilitate the full understanding of the auditory encoding processes.

For example, a stronger P300 peak was observed in the subject’s electroencephalogram (EEG)

signals when presented with their own names compared to the peak values observed when other

stimuli were presented [64]. For infants, the representation in EEG for familiar language and

foreign language as well as for familiar and unfamiliar talkers was analyzed in [65], where the

delta and theta bands showed important differences.

In the case of learning, several studies have shown that with experience, we gain proficiency

in an unknown language and the function and structure of the brain changes during this learning

process [66, 67]. Similar to the task of musical training, the experience of learning a new

language also includes changes in the brain states. The complexity of speech and language

causes challenges in understanding the questions about how, when and where these changes

occur in the brain.

With the exemption of a few studies that have attempted to quantify the anatomical changes

in the brain during language learning [68, 69, 70], very little is known regarding the changes in

the brain during a new language learning in terms of when these changes occur, and how they

reflect in the learning. In this chapter, we attempt to quantify some of these questions at the

representation level using electroencephalogram (EEG) recordings.

While primary language learning for most adults happens at a very young age, acquiring a

new language can happen at any point in the lifetime. For the language learning task, the age

of acquisition showed little impact in terms of brain representations when normalized for the

proficiency levels [71]. The fundamental question of whether there is knowledge transfer from a

known language to a new language is still open-ended. Several studies have shown that known

languages play a key role in acquiring new languages. The first language was found to provide

an understanding of the grammar [72, 73]. The popular hypothesis for secondary language
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learning is the establishment of a link between the representations of the new language to the

features of the already-known language. Also, continued exposure to a foreign language can

help learn the language faster [74, 75].

The task of learning a new language can be quite complicated to analyse. This can be done

at multiple levels like phonemic, syllabic, word, or sentence levels. The evaluation of language

learning can also be analyzed for multiple tasks like reading tasks, spontaneous speaking etc.

This study aims to understand the major differences in brain representations at a word level

from a familiar and an unfamiliar language. Additionally, we propose a method to perform

trial-level analysis to understand the changes in the representation of words when the subject

listens to words from an unfamiliar language.

We record EEG signals from the subjects when the subjects are presented with word seg-

ments from a familiar and an unfamiliar language. Along with EEG signals, we also record

behavioural data from the subject where the subject reproduces the stimuli presented to him.

The key findings from the chapter can be summarized as follows,

• With various feature-level experiments, we identify that the time-frequency represen-

tations (spectrogram) of EEG signals carry language discriminative information. These

features are also verified for two separate tasks, English versus Japanese and Hindi (native

language) versus Japanese.

• The brain regions containing the most language discriminative information are in the

frontal cortex and the temporal lobe (aligned with some previous fMRI studies [2]).

• It is seen that the inter-trial variations are more pronounced for the words from unfamiliar

language than those from the familiar language in both EEG signals and spoken audio

signals. Furthermore, the inter-trial variations in the spoken audio are correlated with

those from the listening state EEG representations.

• The EEG signals for the Japanese stimuli are more correlated with the audio signal than
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those for the English stimuli indicating a higher level of attention to Japanese stimuli.

To the best of our knowledge, this study is one of the first to probe the linguistic differences in

EEG level and uncover the language learning process from single-trial EEG analysis.

The rest of this chapter is organized as follows. In Sec. 2.2, we describe the data collection

procedure and the pre-processing steps used for EEG data preparation. The feature extraction

of EEG signals and the classification between the two languages is described in Sec. 2.3. A

similar analysis is done to extract features and to classify the spoken audio signals and this is

also described in Sec. 2.3. The evidence of language learning is established in Sec. 2.4. The

inter-trial analysis performed on the EEG and the audio signals is described in Sec. 2.4.2. The

relationship between the EEG and the audio signals is analyzed and described in Sec. 2.4.2.2.

In Sec. 2.5, we discuss the findings from this work and contrast it with previous studies. Finally,

a summary of the chapter is also provided in Sec. 2.6.

2.2 Materials and Methods

2.2.1 Subjects

All the participants were Indian nationals with self-reported normal hearing and no history

of neurological disorders. In the first experiment, English and Japanese language words were

used while in the second subsequent experiment, Hindi and Japanese language words were

used. The first experiment had 12 subjects while the second experiment had 5 subjects. In

the English/Japanese experiments, six subjects were male (median age of 23.5) and six were

female (median age of 24). The subjects who participated in the first experiment (English

versus Japanese) were native speakers of south Indian languages, or Hindi. All the subjects

in the first experiment setup had intermediate or higher levels of English proficiency. Hence,

English can be considered their L2 language, and Japanese is an unknown language.

In the second experiment of Hindi versus Japanese, all the subjects were native speakers of

Hindi. A separate set of subjects was recruited for this second experiment. For these subjects,
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Figure 2.1: Experimental setup used for EEG and behavioral data collection

Hindi is their L1 language, and Japanese is an unknown language. In the Hindi/Japanese

experiments, 2 subjects were male (median age of 22) and 3 were female (median age of 23).

2.2.2 Experimental Paradigm

Each block of the recording procedure consisted of five phases as illustrated in Figure 2.1. The

first phase was the rest period of 1.5s duration followed by a baseline period of 0.5s. The subjects

were instructed to attentively listen to the audio signal played after the baseline period. Then,

they were given a rest of 1.5s where they were encouraged to prepare for overt articulation of

the stimuli. The last phase is the speaking phase, where the subject was asked to speak the

word overtly. The spoken audio was recorded using a microphone placed about one foot from

the subject. The subjects were alerted about the change in phase by the display of a visual cue

in the centre of the computer screen placed in front of them. The participants were asked to

refrain from movement and to maintain visual fixation on the centre of the computer screen in

front of them. All subjects provided written informed consent to take part in the experiment.

The Institute Human Ethical Committee of the Indian Institute of Science, Bangalore approved

all procedures of the experiment.
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English Japanese Hindi

Word Duration (s)
(# units) Word Duration (s)

(# units) Word Duration (s)
(# units)

beg 0.50 (3) 南極 0.82 (4) दरवासा 0.73 (4)
cheek 0.67 (3) 抜き打ち 0.83 (4) चावल 0.62 (3)
ditch 0.70 (3) 仏教 0.77 (3) कहानी 0.63 (3)
good 0.50 (3) 弁当 0.72 (3) धन्यवाद 0.88 (4)
late 0.77 (3) 偶数 0.76 (2) आसमान 0.80 (4)
luck 0.64 (3) 随筆 0.83 (3) आदमी 0.61 (4)
mess 0.60 (3) 先生 0.74 (4) बचपन 0.74 (4)
mop 0.54 (3) ポケット 0.82 (3) पुजारी 0.74 (3)
road 0.59 (3) 計画 0.84 (4) अलमारी 0.72 (4)
search 0.76 (3) ミュージカル 0.83 (4) सुप्रभात 0.82 (4)
shall 0.70 (3) ウィークデイ 0.76 (4) पिरवार 0.69 (4)
walk 0.66 (3) 行政 0.80 (3) िकसान 0.68 (3)

Table 2.1: The list of stimuli used for the experiments, the duration of the words in seconds
and the number of speech units. English and Hindi are phonetic languages while Japanese is a
syllabic language. The first experiment uses the 12 English and 12 Japanese words while the
second experiment uses the 12 Hindi and 12 Japanese words.

2.2.3 Stimuli

In each experiment, the stimuli set contained words from 2 languages. The words were chosen

such that they have uniform duration and speech unit variability. In the first experimental

setup, the stimuli set includes 12 English words and 12 Japanese words (Table 2.1). The

duration of all audio stimuli ranges from 0.5s to 0.82s. In the second experimental setup, the

stimuli set includes 12 Hindi words (native language of the subject) and the same 12 Japanese

words (Table 2.1)) from the first experiment.

The Japanese was the unfamiliar language for all the subjects who participated in this

experiment. Each word was presented 20 times to a subject. In the first experimental setup, all

the trials of English and the first 10 trials of Japanese were presented in random order, while

the last 10 trials of Japanese were presented in a sequential manner. In the second experimental

setup using Hindi and Japanese language words, all the trials were presented in a random order.
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Figure 2.2: Pre-processing pipeline

The stimuli were presented at a comfortable and constant volume from a loudspeaker in front

of the subject.

2.2.4 Data Acquisition

The stimuli presentation and EEG recording was carried out with the Brain Electrical Scan

System (BESS) of Axxonet System Technologies, India. The EEG signals were recorded using

a BESS F-32 amplifier with 32 passive electrodes (gel-based) mounted on an elastic cap (10/20

enhanced montage). The electrode layout is given in the Appendix for reference. The EEG

data were recorded at a sampling rate of 1024 Hz. A separate frontal electrode (Fz) was used as

ground and the average of two earlobe electrodes was used as reference. The channel impedances

were kept below 10 kOhm throughout the recording. The EEG data were collected in a sound-

proof, electrically shielded booth. A pilot recording confirmed that there was minimal line noise

distortion or other equipment related artifact. In this study, all the analyses are performed with

EEG signals recorded at listening state and with the audio signals used in stimuli as well as

the spoken audio (behavioral data) collected from the subjects.

2.2.5 EEG Preprocessing

The EEG signals have a low signal-to-noise (SNR) ratio [76]. Hence, properly designed pre-

processing steps are required to enhance SNR and remove unwanted artefacts from data. The

pre-processing pipeline used in this chapter is shown in Figure 2.2. As the first step, we filter

the EEG data using a 0.1 Hz fourth-order high-pass Butterworth filter to remove the DC drift.

Then, the signal is low pass filtered using a 70 Hz fourth-order filter. The 50Hz line noise is

suppressed using a notch filter. The channels with high levels of noise in each subject’s recording

are found using the PREP pipeline [77]. The artifacts such as eye blinks and muscle movements
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are suppressed using the Artifact Subspace Reconstruction technique [78]. Then, we extract

data epochs for various stages of the experiment (such as rest, listening, and speaking) using

the EEGLAB [79]. Any epoch with a magnitude of more than 3 standard deviations is removed

from future analysis (bad trial removal). The baseline average computed from the 0.5-second-

long baseline period is used for baseline subtraction. For each subject, we standardize the neural

response of each EEG channel to ensure zero mean and unit variance. The entire preprocessing

pipeline was implemented using the EEGLAB toolkit in MATLAB. The subsequent analysis

discussed in this chapter was carried out using MATLAB software.

2.3 Language Classification in EEG signals
The language classification approach is used to identify the key features that discriminate the

EEG representations of familiar and unfamiliar language. In particular, we try to uncover the

best feature and classifier settings for discriminating English and Japanese from EEG signals

(and Hindi versus Japanese from the second experimental setup). In these experiments, the

chance accuracy is 50%. The training data set consists of 70% of the trials of each stimulus and

the rest of the trials form the evaluation set for each subject. The classification is conducted

individually for each subject. However, performing inter-subject classification for this task has

proven to be challenging. A support vector machine (SVM) with a linear kernel has been used

as the classifier to validate the performance of different feature extraction methods. The input

data to the SVM classifier is normalized to the range of 0 to 1 along each feature dimension.

The SVM-based classification is implemented in MATLAB using the publicly available LIBSVM

package [80]. Later experiments comparing different classifier models (LDA, Gaussian, GMM

and SVM) reveal that the SVM classifier achieves the best classification performance for the

language classification task. The classification performance on channels with the best accuracies

is reported in this chapter.
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(a) English stimulus (b) Japanese stimulus

Figure 2.3: Top row: Audio Signal; Middle row (x-axis same as top row): EEG Signal (channel
F8) of subject 1 during listening task (Average of 3 trials); Bottom row: (i) Spectrum of
windowed EEG signal centered at 0.2 s; (ii) Spectrum of windowed EEG signal centered at 0.4
s; and (iii) Spectrum of windowed EEG signal centered at 0.6 s (window duration is 0.4s).

2.3.1 Feature Extraction

A spectrogram is computed using the Short-Time Fourier Transform (STFT) of a signal. The

spectrograms are used extensively in the field of speech processing [81], music, sonar [82],

seismology [83], and other areas. The spectrogram has been used to analyze the time-frequency

characteristics of EEG rhythms [84] and to detect seizures in epileptic patients [85].

In our spectrogram computation as shown in Figure 2.3, we use a hamming window of

duration 400ms and step size of 200ms on the input EEG signal.

2.3.2 Trial Averaging

In order to reduce the effect of noise and background neural activity, the EEG data from each

trial is averaged with two other random trials of the same stimulus, either in the temporal

domain or in the spectral domain. The number of trials averaged is restricted to 3 as it helps to

remove noise and at the same time provides enough number of samples to train the classifier.
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Trials were initially split into training and test sets, and averaging was performed only within

trials from the same set to prevent data leakage.

The EEG data recorded for a fixed 0.8s duration after the onset of the audio stimulus is

used for analysis (the duration of all the audio stimuli ranges from 0.5s to 0.82s). The logarithm

of the magnitude of the spectrogram computed on the temporal domain average of EEG trials

is termed as Spec(Avg) feature. In spectral domain averaging (Avg(Spec)), the spectrogram is

computed for each trial of the stimulus and then averaged. The logarithm of the average of

magnitude spectrum along with the average of the cosine of phase of the spectrograms is used

as the feature vector (termed as Avg(Spec+Phase)).

2.3.3 Results for Language Classification

2.3.3.1 Effect of Temporal Context

The English and Japanese languages have phonological dissimilarities like the difference in the

production of /r/ and /l/ sounds as well as the presence of unique phoneme sounds in English

and Japanese [86]. However, it can be hypothesized that the language-specific information may

not be evident in shorter segments of speech (phoneme or syllable). The poor performance of

language identification at the syllabic level (using a single window of 400ms without context)

from neural signals confirms this hypothesis. The language variabilities are more pronounced

at the interaction between different sounds which is referred to as co-articulation. Hence,

incorporating context aids in language identification.

Context padding involves adding additional frames or time steps to the input spectrogram

to provide context for the analysis. Spectrograms are often divided into frames, where each

frame represents a short segment of the audio signal. To capture contextual information around

each frame, context padding involves adding extra frames before and after the original frame

of interest. These additional frames help the model to consider information from neighboring

frames, allowing it to capture temporal dependencies and patterns in the data. In our imple-
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Figure 2.4: Language classification accuracy obtained for the 12 subjects with different fea-
ture extraction techniques on EEG data recorded during the listening state. Different feature
types are Spec(Avg): Spectrogram of temporal average of trials (Sec. 2.3.2)- with and without
context, Spec(Avg)+Phase: Phase information appended to the previous feature (Sec. 2.3.3.2),
Avg(Spec+Phase): Average of magnitude and phase of spectrograms of trials. We also compare
the performance of language identification from EEG signals to those from the spoken audio
data provided by the subjects (Sec. 2.3.4).

mentation, we utilized a context of size 3. This implies including the current frame, along with

one frame before and one frame after it, as the feature representation.

Figure 2.4 shows the performance of Spec(Avg) features with SVM classifier with and without

context padding. The feature extraction with the context of size 3 provides better accuracy

than using the features extracted from single window of EEG signal (of duration 0.4s). The

features with context that provided the best accuracy in Figure 2.4 are also shown to perform

the best in the classification of Hindi versus Japanese shown in Figure 2.5.

2.3.3.2 Effect of Phase Information on Language Recognition

Given the long duration of the spectrogram window, we hypothesize that the phase of the

spectrum in the 400ms windows is also a useful feature for classification. We concatenate

the cosine of the phase to the magnitude of the spectrogram feature for each frame of the

input signal and use it as a feature vector using temporal domain averaging (Spec(Avg)+Phase)

or using spectral domain averaging (Avg(Spec+Phase)). Our experiments indicate that the

phase adds meaningful information to the feature regarding the familiarity of the language

as shown in Figure 2.4. We can observe that adding the phase information provides better
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Figure 2.5: Hindi vs Japanese Language classification accuracy obtained for the 5 subjects
with different feature extraction techniques on EEG data recorded during the listening state.
Different feature types are Spec(Avg): Spectrogram of temporal average of trials (Sec. 2.3.2)-
with and without context, Spec(Avg)+Phase: Phase information appended to the previous
feature (Sec. 2.3.3.2), Avg(Spec+Phase): Average of magnitude and phase of spectrograms of
trials. We also compare the performance of language identification from EEG signals to those
from the spoken audio data provided by the subjects (Sec. 2.3.4).

language classification accuracy than using the magnitude of spectrogram alone, for most of

the subjects. This observation is also confirmed with the experiments reported on Hindi versus

Japanese (second experiment) reported in Figure 2.5.

As seen in Figure 2.4, all subjects achieve language classification accuracy above 59.5% for

Avg(Spec+Phase) features. Subject 1 attains the highest classification accuracy (73.68%). The

average language classification (across subjects) obtained by Avg(Spec+Phase) is approximately

64% which is significantly better than the chance level. The t-test conducted at a significance

level of 0.05 obtained a p-value less than 10−5. This suggests that significant cues exist in the

listening state EEG regarding the language identity of the stimuli. In the Hindi vs Japanese

language classification, subject 4 attains the highest classification accuracy (72.73%). The

classification performance for the rest of the subjects are also above 60% with phase information

added to the feature vector.

2.3.3.3 Performance of Different Classifiers

As shown previously, the spectrogram magnitude information is meaningful along with the

phase information.
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a. Performance of Different Classifiers
Model Type Discriminative Generative

Classifier SVM LDA Gaussian GMM
2 mix.

GMM
4 mix.

I. English vs Japanese Classification
Average

Accuracy (%) 64.06 62.79 58.64 60.46 59.99

II. Hindi vs Japanese Classification
Average

Accuracy (%) 62.57 52.18 65.09 62.19 59.86

b. Language Classification in EEG Spectral Bands
Spectral

Band
δ

(0.1-4Hz)
θ

(4-8Hz)
α

(8-13Hz)
β

(13-30Hz)
γ

(30-50Hz)
ALL

(0.1-50Hz)
I. English vs Japanese Classification

Average
Accuracy (%) 62.52 61.54 64.21 63.19 63.06 62.83

II. Hindi vs Japanese Classification
Average

Accuracy (%) 61.55 63.71 61.33 62.44 62.44 62.73

Table 2.2: (a) Performance of different classifiers with Avg(Spec+Phase) features (Spectral
Band: 0.1-30Hz). (b) Classification accuracy of SVM classifier with Avg(Spec+Phase) features
in different spectral bands.

The performance of different classifiers for the Avg(Spec+Phase) features in terms of average

accuracy is shown in table 2.2 (a). It is seen that the SVM provides the best performance among

them (p < 10−4). The Gaussian mixture model (GMM) with two mixtures performs better than

a single Gaussian model or a GMM model with 4 mixtures. The input to all four classifiers

other than SVM is standardized to zero mean and unit variance along each dimension. For

the LDA-based classifier, we use the mean of the two classes of training data as the threshold.

The statistical significance of the difference in the performance of classifier models has been

evaluated using paired sample t-test with a significance level of 0.05 (with p < 10−4). In this

statistical test, the SVM classifier is found to be significantly better than the rest. In the

second subsequent experiment on classifying Hindi and Japanese words, the Gaussian classifier
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provides the best performance (p < 10−4). The Gaussian classifier, being a simpler classifier,

shows better performance in classifying Hindi (L1) versus Japanese while the SVM classifier

performs better for the relatively harder task of classifying English (L2) versus Japanese. Also,

the data for Hindi-Japanese experiments came from only 5 subjects compared to the data from

12 subjects used in English-Japanese experiments.

2.3.3.4 Language Classification in Different Spectral Bands of EEG

The accuracy of the language identification task varies depending on the different spectral

bands of the EEG signal. The analysis indicates that α and β bands capture more language

discriminative information as compared to θ and γ bands (Table 2.2 (b)). We obtain the highest

classification accuracy of 64.21% in the α band. In the classification experiment involving Hindi

versus Japanese, the θ band provides the best performance. This indicates that the language

discriminative information is spectrally selective and the dominant language information is

present in α and θ bands. The best-performing sub-band rhythms have a statistically significant

difference in performance compared to the next best one (with p < .005).

2.3.4 Comparison of Language Classification in Spoken Audio and

EEG

We also perform the language classification experiment on the behavioural signals (spoken

audio) from the subjects. We use the Mel Frequency Cepstral Coefficients (MFCC) [87] as

the features for this experiment. The MFCC features with a context size of 53 (800ms) are

concatenated and a linear discriminant analysis (LDA) is performed at the word level to reduce

the dimension of these features to 23. With these features and the SVM classifier, we obtain

an average accuracy of 93% (for both experiments). The comparison of results between audio

and EEG shows that, while the spoken audio contains significant information for language

classification, the EEG signals at the listening phase can also provide language discriminative

cues which are statistically significant.
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2.4 Language Learning and EEG
In the rest of the analysis provided, we only use the data collected from the first experiment

involving English and Japanese words.

2.4.1 Evidence of Language Learning

In this section, we attempt to establish the evidence for Japanese language learning using

behavioural data (spoken audio signals). The aspect of language learning may cover many

facets like memory, recall, semantics and pronunciation etc. In this study, we limit the scope of

language learning to improvement in pronunciation of the spoken audio. We use an automatic

pronunciation scoring setup as well as human expert evaluation for this purpose.

2.4.1.1 Automatic Pronunciation Scoring

The automatic rating of speech pronunciation has been a problem of interest for many analysis

tasks as well as for applications like computer-assisted language learning (CALL) [88]. Several

methods have been proposed for automatic pronunciation rating based on stress placement

in a word [89, 90], learning-to-rank approaches [91] etc. In this study, we use a modified

version of log-likelihood based pronunciation scoring with the force-alignment of hidden Markov

models(HMM) [92].

A HMM-based speech recognition system is trained using the Corpus of Spontaneous Japanese(CSJ)

[93]. A Hybrid HMM-Deep Neural Network (DNN) model is developed using the Kaldi toolkit

[94]. For the given Japanese word used in our EEG experiments, the word level HMM is formed

by the concatenation of the phoneme HMMs that correspond to the phonetic spelling of the

word (obtained from the dictionary of the CSJ corpus). Using the word level HMM (denoted

as λ), the likelihood of the speech data O = {o1, o2, ..., oT} is approximated as [95],

P (O|λ) =
∑

Q
P (O,Q|λ) ≈ max

Q
P (O,Q|λ) (2.1)
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where Q = {q1, q2, ..., qT} denotes the state-sequence of the HMM and T denotes the time

duration. The above likelihood can be efficiently solved using the Viterbi algorithm [95]. In

this work, the log-likelihood of the behavioural data (spoken audio from the subjects) and

the stimuli audio are computed with force alignment and are used as confidence estimates of

pronunciation. The main modification of our approach compared to the previous work in [92]

is the use of state-of-art speech acoustic modelling using deep neural networks.

2.4.1.2 Pronunciation Scoring by Human Expert

We also evaluate the pronunciations using a human expert1 based pronunciation rating (for

Japanese audio). Given the large number of spoken audio recordings (20 recordings per subject

per word), we use a smaller subset of this audio (4 recordings per subject per word from the

1st, 6th, 11th and 16th trials) for evaluation from the human expert in the Japanese language.

This was done on a scale of 1-10 (where 1 indicates poor pronunciation and 10 indicates a

native speaker’s pronunciation). In this evaluation, the human expert was also provided with

the stimuli (in a hidden randomized manner similar to the hidden reference in audio quality

testing [96]) in order to ensure the effectiveness of the rating. Out of the 12 Japanese words, the

3 words for which the stimuli recording had a pronunciation rating of less than 8 were excluded

from further analysis.

2.4.1.3 Improvement of Pronunciation over Trials

In Figure 2.6, we compare the evaluations from the human expert for Japanese language record-

ings along with the automatic pronunciation scores. For this plot, the logarithm of likelihood

scores are normalized and are linearly mapped to the range of 1 − 10 in order to make the

comparison with the human scores. The average rating of all the spoken audio data from the

subjects (12 subjects) is plotted for two phases separately - Phase-I (1− 10 trials) and Phase II

(11 − 20 trials). The stimuli ratings are also recorded for both human experts and automatic
1The human expert used in our study was a professional Japanese language tutor. The text used in the

stimuli was provided before the pronunciation evaluation.
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Figure 2.6: The left panel depicts the comparison of human and machine pronunciation scoring
for Japanese language audio data. The right panel depicts the histogram of log-likelihood scores
(raw machine scores) for English and Japanese spoken audio data. In both cases, mean of the
stimuli is also highlighted for reference.

ratings.

As seen in Figure 2.6 (left panel), both the human scoring and the automatic scoring indicate

an improvement in the pronunciation of the Japanese words for Phase II over Phase-I. At the

subject level, we also find that 10 out of 12 subjects showed an increase in scores (both human

expert and automatic method) for Phase-II over Phase-I. Also, using the approach of log-

likelihood with forced alignment shows a good match with the human expert-based scoring.

We also find the score improvement to be statistically significant for the human expert scoring

and the machine scoring (with p = 0.027, 0.017 respectively).

In both cases, the mean of the log-likelihood scores for the stimuli is different from the

mean of the spoken audio recordings from the subjects. This is expected as the stimuli are

clean speech utterances which were recorded in a close-talking microphone setting while the

spoken audio recordings from the participants were collected in a far-field microphone setting.

However, in the case of English-spoken audio recordings, the mean of the log-likelihood scores

for the stimuli is more similar to the rest of the distribution compared to the Japanese language
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(the percentage of data below the mean value of the stimuli is 70 % in the case of English while

is 95 % in the case of Japanese). This difference between the two languages is also statistically

significant.

2.4.2 Understanding Language Learning via the EEG

In this section, we use two types of analyses, (i) based on inter-trial distances and (ii) based on

distance between audio and EEG envelopes.

2.4.2.1 Inter-trial Distance Analysis

We use the inter-trial distance between EEG signals to quantify the change in representation

while listening to the same word over time. The hypothesis here is that in the case of a known

language like English, the inter-trial distance is somewhat random (due to the measurement

noise in EEG) but small in value throughout. However, in the case of the Japanese, the inter-

trial distances may show a pattern of reduction over trials as a consistent representation is

formed in the brain.

For testing this hypothesis, the EEG signals recorded during each trial are converted into a

log magnitude spectrogram (window length of 100 ms and shifted by 50 ms). The magnitude

spectrogram of each channel is converted into a single long vector and a pairwise distance

between trials is computed using Euclidean distance between spectrogram vectors. An inter-trial

distance matrix of size 20× 20 is computed for each channel separately. This is a symmetrical

matrix whose elements contain the inter-trial distances between any pair of trials. An example

of inter-trial distance in EEG is shown in Figure 2.7.

In order to further analyze the inter-trial distances, the trials are broken down into two

phases as before - Phase-I (trials 1− 10) and Phase-II (trials 11− 20). The mean of the inter-

trial distances in Phase-I (denoted as d1) and Phase-II (denoted as d2) are calculated. The

difference d1 − d2 is indicative of a change in inter-trial distances over the course of 20 trials.

We compare d1 − d2 averaged over all words and all subjects.
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Figure 2.7: An example of distance matrix plotted for a particular word,subject and channel

As hypothesized, the inter-trial distances reduce over time in the case of Japanese but remain

more or less uniform in the case of English as seen in (Figure 2.8). The histograms depicting

the difference values (d1−d2) for all the channels and the stimuli are plotted separately using a

Gaussian fit for the Japanese language and English language. In order to confirm the statistical

significance, we performed a two-tailed test with the null hypothesis being that the values of

d1 − d2 for both English and Japanese come from the same distribution and the alternative

hypothesis being that Japanese measurements of d1 − d2 come from a different distribution

compared to English. The tolerance level alpha was set to 0.05. It is seen the distributions of

the difference values for English and Japanese are statistically different.

The brain regions that show the language differences the most are shown in the scalp-plot

of the difference in terms of (d1 − d2) (for English and Japanese separately for each channel

averaged over all the subjects) in Figure 2.8. A plot which differentiates the two language level

scalp plots is also shown here. The regions that show more changes in English stimuli are in the

temporal region while the frontal regions also show this effect in the case of Japanese stimuli.

The regions that have higher differences between the two languages are predominately in the

frontal brain regions.
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Figure 2.8: (above) Histograms plotted using a Gaussian fit depicting difference between
the mean inter-trial distance in the Phase-I and Phase-II (d1 − d2) for EEG signals.A two-
sample t-test is performed between the distribution of English and Japanese in the case of
both EEG and audio. It is observed that in both the cases the distributions are statistically
significant(α = 0.05).On the right, correlation between audio and EEG inter-trial distance
differences for Japanese trials is shown (EEG data from electrode site FC4 is plotted here).
(below) Scalp plots indicating the channels with higher d1− d2 difference for English, Japanese
and the difference of the two languages.

An extension of this analysis performed for the spoken audio data is done using the audio

recorded during the speaking phase of each trial. The silence portion of each recorded audio

is removed. Each audio signal is converted into a sequence of MFCC feature vectors. Similar

to the analysis done in the previous section, a symmetrical distance matrix of size 20 × 20 is

computed for each word. Since the duration of the spoken audio for the same word differs each

time, a Euclidean metric-based Dynamic Time Warping (DTW) distance is calculated for the

pair-wise trial distance. Similar to the EEG analysis, the trials are divided into Phase I and

Phase II. The mean inter-trial distance in Phase-I (denoted as a1) and Phase II (denoted as a2)

are calculated. The difference a1- a2 is computed similarly to EEG and the histogram of the

difference in the case of audio for Japanese and English (using the spoken audio data from all
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subjects) is plotted using a Gaussian fit (shown in the middle of the top panel of Figure 2.8).

As seen in the case of EEG, the difference (a1- a2) in the mean distance between the two

phases is greater in the case of Japanese than in English. The distribution obtained in the case

of Japanese has a mean that is significantly larger than zero but not for English. Similar to

the case of EEG signals, a two-tailed t-test was performed on the Gaussian fit of English and

Japanese (alpha=0.05) and the two distributions were found to be statistically different.

We also analyze the correlation between EEG recorded during the listening state and the

spoken audio in terms of the mean inter-trial difference in Phase-I and Phase-II (i.e. the

correlation between (d1- d2) and (a1- a2)). A scatter plot is shown with the difference values

for EEG signals along the y-axis and the corresponding difference for audio signals along the

x-axis (i.e. (d1- d2) versus (a1- a2)). An example of the scatter plot difference of (d1- d2) versus

(a1- a2) for the frontal EEG channel (FC4) is shown in Figure 2.8. Each point on the plot

indicates a (subject, word) pair. The values along both axes are normalized between 0 and

1. A line of best fit is plotted through the points. The slope of the line (denoted by m) of

best fit is positive for most of the channels. Since the scales for the EEG spectrogram and the

audio MFCC features are different, the amount of correlation between the listening state EEG

and the audio spoken may be unnormalized. Additionally, the mean slope of best-fit lines for

Japanese words is found to be higher than in English. These observations indicate that the

pattern formation seen in the behavioural data is also correlated with the patterns seen in EEG

recordings.

2.4.2.2 Distance between EEG and Audio Envelopes

A direct relationship between the EEG signals recorded during the listening and the audio

spoken by the subject during the speaking phase may also present useful insights. Previous

studies have attempted to predict the audio envelope using EEG [97] or to perform a corre-

lation analysis between the EEG and audio envelope [98]. In our study, we try to align the

EEG and audio envelopes (after down-sampling to the same rate) using dynamic time warping
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Figure 2.9: Example of aligned EEG signal and spoken audio envelope

technique (DTW) and measure the distance between the two. The distance measure is inversely

proportional to the correlation measures used in the past, as smaller distances between audio

and EEG envelopes are associated with higher correlations and vice-versa. The choice of a

distance measure is to maintain consistency with the previous analysis based on distances.

DTW is a time series analysis technique for comparing and aligning sequences with variable

speeds or timing differences, particularly for temporal data with phase shifts or time lags. It

calculates an optimal alignment between two time series by warping the time axis, allowing for

non-linear distortions [99]. This makes it effective for comparing sequences that might have

similar shapes but are temporally out of sync. A sample plot of EEG and audio envelopes that

are time aligned using DTW is shown in Figure 2.9.

For the distance computation, the silence portion of the audio is removed and the length

of the EEG signals is kept to the stimuli length plus 100ms. Both the signals are converted to

their corresponding Hilbert envelopes and the envelopes are down-sampled to 64Hz. The DTW

distance between the two aligned envelopes is calculated. It is seen that the mean distance

between the two envelopes is greater in the case of Japanese than in English (Figure 2.10).

As a follow-up to the comparison done between the envelope of the EEG signals and the

audio spoken, a similar analysis is done between the envelope of the EEG signals and the stimuli

presented to the subject. A DTW distance is computed between the envelope of listening EEG
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Figure 2.10: Probability Distribution Function of distances between the envelope of listening
state EEG and envelope of stimuli presented and the envelope of spoken audio. A two-sample
t-test is performed, and it is seen that the distributions of the two languages are statistically
different for each state.(α = 0.05)
and the envelope of stimuli. A histogram of all the distances (between listening stimuli and

EEG as well as those between the spoken audio and EEG) for both languages are shown in

Figure 2.10. The average distance values between envelopes (for the listening state) are less in

the case of Japanese compared to the speaking state. The distance between the envelopes of

the EEG signal and the spoken audio is more than the distance between the envelopes of the

EEG and the stimuli presented as well.

A two-tail t-test was performed on the distance distributions between the EEG envelopes

and audio for English and Japanese. This was done for both distance measures between EEG

and stimuli envelope as well as EEG and spoken audio envelope. In both cases, the null

hypothesis was that the distributions of English and Japanese are not statistically different,

and the alternative hypothesis was that the two distributions are statistically different. The

t-test indicated a statistically significant deviation from the null hypothesis in both cases. This

supports our claim that the distributions obtained for the relationship between the envelopes

of EEG and audio are statistically different for the two languages.
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2.5 Discussion
With spectrogram based features and SVM classifier, we achieve an average accuracy of 64%

in distinguishing between known and unknown languages in a language classification task. The

comparison of outcomes between audio and EEG indicates that, while the spoken audio carries

substantial information for language classification, the EEG responses during the listening state

can also offer statistically significant cues for discriminating between languages.

Our experiments demonstrate that incorporating the phase imparts valuable information

to the feature related to language familiarity, as illustrated in Figure 2.4. It is evident that

integrating phase information yields improved accuracy in language classification compared to

relying solely on the magnitude of the spectrogram. Section 2.3.3.4 suggests that the informa-

tion distinguishing languages is selective to specific spectral ranges, with the primary language

cues being found in the α and θ bands. As seen in Figure 2.8, the inter-trial distances reduce

over time in the case of Japanese but remain more or less uniform in the case of English. The

subjects’ familiarity with the words from the English language may have resulted in generating

invariant EEG responses when presented with these stimuli. In the case of Japanese stimuli,

subjects are listening to those words for the first time. Over the trials, subjects form a consistent

neural representation of the unfamiliar stimulus. It is evident from the reduction of inter-trial

distances of the EEG responses.

The stimulus presentation and listening state EEG recording happen in parallel. Hence,

a higher correlation is expected between the two compared to the correlation between the

envelopes of the listening state EEG and the spoken audio. This is seen in Figure 2.10. Since

Japanese is unfamiliar, the spoken audio is not well aligned with the stimuli. Hence, the distance

between spoken audio and EEG envelopes may be higher for Japanese than for English.

All the subjects who participated in our recordings were not exposed to Japanese before but

had a good proficiency in English. We hypothesize that due to their unfamiliarity with Japanese,
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their attention while listening to Japanese stimuli is much more than in English, resulting in

a lesser distance between envelopes of EEG and Japanese stimuli compared to English. The

absence of semantic processing in Japanese could also explain the reduced distance between

the stimuli envelope and the EEG envelope for Japanese. In the speaking state, the subjects

tend to reproduce audio that is less correlated with stimuli for the Japanese language than

the English language. This may explain the rightward shift of the distribution of distances for

Japanese spoken audio in Figure 2.10.

We have additionally performed analysis to find out the channels that capture language

learning the most. The channels are identified as the ones that show the maximum difference

between Phase I and Phase II. The top five channels are found to be (O2, AF3, F8, AF4, F7),

located primarily in the frontal region of the brain.

2.6 Chapter Summary
The key findings from this chapter are the following,

• A consistent neural representation is formed when exposed repeatedly to words from an

unfamiliar language. This is also consistent with language learning established using

pronunciation rating.

• In the listening state, the correlation between audio stimuli and EEG envelope is higher

for Japanese than English trials (smaller distance values). The correlation between the

EEG envelope of the listening state and the envelope of the spoken audio is less for

Japanese than for English.

• The discriminative signatures of the language are encoded in the time-frequency repre-

sentation of the EEG signals in the range of 0-30Hz, both in magnitude and phase.

In the current setup, unfamiliar words are presented to the subjects without the semantic

meaning or the context of the word. In the next chapter (chapter 3), we investigate how the
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neural responses change when unfamiliar words are provided with semantics. Additionally,

longer content is expected to provide future insight into language-level differences compared to

word-level analysis. This can be achieved with stimuli containing longer words, phrases and

sentences. In the next chapter (chapter 3), the EEG recording experiment introduces a scoring

model that rates and gives feedback to the subject depending on how well they pronounce the

words during the experiment, based on the pronunciation model introduced in this chapter.
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Chapter 3

ERP Evidences of Rapid Semantic

Learning In Foreign Language Word

Acquisition

3.1 Introduction
Having studied neural encoding in response to repeated exposure to foreign language word

sounds without context, our research now investigates the impact of semantics on learning

patterns. The association of semantics with speech sounds constitutes the next phase of word

learning ([100]), which further develops into sentence formation and syntax/grammar learning.

These processes may not be sequential and may be interleaved with each other. This current

exploration has the potential to reveal the neural signatures associated with rapid semantic

learning. We aim to examine how neural responses evolve as newly acquired words are integrated

into sentence contexts, shedding light on the cognitive processes involved in comprehending

sentences.

The brain activity related to the perception and cognition of language can be studied through

event-related potentials (ERP). The ERPs are computed by averaging the electroencephalogram

47



(EEG) recordings evoked by the same event. The ERPs triggered by verbal stimuli have been

associated with different aspects of language learning ([101]).

In this study, we introduced the semantics of Japanese words to subjects without prior

exposure to the Japanese language. Following this language learning task, we performed event-

related potential (ERP) analysis using semantically matched and mismatched English sentences

where the end words were replaced with their Japanese counterparts. The event-related po-

tential (ERP) of electroencephalography (EEG) signals has been well studied in the case of

native language speech comprehension using semantically matched and mismatched end-words.

The presence of semantic incongruity in the audio stimulus elicits an N400 component in the

ERP waveform. However, it is unclear whether the semantic dissimilarity effects in ERP also

appear for foreign language words that were learned in a rapid language learning task. The

ERP analysis revealed that, even with a short learning cycle, the semantically matched and

mismatched end words elicited different EEG patterns (similar to the native language case).

However, the patterns seen for the newly learnt word stimuli showed the presence of the P600

component (delayed and opposite in polarity to those seen in the known language). A topo-

graphical analysis revealed that P600 responses were predominantly observed in the parietal

region and the left hemisphere. The absence of the N400 component in this rapid learning

task can be considered evidence for its association with long-term memory processing. Fur-

ther, before semantic learning, the ERP waveform for the Japanese end words showed a P300

component owing to the subject’s reaction to a novel stimulus. These differences were more

pronounced in the centro-parietal scalp electrodes.

In this chapter, we present a study to analyze rapid language learning effects using ERP

analysis where the end words of English sentences were replaced with Japanese words. In

the first phase of the experiment, the subjects who were proficient in English with no prior

exposure to Japanese words were presented with English sentences containing Japanese end

words. A subsequent language learning phase introduces the semantics of the Japanese stimuli
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through its pictorial description. In the final phase, the subjects listen to English sentences

again with Japanese end words armed with the knowledge of semantics. The Japanese end

words in English sentences may be congruent or incongruent with the sentence context. An

ERP analysis of Japanese end words before and after semantic learning illustrates significant

changes that highlight the neural processes involved in learning. Further, the difference in ERP

of Japanese stimuli in congruent and incongruent conditions (after language learning) elicits

delayed and positive ERP components as opposed to the N400 effects observed in the native

language under the semantic mismatch condition.

Contributions:

• The study contrasts the ERP effects of semantic incongruity in a proficient language

(English) versus a newly acquired language (Japanese).

• This study demonstrates that rapid semantic learning elicited ERP responses in the form

of a delayed positive response at 500-700ms from the onset of the end word for the

incongruent words.

• The scalp electrodes showing semantic effects from newly learned words of a foreign

language (Japanese) are located in the parietal and occipital regions.

• The amplitude of semantic incongruity (ERP component) in the foreign language (Japanese)

is more for pure foreign words (hiragana words in Japanese) versus English loan words

(katakana words in Japanese).

Relevant Literature
The N400 component was first introduced by [102], where the reading task comprised presenting

the participant with a set of sentences that end with a congruent or incongruent word. These

semantically incongruent end words in a sentence elicited specific type of ERPs ([103, 104,

105]), known as the N400, a negative-going deflection between 250 and 400 ms after the end
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word onset. The presence of N400 in semantically incongruent stimuli was also observed in

other stimuli presentations ([106]) like reading ([107]) and visual forms ([108]). The N400 was

characterized as a reaction to an unexpected or inappropriate, but syntactically correct word at

the end of a sentence. The N400 component was not observed for stimuli with syntactical and

grammatical errors ([109]). This result is evidence that the N400 wave is more closely related

to the semantics than the syntactical processing.

The N400 is not only a response to semantic improbability or anomaly but also as an

indicator of the access to semantic information associated with the stimuli ([110]). When

a word is congruent in its context, there is little new information to process, and hence, this

evokes a lower N400 response than an incongruent word. The amplitude of the N400 is sensitive

to a word’s semantic expectancy ([111]) and found to be larger in response to more unexpected

stimuli ([112, 113, 114]). The N400 has also been used to show that language comprehension is

incremental ([115]), and involves prediction ([116]). Further, semantic information processing

happens even without active awareness ([117]). It has also been pointed out that language

mechanisms vary across the hemispheres ([118]) and can change over the course of normal

aging ([119]).

Even though the N400 has contributed significantly to the understanding of language com-

prehension, the N400 response is not confined to the language domain alone; hence, it is not a

“language component” ([120]). The N400 is not only seen in word comprehension but also for

different kinds of pictorial stimuli (eg, comics/cartoons, drawings, pictures of objects, natural

scenes), faces, gestures, and environmental sounds. Thus, it can be elicited for any kind of

stimulus linked to long-term memory representations ([110]).

3.1.1 N400 as an index of word learning

The N400 has been established in numerous studies to be a useful index of new word learning.

In a study by [121], adults were taught the meanings of infrequent and unfamiliar words. The

N400 component was seen for unrelated word pairings containing the trained words and not for
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those involving the unfamiliar words.

[122] investigated context-based learning of novel words using ERPs. The researchers specif-

ically introduced novel word forms in the ending position of meaningful sentences that the

participants read during the training phase. In a following relatedness judgement task on word

pairs, consisting of a trained novel word (prime) and a real word (target), the study found a

reduction in the N400 for targets words that were associated with the prime word compared to

the unrelated target-prime pairs.

[123] investigated contextual learning by embedding pseudo-words into meaningful short

story contexts. In a subsequent relatedness judgement task, the study showed a reduction in

the N400 amplitude for targets corresponding to the novel word.

The N400 has also been demonstrated to be sensitive to new word learning after just one

exposure to a novel word in the context of a highly predictive sentence ([124, 125]). The find-

ings of such investigations provide neuro-physiological evidence for understanding the semantic

learning of the new words.

3.1.2 Intra-sentential code-switching

The N400, left-lateralized anterior negativity (LAN), and the late positive component (LPC;

also referred to as P600) are the three primary ERP components identified in research on

intra-sentential code switching.

The LAN is a left-lateralized anterior negativity that occurs in the same time frame as

the N400 (300–500 ms) but with a distinct topographic scalp distribution. [126] observed

LAN effects in morphosyntactic processing, as well as in the processing of code-switched sen-

tences. The higher working memory load resulting from integrating morphological signals of

the code-switched word into the wider sentence context was interpreted as the switch-related

LAN component ([127]).

The LPC (or P600) is a positive-going wave that arises 500–600 ms after the stimulus and

lasts several hundred milliseconds ([128, 129]). It has a wide posterior scalp distribution and is
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strongest in the centro-parietal areas. [130, 131] and [132] infer that the LPC indexes sentence-

level rearrangement or re-analysis. The LPC, according to this view, indicates a sentence-level

wrap-up or meaning revision process, which in the instance of intra-sentential code-switching,

reflects the sentence-level reorganization of two languages into a cohesive utterance. The LPC

has also been linked to the processing of unexpected or unlikely task-relevant events ([133, 134]),

as well as the reorganization of stimulus-response mapping ([135]). A switch-related LPC

represents bilinguals’ perception of a language transition as an unexpected occurrence involving

a shift in form rather than meaning ([127]).

3.1.3 P300

P300 is usually elicited using the oddball paradigm, where low-probability target items are inter-

spersed with high-probability non-target (or “standard”) items. When captured through elec-

troencephalography (EEG), it manifests as a positive voltage deflection peaking around 300ms

[136]. The characteristics of this signal, including its presence, amplitude, spatial distribution,

and timing, are commonly employed as measures of cognitive functioning in decision-making

processes.

The amplitude of P300 signifies the extent of information processing, along with the al-

location of attentional resources to a task and the level of advanced cognitive function [137].

Conversely, an increase in P300 latency indicates suboptimal cognitive performance [138, 139].

In the scientific literature, differentiation is often made in the P3, which is divided according

to time of peak amplitude:P3a and P3b. The P3a, or novelty P3, is a positive-going component

with peak latency in the range of 250-280 ms. It’s topographic distribution shows maximum

amplitude over frontal and central electrode sites. P3a has been associated with cognitive tasks

of involuntary attention and the processing of novelty ([140]). The P300 (P3b) ERP component

is elicited in the process of decision making and usually evoked using the oddball paradigm. It

is evoked in connection with a person’s reaction to a stimulus and not to the physical traits of

a stimulus. P3b is considered an ERP component that reflect cognitive processes involved in
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stimulus evaluation or categorization [141].

3.2 Materials and Methods

3.2.1 Stimuli

All the speech stimuli used in the study were recorded from speech provided by a single female

speaker who was proficient in both English and Japanese languages. The speaker’s first language

was Tamil, a south-Indian language. The accent of the speaker was Indian English. Given

that all the listeners were also of Indian origin, we found that the listeners had no issues

understanding the English content. Further, the work employed a single speaker for all the

stimuli. This helped to remove the effect of speaker variabilities or speaker switching in the

stimuli used. The audio files were recorded in a noise-proof sound booth with a CAD u37

microphone at a sampling rate of 44.1kHz.

The speech stimuli used in the experiment consisted of isolated sentences and isolated words.

They were recorded in a soundproof booth. The entire stimuli set used in the experiment is

listed in Table 5.1.

The audio and image files used for the experiment are available in this project’s GitHub

repository1. The stimuli set consisted of 90 unique English sentences. The sentences were

selected such that the end word was highly predictable from the sentence context. Our stimuli

set was taken from the high cloze probable sentences (cloze probability in the range of 67% to

100%) of the Block-Baldwin sentence set ([142]). The audio duration of the sentence varied

between 1.4s to 2.4s, with an average of 2.2s. The duration of the end word in these sentences

in different stimuli conditions are given in Table 3.1.

The end words of the sentences were either from English or Japanese language and they were
1https://github.com/iiscleap/Semantics-EEG-ERPStudy
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Stimuli Condition Duration of End-word
[min. - max.] (in s)

English Congruent [0.2 - 1.1]
English Incongruent [0.3 - 1.3]
Japanese Congruent [0.4 - 1.3]
Japanese Incongruent [0.4 - 1.3]

Table 3.1: The table shows the range of duration of end word of sentences in different stimuli
conditions. Note: We used the same set of words for different conditions for a language. But
the duration can vary slightly as it is spoken as part of a sentence in different instances.

Table 3.2: Different conditions of the stimuli sentences used in our experiment with an example.

Stimuli Condition Example
C1 - Eng. Congruent The cow gave birth to a calf.
C2 - Eng. Incongruent The cow gave birth to a book.
C3 - Jap. Congruent The cow gave birth to a koushi.
C4 - Jap. Incongruent The cow gave birth to a hon.

designed to be either semantically congruent or incongruent with the preceding context in the

sentence. All the stimuli conditions are listed in Table 3.2. The first condition (C1) consists of

90 English sentences from the original Block-Baldwin set without any modification. The stimuli

for the other three conditions of the experiment were created by replacing the end word with

all the preceding words intact. In condition 2 (C2), the end word was replaced by an English

word which is unexpected in the sentence context (English incongruent condition); in condition

3 (C3), the end word was replaced by a Japanese word of the congruent semantics (Japanese -

congruent condition); and in condition 4 (C4), the end word was replaced by a Japanese word

of unexpected meaning (Japanese - incongruent condition). Thus, the experiment had a total

of 360 sentences. The sentences were carefully chosen such that the end word can be visualized

as an image. Each of the stimuli conditions used the same base set of English sentences. The

conditions differed only in terms of the end word of the sentences. Each stimulus was recorded

as a full sentence for each condition separately. Each stimulus (EC,EINC, JC (before and after

learning), and JINC) condition has 90 sentences for trial averaging to compute the ERP signal.
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We choose the Japanese language as the novel language as it does not belong to the same

language family as English. 90 Japanese words were used to form sentences in different condi-

tions. At the same time, the Japanese language contains a set of loan words from English termed

katakana words. The katakana words are typically English words that have been adapted with-

out translation into the Japanese language ([143]). The katakana words sound similar to their

English counterparts (cognate words). By using a mix of non-cognate native Japanese words

(referred to as hiragana words) and katakana words, we were able to study the effect of pho-

netic similarity in learning. The set of Japanese words used in our experiments (Table 5.1)

consisted of 38 katakana words and 52 hiragana Japanese words. This unbalanced distribution

of katakana and hiragana words is in compliance with the word frequency distribution in the

Japanese language ([144]). Thus, for stimuli conditions C3 and C4, the end word can be either

a katakana word or a hiragana word.

3.2.2 Experiment Flow

A schematic illustration of the experiment is shown in Figure 3.1. A more detailed illustration is

given in the appendix. A short video depicting the experiment flow is available in this project’s

GitHub repository1. The end words were either congruent or incongruent with the context of

the sentence. The participants learned the semantics of the unknown Japanese words using

image supervision (shown in session 2 of Figure 3.1) and the learning was analyzed when the

words were used in sentences both in congruent and incongruent conditions (shown in session S3

of Figure 3.1). In each session, the sentences of different conditions were presented in random

order using a loudspeaker.

In session S1, the subject listened to English sentences with congruent or incongruent end

words (C1 and C2 from Table 3.2). This session also contained English sentences with Japanese

end words. The subject got the first exposure to these Japanese words in this session without

the semantic information.
1https://github.com/iiscleap/Semantics-EEG-ERPStudy
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Figure 3.1: Experiment pipeline consisted of three sessions. S1 - where the subject listened to
acoustics of Japanese words used in English context and English end-words in congruent and
incongruent context. S2 - where the semantics of Japanese words were introduced using images.
S3 - where the subject listened to Japanese words in English context (both congruent sentences
and incongruent sentences).

In the next session (S2), the participants were provided with the semantics of the Japanese

words. A block of 5 new Japanese words was considered, and word meanings were conveyed

using the respective image. The image form of the word and its audio are presented simul-

taneously. The 5 words of each block were presented in random order. A retrieval task was

also designed to ensure the learning ability of the subject. In the retrieval task, the subject

was asked to speak the Japanese word for the image shown on the computer screen. After the

subject provided the spoken response, the audio of the correct Japanese word was replayed.

Here, the subject has affirmed the learning or corrected their learning if the word recollection

was inaccurate. We do not analyze the EEG data from S2 in this study.

In session 3 (S3), the subject listened to the sentence audio played through the loudspeaker.

It was an English sentence with a Japanese end word. Here, the end word was either congruent

or incongruent to the context of the sentence (C3 and C4 in Table 3.2). The end word was

one of the 5 Japanese words learned in the preceding session (S2). Hence, there were a total of

10 sentences (equal number of congruent and incongruent) played in session 3 for the current

block. These 10 sentences were presented in random order. After the audio signal was played,
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a recognition task was carried out to ensure that the subject recollected the meaning of the

Japanese end word. In the recognition task, the subject was asked to pick the image corre-

sponding to the Japanese end word. The subjects recorded their choice of image by speaking

the corresponding number index on the screen. The subject responses were later evaluated

manually to assess their recognition accuracy. The Behavioural results are discussed in Section

3.3.1. Only the EEG responses to the Japanese words, whose meaning was recollected correctly,

were used in the subsequent ERP analysis.

In order to avoid the memory load of learning and recalling 90 new Japanese words, S2

and S3 were performed in 18 blocks of 5 words each. Session S3 for a set of 5 words was

conducted immediately after the subject was trained on the semantics in session S2. We de-

signed the experiment in this way to reduce the memory load on the subject as we were more

interested to analyze the semantic effects of the newly learned words in both congruent and

incongruent conditions. A particular Japanese word was presented 5 times to the subject: once

in S1 (sentence end word without semantic knowledge), twice in S2 (as isolated words in the

learning phase) and twice in S3. In S3, it was used as the sentence end word in congruent

and incongruent contexts. A specific sentence-English endword pair was presented only once,

while a particular sentence-Japanese endword pair appears twice during the entire experiment.

These two occurrences take place in session 1 (before learning the word meaning) and then in

session 3 (after learning). For incongruent condition, sentence end word pairing was carried by

random shuffling and incongruence was ensured by manual selection. The order of congruent

and incongruent conditions in S3 was randomized. Thus, the exposure to new Japanese words

was balanced across conditions. The three sessions were recorded in an interleaved fashion in

one recording setup for each of the subjects. The experiment design ensured that the subject

does not get exposed to katakana words more than hiragana words.
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3.2.3 Participants

The participants had self-reported normal hearing and no history of neurological disorders.

Twenty-one subjects took part in the experiment. Two subjects were eliminated due to poor

EEG data quality and another two were eliminated due to equipment failure. Seventeen adults

participated in this study (mean age = 25.7, age span = 22-35, 7 female and 10 male) and they

had an intermediate or higher level of English proficiency. This was verified with the Oxford

Listening Level Test 1 before the commencement of the experiment. The native language

of the subjects was one of the five Indian languages (Malayalam, Tamil, Kannada, Telugu

or Hindi). All subjects provided written informed consent to take part in the experiment

and received monetary compensation. The Indian Institute of Science Human Ethics Board

approved all experiment procedures. The methods were carried out in accordance with the

relevant guidelines and regulations.

We have performed the power analysis with an assumed effect size of d=0.5 ([145, 146]) to

check the sufficiency of the number of subjects and trials used in the experiments. We performed

the power analysis on our experiment using the GPower software ([147]). This analysis revealed

that our study is a properly powered experiment(with power value more than 95%). Hence,

the effects reported in the study are very likely to be robust and reproducible.

3.2.4 EEG Recording Setup

The EEG signals were recorded employing a BESS F-64 amplifier with 64 passive gel-based

Ag/AgCl electrodes placed according to the enhanced 10–20 montage ([27]). It was recorded

at a sampling rate of 1024 Hz. An isolated frontal electrode was utilized as ground and the

average of two earlobe electrodes was utilized as reference. The channel impedance was kept

below 10 kOhm throughout the recording. The EEG recording took place in a sound-proof,

electrically isolated room. The software and hardware used during the EEG recording is given
1https://www.oxfordonlineenglish.com/english-level-test/listening
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in table 3.3.

Table 3.3: Experimental Details

Particulars Details
Presentation Software Python based GUI developed by the authors
Monitor Samsung 27”
Loudspeaker Dell Ax210 USB Stereo
Microphone CAD u37

3.2.5 Data Preprocessing

As the initial step, we apply a fourth-order high-pass Butterworth filter with a cutoff frequency

of 0.1 Hz to the EEG data to eliminate the DC drift. Subsequently, the signal undergoes a

low-pass filtering process using a fourth-order filter with a cutoff frequency of 70 Hz. To address

the 50 Hz line noise, we incorporate a notch filter. The PREP pipeline [77] identifies channels

with elevated noise levels in each subject’s recording. Techniques such as the Artifact Sub-

space Reconstruction method [78] are employed to mitigate artifacts like eye blinks and muscle

movements. Next, the continuous EEG data was band-pass filtered between 1-8Hz. The lower

cut-off low-pass filter can be advantageous for our dataset with higher levels of noise [148]. We

extract data epochs corresponding to different stimuli and conditions of the experiment utiliz-

ing EEGLAB [79]. Any epoch with a magnitude exceeding 3 standard deviations is excluded

from future analysis, following the bad trial removal procedure. Baseline subtraction involves

computing the average from a 200ms baseline period from the start of each recording block.

For each subject, we standardize the neural response of each EEG channel to ensure zero mean

and unit variance. The entire preprocessing pipeline is implemented using the EEGLAB toolkit

in MATLAB.
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Figure 3.2: Behavioural task performance: This plot shows the percentage of Japanese words
correctly associated with the image description by the subjects.

3.3 Results

3.3.1 Behavioural Task

A behavioural task was conducted to ensure that the subject successfully recalled the meaning

of the Japanese words while listening to the end word of the sentence stimuli in session S3.

From a set of 5 images, the subject was asked to identify the image corresponding to the

Japanese end word of the sentence. Figure 3.2 shows the percentage of words whose meaning

was correctly identified by the subjects. The solid line shows the overall accuracy obtained

by each subject. Eleven out of seventeen subjects correctly recalled more than 90% of the

word semantics (chance accuracy was 20%). Thus, the subsequent ERP-based conclusions in

S3 had a strong Behavioural basis. As seen in Figure 3.2, the number of correct responses

in the Japanese congruent condition was greater than the number of correct responses in the

incongruent condition for all the subjects. A right-tailed paired sample t-test showed that the
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recognition accuracy of congruent end-words was significantly higher than incongruent end-

words (congruent: 94.88, incongruent: 85.90, t (16) = 5.92, p = 1.06e−5). This indicated that

it was easy to recollect the meaning of a word when it was used in the correct semantic context

in a sentence. Figure 3.2 shows that the recognition accuracy of katakana words is better than

that of hiragana words for all subjects except one (subject 2). A right-tailed paired sample

t-test showed that the recognition accuracy of katakana words was significantly higher than

hiragana words (katakana: 94.72, hiragana: 87.31, t (16) = 5.32, p = 3.46e−5). Hence, we

conclude that the lexical association of katakana words with English words made it easier to

recall katakana words. In the subsequent analysis, only words that were correctly recalled are

used.

3.3.2 ERP analysis

The event-related potentials (ERP) are time-locked EEG responses averaged across multiple

trials for the same stimulus condition. The ERPs are computed for epochs extending from 100

ms before the end word onset to 800 ms after the end word onset. The time t = 0 in the ERP

plots corresponds to the onset of the end word in the stimuli sentences. The difference ERP

waves were calculated by subtracting an ERP wave of one condition from the other. All the

grand average ERP plots shown in this chapter are ERP responses averaged across 17 subjects.

The two-sample t-test was conducted at each time sample to validate the significance of the

ERP responses. All difference ERP plots are marked with time regions of significance where

the difference value is significantly above zero (p < 0.05). This is indicated by horizontal bars

at the bottom of the plot.

3.3.2.1 Effect of Incongruity

The ERP response shown by solid line in Figure 3.3 exhibits N400 effect ( t (16) = -5.59, p =

2.05e−5) in 300-500ms over centro-parietal and parietal electrodes) for the difference of English

congruent response (C1S1) from English incongruent response (C2S1). This result is aligned
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Figure 3.3: The grand average of difference ERP response of congruent end word from in-
congruent end word: end words in English (solid - red color) and Japanese: session 3 (dotted -
green color). The horizontal bars drawn in the bottom of each plot identifies the time regions
with significant (two-sample t-test with p < 0.05) difference in the ERP response. The bars
have the same color of the associated difference waveform.
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with the prior research on N400 for auditory tasks ([149]) which is elicited for semantically

incongruent stimuli conditions. To the best of our knowledge, the ERP analysis for other

conditions that follow is reported for the first time in the literature.

The difference between the grand average ERP response of the Japanese congruent end word

from the Japanese incongruent end word is shown in Figure 3.3 as a dotted line. The semantic

incongruity of newly learned Japanese end words did not evoke an N400 response relative to

the congruent Japanese end words ( t (16) = 0.32, p = 0.75 over the time window 300-500ms)

over the cluster of centro-parietal and parietal electrode locations.

As observed in Figure 3.3, the English and Japanese end-words had different responses

around 400ms and 600ms. Both the English and Japanese difference ERP did not have signif-

icant peaks in the early part of the time axis. The difference ERP response for Japanese end

words elicited a P600-like component ( t (16) = 5.11, p = 5.24e−5 for time window: 500-700ms)

over a cluster of centro-parietal and parietal electrode locations. This figure also highlights that

ERP effects of semantic incongruity are possible without a long-term learning process. A sim-

ilar difference in ERP response for English end words in the 500 to 700 ms time window ( t

(16) = −1.05, p = 0.310) was not observed. In other words, the semantic incongruency in the

stimuli did not evoke a P600 response for familiar language.

To confirm these differences statistically, we performed ANOVA on the mean ERP am-

plitudes across the scalp in two time windows (300–500 ms and 500-700ms) of interest. We

considered congruity and scalp region (frontal/central/parietal) as the independent factors.

In the N400 time window (300–500 ms), we observed robust effects of congruity for English

end-words. We observed similar effects for Japanese end-words in the P600 (500-700ms) win-

dow. The ANOVA reveals significant interaction between language and congruity in both the

time windows (for 300-500ms window: F(1,68) = 16.13, p = 6e−5 and for 500-700ms window:

F(1,68) = 37.85, p = 9e−10).
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3.3.2.2 Effect of Word Learning

Figure 3.4 shows the ERP response for the same set of Japanese language words before and after

learning the semantics. The Japanese words exposed without semantic knowledge (solid line)

evoke early positive peaks betwen 100ms and 300ms. This P300 (P3a) response is possibly an

indicator of exposure to novel information. The P300 response disappear in the exposures after

the subject learned the meaning of the word. The Japanese end word response before semantic

learning (solid line) and Japanese congruent response post semantic learning (dotted line) has

a negative deflection before 600ms. Both these responses also have late positive component

(LPC) after 600ms, which possibly is an indicator of the recognition of the code-switch. In

summary, the ERP for congruent (t (16) = 3.97, p = 5e−4) and incongruent (t (16) = 5.89, p

= 1.1e−5) conditions post semantic learning elicit significantly different responses in 500-700ms

from word onset.

Figure 3.5 shows the differences in EEG responses to Japanese end words before and after

learning their meaning. The difference ERP waveforms of congruent (solid) and incongruent

(dotted) conditions do not show any significant difference in the 0-500ms range. Both conditions

evoke significant negative peak around 200ms. It is also noted that there is a significant dif-

ference between before and after learning in the in-congruent condition than for the congruent

condition.

3.3.2.3 Effect of Phonetic Similarity to Known Words

Figure 3.6 shows the difference ERP response for katakana (loan words in Japanese) and hira-

gana words separately. It shows the difference ERP of congruent condition from incongruent

condition. Both hiragana and katakana words show significant P600 response. We performed

a paired t-test over a cluster of centro-parietal and parietal electrode locations in the time

window 500-700ms to ascertain the statistical significance. The difference ERP of katakana
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Figure 3.4: The grand average of ERP responses to Japanese end word before learning its
meaning (solid), Japanese congruent end word (dotted) and Japanese in-congruent end word
(dashed) after learning the meaning. The horizontal bars drawn in the bottom of each plot
signify the time regions with significant (t-test with p< 0.05) ERP amplitude from the value
of 0. The bars have the same color of the associated waveform.
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Figure 3.5: Grand average difference ERP response of: Japanese Congruent end word from
Japanese end word response before learning its meaning(solid); and Japanese In-congruent end
word from Japanese end word response before learning its meaning (dotted). The horizontal
bars drawn at the bottom of each plot signify the time regions with significant (two-sample
t-test with p< 0.05) difference in the ERP response. The bars have the same colour of the
associated difference waveform.
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Figure 3.6: The grand average of difference ERP of congruent end word response from in-
congruent end word response for katakana words (solid) and hiragana words (dotted). The
horizontal bars drawn in the bottom of each plot signify the time regions with significant (two-
sample t-test with p< 0.05) difference in the ERP response. The bars have the same color of
the associated difference waveform.
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words showed t (16) = 3.39, p = 1.87e−3 and that of hiragana words showed t (16) = 4.18, p

= 3.53e−4 in the P600 window. Thus, the hiragana words show larger P600 amplitude than

katakana words (t (16) = 3.91, p = 6.24e−4). The statistical significance is more established

for hiragana words in the occipital and left-parietal electrode locations.

Figure 3.7 shows that event related potential evoked by katakana and hiragana words before

semantic exposure does not show any significant difference. Note that, a statistical significance

would be highlighted as black horizontal bar in the figures. The absence of any horizontal

bars means that, for all the electrodes considered here, the ERP responses for katakana and

hiragana words were not statistically significantly different.

3.3.3 Topographical Analysis

Figure 3.8 shows the topographical distribution of difference of ERP (grand-average) ampli-

tudes in different time windows. The mean value of ERP amplitudes in each time window is

plotted here. The top row shows the difference of English congruent end-word responses from

English incongruent end-word responses, the middle row shows the difference between Japanese

congruent end-word responses from Japanese incongruent end-word responses and the bottom

row shows the difference of Japanese end-word responses before learning its meaning from the

Japanese end word responses after learning its meaning.

As shown in previous works, the N400 response is significant over the centro-parietal region

(see Figure 3.8 top row). Similarly, the Japanese congruent vs incongruent difference is signif-

icant over the centro-parietal region in a 450-650ms time window as seen in Figure 3.8 middle

row. It is more evident in the left hemisphere than the right hemisphere of the scalp. The last

row of Figure 3.8 shows ERP differences between the EEG responses before and after semantic

learning in frontal, parietal and occipital regions in the initial time windows after the end word

onset. The response over the rear part of the brain is low in magnitude from 350ms onwards,

while the response in the frontal part sustains longer. In the frontal electrodes, the ERP after

semantic learning is more positive than before semantic learning. This is also more pronounced
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Figure 3.7: ERP plot for Katakana and Hiragana words in session 1 (before semantic exposure)
of the experiment. Before knowing the meaning of the word, perception of both types of words
did not show any significant difference in event related potentials. Two sample t-tests conducted
did not give any time region with significant difference between the responses for two types of
words (Note: If there is any significant region, that will be marked with horizontal bars below
the black horizontal line at the bottom of each subplot in the figure).
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Figure 3.8: Topography distribution of mean difference of ERP (grand-average) amplitudes in
different time windows. Top row: Difference of English congruent end word responses from
English incongruent end word responses (S1) ; Middle row: Difference of Japanese congruent
end word responses from Japanese incongruent end word responses (S3) ; and Bottom row:
Difference of Japanese end word responses before learning its meaning from the Japanese end
word responses after learning its meaning (both in congruent context).

in the left hemisphere than in the right.

3.3.4 Correlation Plot

Let the ERP waveform for channel c for language l and for condition s be denoted as xs,l
c (t)

where channel c ranges from 1−64, language l corresponds to 1 for English and 2 for Japanese,

condition s corresponds to 1 for congruent and 2 for incongruent condition. For different time

regions R1-R5 (where R1 ranges from 50−200ms, R2 from 200−350ms, R3 from 350−500ms,

R4 from 500− 650ms and R5 from 650− 800ms), the correlation matrix for each language l is

computed using,

Cl
Rj
(i, k) =

eRj∑
t=sRj

xl,1
i (t)xl,2

k (t)

where Rj corresponds to regions R1-R5 and sRj
and eRj

denote the start and end time instants

of the region. Thus, the matrix of values C l
Rj

denotes the cross-correlation between the ERP
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Figure 3.9: Distance matrix between English and Japanese correlation matrices in different time
windows. The cross-channel correlation is computed between the congruent and incongruent
endword ERP responses across all channels for English (S1) and Japanese (S3). The time
regions in the figure are as follows R1: 50-200ms; R2: 200-350ms; R3: 350-500ms; R4: 500-
650ms; and R5: 650-800ms. The highest similarity was between English responses at R4 and
Japanese responses at R5.

responses for the congruent and incongruent conditions. A high value at location (i, k) for

this matrix indicates that for the channel pairs (i, k) the EEG responses to congruent and
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incongruent conditions are highly correlated (and time-synchronized). Similarly, a low negative

value indicates that for the channel pairs (i, k) the EEG responses to congruent and incongruent

conditions are negatively correlated (and time-synchronized). And a value for Cl
Rj
(i, k) that

is close to 0 indicates that the responses to congruent and incongruent stimuli conditions are

uncorrelated between channel pairs (i, k).

For each language, these matrices are generated. A distance measure using the Frobenius

norm of C1 − C2 is computed for every pair of time regions. This generates the 5× 5 distance

matrix.

The distance matrix shown in Figure 3.9 is computed between the congruent and incongruent

end word ERP responses across all channel pairs. It is computed for different time windows

as shown in Figure 3.9 to compare the correlation plot of the ERP waveforms for the two

languages. The distance matrix in Figure 3.9 shows that the English difference response in

R3 (350-500ms) has high similarity (least distance) with Japanese difference response in R4

(500-650ms). Similarly, we observe a high similarity between the difference response of English

in the R4 (500-650ms) window with difference response of Japanese in the R5 (650-800ms)

window.

3.3.5 Statistical Analysis of ERP effects

We have used the mean amplitudes extracted from five non-overlapping time windows of

150ms duration between 50 to 800ms from the word onset in repeated-measures ANOVA.

The ANOVA used four within-subject factors: language (English/Japanese), congruency (con-

gruent/incongruent), learning (before/after), and scalp region (frontal/central/parietal). The

ERP effects suggested group differences in particular topographic regions. The language and

congruency had significant interaction in all time windows except at 200-350ms. It should be

noted that the interaction is highly significant with a larger F-ratio in the 350-500ms window

(F=31.09, p < 0.01) and 500-650ms window (F=73.08, p < 0.01). The language and scalp

region factors had significant interaction in two time windows: at 50-200ms and at 500-650ms.
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The factors of learning and scalp region had significant interactions in all time windows except

500-650ms. This implies that the process of learning had topographic selectivity. The highest

significance is observed in the 200-350ms window (F=28.49, p < 0.01). The congruency and

scalp region also had significant interactions in the 50-200ms and 500-650ms windows.

3.4 Discussion
The subjects who participated in the experiment had no prior exposure to Japanese and hence,

these Japanese word semantics were accessed from short-term memory in the rapid learning

task undertaken during this experiment. Thus, the processing of the newly learned Japanese

words was found not to evoke long-term memory regions and the N400 ERP component was not

present in the difference waveform of the newly acquired Japanese end words (Figure 3.3). The

grand average difference of ERP response of Japanese congruent end word from incongruent

end word showed a P600 component (Figure 3.3). This can be attributed to semantic P600

component. The work by [150] showed that the violation of semantic congruity in sentences with

strong semantic relationship between its noun and verb can evoke a semantic P600 response. It

is also worth noticing that the congruent and incongruent semantic conditions showed different

brain responses for familiar language at around 400ms and for newly acquired words at around

600ms. The semantic differences in Japanese words evoked a later response than the English

words. This may be due to the reason that the newly learned words required a reanalysis to

integrate itself with the sentence. The ERP of incongruent words evoked a significant positive

peak while the ERP of congruent words evoked a negative peak around 600ms (Figure 3.4).

Figure 3.6 shows that both katakana and hiragana words evoked P600 component in the

difference ERP. The hiragana P600 response has higher amplitude than the katakana response

over the parietal and parieto-occipital electrodes. The katakana words are loan words from

English, but they are pronounced with the Japanese adaptation. As shown in the Behavioural

responses, human subjects find it easier to recall the meaning of katakana words and hence,
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the involved reanalysis is not as strong as the hiragana words. The observation that hiragana

words have higher P600 amplitude than katakana words is similar to the higher amplitude of

N400 observed for highly unexpected end word in the known language ([112, 111, 113, 114]).

Figure 3.4 and Figure 3.5 show the effects of semantic learning. The Japanese words in the first

exposure elicited a significant P300 response owing to the novelty of the stimuli. After semantic

learning, the ERP of congruent and incongruent conditions did not have significant differences

in the early part of the response. The differences are significant after 500ms from the onset of

the end word. This shows that the semantic processing of the newly acquired words may occur

with a delay of more than 500ms from the word onset.

The foreign word at the end of the sentence is comprehended as a form change, since it

evokes a P600 potential instead of N400 potential. This is comparable to the semantic illusion

condition shown by [151]. The code-switching to a newly learned word at the end of the sentence

requires re-analysis to integrate it with the prior sentence context. As shown in other code-

switching studies like [152, 153], we observe that P600 is elicited for the congruent end word in

context. In this work, we show that P600 potential is evoked while perceiving newly acquired

word from a foreign language employed in a code-switched manner. Further, we see a difference

in the P600 latency in the response for the newly acquired end word used in congruent and

incongruent context. When the newly acquired word is used in congruent condition, we see the

positive peak appearing at a slightly later time with a comparable amplitude. This difference in

the response to the Japanese word used in congruent and incongruent condition, shows the ERP

effects of rapid semantic acquisition of foreign language words. This difference in responses for

congruent and incongruent cases for the newly acquired word illustrates that the ambiguity is

recognized by involving a higher cognitive load. For the newly acquired words, the word used

in congruent condition evokes a lesser positive potential around 600ms from the word onset and

shows a more positive deflection in 700 to 800ms (peaking around 750ms). This can be observed

in Figure 3.4. This implies that the semantic integration of newly learned words happens much
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later in time compared to the similar process in a proficient language word. The underlying

cognitive process may also be bi-phasic: recognition and then integration of the meaning with

the sentence context.

The topographic plots show that P600 responses are also stronger over the centro-parietal

and parietal regions like the N400 response. But the P600 response has a left hemisphere

selectivity. The scalp distribution of difference ERP before and after semantic learning elicit

significant responses in the early part of the ERP waveform. It has strong positive response

in the frontal part owing to the P300 response. The correlation analysis in Figure 3.9 shows

that the highly negative correlation that exists between the EEG responses for congruent and

incongruent conditions for English at about 400 ms also appear for Japanese stimuli but at a

later time instant of 600ms.

3.5 Chapter Summary
The main contributions from this chapter are the following,

• The investigation of event-related potentials (ERP) in EEG signals during rapid language

learning in subjects with no prior exposure to a specific language addresses a significant

knowledge gap.

• EEG patterns elicited by semantically matched and mis-matched Japanese end-words

in English sentences differ for newly learned Japanese words compared to the English

end-words (already proficient).

• A short-term learning task involving new language words triggers a delayed and opposite

P600 component compared to the ERP observed for known language words, indicating

higher cognitive load during recall of newly learned foreign language words.

• Scalp electrodes show that these semantic activations were predominantly located in the

parietal and occipital regions.
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• The absence of the N400 component in this rapid learning task suggests its association

with long-term memory processing.

• The amplitude of semantic incongruity, as reflected by the P600 ERP component, is

higher for pure foreign words in the newly acquired language compared to loan words

derived from English, indicating that similarities with known language words facilitate

semantic learning.

In summary, the study found that the ERPs for semantically matched and mis-matched

Japanese end-words in English sentences are different for newly learned Japanese words. This

suggests that recall of newly learned words of a foreign language is more cognitively loaded,

and that similarities with known language words will aid in semantic learning. So far, we

investigated word learning effects with isolated stimuli, with and without context. In the next

chapter, we explore the neural encoding of speech perception with natural continuous stimuli.
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Chapter 4

Encoding of Semantic Word Level

Information in EEG for Natural and

Dichotic Listening

4.1 Introduction
In the preceding chapters, we explored the process of learning words from an unfamiliar lan-

guage. We analyzed the underlying neural patterns with multi-trial analysis techniques in EEG.

This involved experimenting solely with isolated stimuli, such as single words and novel end-

words within isolated sentences. However, this chapter advances our investigation to focus on

the neural encoding of more naturalistic stimuli. Specifically, we delve into the perception of

continuous stimuli in a familiar language. Although we examine the impact of word segmenta-

tion on speech perception, the scope of this chapter does not include the actual process of word

learning, unlike previous chapters.

The recorded EEG signal during a speech listening task has been shown to contain informa-

tion about the stimulus [26, 28, 29]. One can investigate how the brain comprehends continuous

speech by developing models that relate the speech to the EEG signal using machine learning
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techniques [154].

The early attempts explored linear models for relating continuous natural speech to EEG

responses [155, 156, 157, 158]. They can be categorized into three different types - forward

models, backward models, or hybrid models. The forward models predict EEG from speech

stimuli, while the backward models reconstruct speech from EEG responses. In many studies,

the correlation between the predicted and ground truth signals is considered a measure of

neural tracking [98]. However, linear models may be ill-equipped to capture the non-linear

nature of the auditory system. Deep neural networks have recently been employed to compare

and analyze speech stimuli and EEG responses. Several studies have shown promising results

with deep learning models for EEG-speech decoding [1, 16, 159, 160].

In many of the computational approaches, the speech envelope has been the most com-

monly used feature [155, 156, 158]. It is shown to be synchronized with neural oscillations in

the auditory cortex [26, 161]. Other features such as spectrograms [26, 162], phonemes [26],

linguistic features [162, 163], and phono-tactics [164] have also been explored with linear for-

ward/backward models. Lesenfants et al. [165] demonstrated that combining phonetic and

spectrogram features improves the EEG-based speech reception threshold (SRT) prediction.

While forward/backward models and correlation tasks were previously explored, the match

mismatch tasks have been recently investigated as an alternative task [166, 159]. Here, the task

is to identify whether a portion of the brain response (EEG) is related to the speech stimulus

that evoked it. In the previous studies using the match mismatch task, the auditory stimulus

and speech of a fixed duration (5s) are processed through a series of convolutional and recurrent

layers [1, 160, 167].

In this work, we argue that the prior works on speech-EEG match mismatch tasks are

incomplete without considering the fragmented nature of speech comprehension. While speech

and EEG signals are continuous, the neural tracking of speech signals is impacted by the

linguistic markers of speech [168]. The most striking evidence comes from models of word
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surprisal [169] with N400 response evoked for unpredictable words [29, 170]. In the simplest

form, we hypothesize that the task of relating continuous speech with EEG must also include

word-level segmentation information.

4.2 Tasks Explored
We propose a deep learning model to perform MM classification tasks on variable length inputs

using word boundary information. The model consists of convolutive feature encoders for both

the speech and EEG inputs. Further, the feature outputs incorporate the word segmentation

information, which is obtained by force-aligning the speech with the text data using a speech

recognition system, through a word-level pooling operation. The pooled representations are

further modelled with recurrent long short-term memory (LSTM) layers to model the inter-

word context. The final output from the LSTM network for the speech and EEG streams is

used in the match mismatch classification task.

In addition to analysing speech perception during natural speech listening, it is important to

analyse how the brain comprehends speech in complex listening conditions like dichotic tasks.

Such auditory attention decoding (AAD) experiments have investigated auditory processing

and attention mechanisms in the brain [155, 171]. Auditory attention decoding refers to the

process of decoding or identifying the specific auditory stimulus or sound that an individual is

paying attention to. It involves analysing neural responses or brain activity recorded while the

person is engaged in an auditory task, such as listening to multiple sounds simultaneously. One

such listening condition is dichotic listening, in which participants are presented with different

auditory stimuli simultaneously in each ear. The stimuli are presented simultaneously but

with different content (spoken by different speakers) to each ear, creating a situation where

the participant must selectively attend to one ear while ignoring or minimizing their attention

to the other. This paradigm allows us to study how individuals allocate their attention and

process auditory information under conditions of competing or conflicting stimuli.
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This capability of the human brain is termed the cocktail party effect, which refers to the

remarkable ability of the human brain to selectively focus attention on a specific auditory

stimulus while filtering out other competing sounds in a noisy environment, much like being

able to hear a single conversation at a crowded party. The primary goal of this study is to

examine the cocktail party effect, which involves detecting the specific sound to which a subject

is attending. Additionally, we aim to analyse the influence of word boundary information on

dichotic listening. By investigating these aspects, we seek to gain insights into how individuals

perceive and allocate attention to different auditory stimuli in complex listening environments.

In addition, we explore the relative perception of phonological and semantic characteristics

in complex listening environments, such as natural and dichotic listening. We propose utilising

a sentence-level model that incorporates word segmentation information [172]. This study

proposes a framework for auditory stimulus-response (EEG) modelling using a match-mismatch

(MM) task. This framework is designed to capture the neural responses in both monoaural and

dichotic listening scenarios. For dichotic listening, we formulated the MM task as a means to

perform auditory attention detection (AAD), aiming to identify the stimulus the subject was

attending to by analysing the recorded neural response. To conduct this study, we utilised two

distinct speech-EEG datasets [28]: one collected during a natural speech listening task and the

other during a dichotic listening task.

4.3 Key Contributions
Our approach involves employing a deep learning network [172] for stimulus-response modelling,

which consists of two separate sub-networks: one for processing the EEG signals and the

other for processing the stimulus. The EEG sub-network comprises convolutional layers, word

boundary-based average pooling, and a recurrent layer incorporating inter-word context. The

speech sub-network is reconfigured based on the input feature.

This study evaluates the effectiveness of different stimulus features in stimulus-response
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modelling during complex listening scenarios. In this study, the speech envelope is the acous-

tic feature used to represent phonological traits. The semantic feature employed is word2vec

(w2v), which represents words as vectors in a high-dimensional space based on their contextual

usage. We conducted a comparative analysis to evaluate the relative contributions of acoustic

and semantic features in both natural and dichotic listening conditions. The results indicate

that semantic features exhibit higher accuracy in match-mismatch (MM) classification during

dichotic listening, while both features perform similarly in normal listening conditions. Further-

more, our work highlights the significance of word boundary information in auditory attention

detection.

The major contributions of this study are:

• Formulating a paradigm for auditory stimulus-response (EEG) modelling through a match-

mismatch (MM) task in mono-aural listening as well as in dichotic listening

• In the mono-aural natural speech listening task, the match-mismatch performance of

audio signals is enriched by the induction of the word boundaries. Further, the textual

information alone provides comparable MM performance as the audio signal.

• In the dichotic speech listening task, the MM performance of text data is significantly

higher than that of the audio signal, indicating that EEG signals encode higher-level

semantic information than the acoustic envelope information.

• We propose a multi-modal architecture, where both speech and text features are matched

with the underlying EEG signal, for the MM task in both tasks. The performance of the

multi-modal model improves over the individual modalities of text and speech, indicating

that the EEG signal jointly encodes the semantic and acoustic content of the stimulus.

• The research proposes a Manhattan distance-based loss function for the match mismatch

task and demonstrates its effectiveness through improved classification performance com-
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pared to prior works. A detailed set of ablation experiments investigates the influence of

word boundary information on speech EEG matching and auditory attention detection.

4.4 Materials and Methods

4.4.1 Dataset

These scenarios include subjects listening to uninterrupted, natural speech and a situation

where the subjects are exposed to the cocktail party effect. In the latter case, the subjects

listen to two distinct audio streams simultaneously, each directed to a separate ear. For this

discussion, we refer to the first dataset as the natural speech dataset and the second as the

dichotic (termed as “cocktail party” in the original dataset) dataset.

In both experiments, the stimuli were presented using Sennheiser HD650 headphones and the

Presentation software provided by Neurobehavioral Systems. The participants were instructed

to keep their gaze fixed on a crosshair displayed on the screen throughout each trial and to

minimise activities such as eye blinking and other motor movements.

4.4.1.1 Natural Speech Dataset

The natural speech (NS) dataset contains electroencephalographic (EEG) data recorded from

19 subjects as they listened to continuous speech. The subjects listened to a professional

audiobook narration of a well-known work of fiction read by a single male speaker. The data

consists of 20 trials roughly the same length, each containing 180s audio. The trials preserved

the chronology of the storyline without repetitions or breaks. The sentence start and end time

and the word-level segmentation of the speech recordings are provided. The word segmentation

is obtained using a speech recognition-based aligner [173]. The EEG data were acquired using

128-channel BioSemi system at a sampling rate of 512Hz, while the audio data is played at

16kHz. Overall, the speech-EEG data amounted to a duration of 19 hours.
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4.4.1.2 Dichotic Dataset

The cocktail party dataset used in this study comprises EEG recordings obtained from 33

subjects. The participants underwent a total of 30 trials, each lasting for 60 seconds. They

were presented with two well-known fictional works, where one story was delivered to the left

ear and the other to the right ear. Different male speakers read each story. The participants

were divided into two groups of 17 and 16 individuals (with one subject excluded), respectively.

Each group was instructed to focus their attention solely on the story presented in either the

left or right ear throughout all 30 trials. Following each trial, the participants were required

to answer multiple-choice questions about both stories, each offering four possible answers. To

maintain consistency, the audio streams of each story within a trial were normalized to have

the same root mean squared (RMS) intensity. To prevent the unattended story from capturing

the participants’ attention during silent periods in the attended story, any silent gap exceeding

0.5 seconds was truncated to a duration of 0.5 seconds.

4.4.2 EEG Preprocessing

The EEG preprocessing pipeline utilized in this study for both datasets was based on the CNSP

Workshop 2021 guidelines1 and implemented using the EEGLAB software [174]. The pipeline

involved several steps to ensure the quality and reliability of the EEG data.

First, a low-pass Butterworth filter with a cutoff frequency of 32 Hz was applied to the EEG

signal. This filter helps attenuate high-frequency noise and artefacts that are unrelated to the

neural activity of interest. Next, a high-pass Butterworth filter with a cutoff frequency of 0.5

Hz was employed to remove low-frequency artefacts and eliminate any potential DC offsets or

drifts in the signal. Following the filtering steps, the EEG data and any external channels were

downsampled to a rate of 64 Hz.

A channel rejection method based on the EEG data’s variance was employed to identify
1https://cnspworkshop.net/resources.html
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and replace bad channels. The channels with excessively high variance, indicating potential

artefacts or poor signal quality, were considered bad and replaced using a spline interpolation

technique. This interpolation is performed using the remaining channels to preserve the spatial

information of the EEG data.

After channel rejection and interpolation, the EEG channels were re-referenced to a specific

set of external channels known as mastoids. This re-referencing step helps minimize the effects

of common noise sources and improves the interpretability of the EEG data by providing a

reference point that is less prone to artefacts and individual differences.

Lastly, to normalize the data and ensure comparability across channels and trials, a z-score

transformation was applied. This normalization process computes the z-score independently

for each channel and each trial, subtracting the mean and dividing by the standard deviation.

In summary, the EEG preprocessing pipeline involves bandpass filtering (0.5-32Hz), down-

sampling (to 64Hz), bad channel identification and replacement, re-referencing to mastoids,

and z-score normalization.

4.4.3 Acoustic Feature Extraction

4.4.3.1 Speech Envelope

The speech envelope represents the variations in the amplitude of the speech signal over time.

It is obtained by extracting the magnitude of the signal’s analytic representation using the

Hilbert transform. The temporal envelopes of sounds contain critical information for speech

perception [175, 176]. It has been shown that the auditory cortex can temporally track the

acoustic envelopes [161]. The strength of cortical envelope tracking may indicate the extent of

speech perception ([177, 178, 158]). Speech envelope provides valuable information about the

overall shape and dynamics of the speech signal, including prosodic features, syllabic structure,

and phonemic transitions. Therefore, it is considered an important acoustic feature. However,

it should be noted that the speech envelope does not contain significant information regarding
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the meaning or context of the speech input. This has been used as an acoustic feature for both

datasets.

4.4.3.2 Mel Spectrogram

The mel spectrogram of the speech signal is used as a stimulus feature for the natural speech

dataset. As the raw audio signals were unavailable in the dichotic dataset, we could not compute

mel spectrogram feature for dichotic listening tasks. The mel spectrogram is computed for each

sentence. A mel filter bank with 28 filters distributed in the mel-scale ranging from 0-8kHz

frequency is used. The input audio is pre-emphasized with a factor of 0.97 before windowing. In

order to obtain speech features at a sampling frequency of 64Hz, the spectrogram computation

uses a Hamming window function of the width 31.25ms with half overlap.

4.4.4 Semantic Feature Extraction

Semantic vectors for content words were derived using the word2vec algorithm [179]. The text

embedding was computed for each sentence. The text transcription of the speech stimulus is

provided in the dataset. This study used this text data to obtain features representing the

semantics of the stimulus speech signal.

4.4.4.1 Word2vec text embedding

Word2Vec (w2v) is a popular word embedding technique proposed by Mikolov et al. [179].

This algorithm generates a vector representation for each word. This study used pre-trained

vectors trained on a subset of the Google News dataset (about 100 billion words). The model

contains 300-dimensional vectors for 3 million words and phrases. The phrases were obtained

using a basic data-driven approach outlined in [180]. These pre-computed word vectors are

available for free download1. The fundamental notion of w2v embedding is that words with

similar semantics tend to be closer to each other in their vector space representation. Word2vec

vectors of constituent words were concatenated together to get sentence representation. This
1https://code.google.com/archive/p/word2vec/
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representation was fed as input to the models described in the following sections.

4.4.5 Match-mismatch classification task

Figure 4.1: Match-mismatch (MM) classification task: It is a binary classification
paradigm associating the EEG and speech segments. The EEG segment (E) and corresponding
stimulus sentence (S+) form the positive pair while the same EEG and another (unrelated)
sentence (S−) form the negative pair. The similarity score computation is achieved using the
model depicted in Figure 4.3. Here, C.E. denotes the cross entropy loss.

The accuracy of a match-mismatch classification task is employed in this study as a measure

of the neural tracking of speech. Figure 4.1 illustrates this paradigm in detail. The classification

model is contrastively trained to relate the speech segment to its corresponding EEG response.

In this study, the segment is chosen to be a sentence. We also compare with prior works

[1, 181], which perform this task at the sentence level. The time-synchronized stimulus of

the EEG response segment is the matched speech. Another sentence from the same trial of

data collection is chosen as the mismatched speech. Selecting mismatched samples from the

same trial makes the classification task challenging enough to encourage the model to learn the

stimulus-response relationships. This sampling approach also avoids the chances of memorizing

the speech features along with its label. A mini-batch contains both matched and mismatched

pair of a speech sentence to ensure variability and diversity in data. This ensures that the model

learns the underlying similarity patterns between speech and its corresponding EEG responses
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instead of memorizing the pairs.

4.4.6 Auditory Attention Decoding as a Match-mismatch task

Right Ear

Left Ear

Similarity
score !! 

Similarity
score !"

}
}
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1,C.E. ( )

EEG (E)

Donald      emptied  his   mug

Silence   is     a    blessing

Speech – Attended: S+

Speech – Unattended: S-

Figure 4.2: AAD as Match-mismatch classification task: It is a binary classification
paradigm associating the EEG and speech segments. The EEG segment (E) and corresponding
attended stimulus sentence (S+) form the positive pair while the same EEG and corresponding
unattended sentence (S−) form the negative pair. The similarity score computation is achieved
using the model depicted in Figure 4.4. Here, C.E. denotes the cross entropy loss.

In the dichotic listening task, our goal is to determine the specific speech sound on which

the subject focused their attention. We approach this by formulating the detection of the

attended speech sound as a match-mismatch (MM) task. Figure 4.2 illustrates this paradigm

in detail. In this task, the segment of speech that the subject paid attention to is considered the

match segment, while the segment of unattended speech played to the other ear is considered

the mismatch segment. This task is more challenging than MM tasks on the natural speech

dataset. The behavioural experiment that followed the listening experiment showed that the

subjects were able to comprehend and understand the sound they attended to while having

difficulty answering questions about the unattended speech.
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4.4.7 Model architecture

We employed different modelling paradigms to analyze the encoding of acoustic and semantic

features in EEG signals.

4.4.7.1 Baseline Model for Natural Speech Listening Task

Recently, Monesi et al. [1] showed that convolutional neural network (CNN) and long short-term

memory (LSTM) based architectures outperform linear models for modelling the relationship

between EEG and speech. This work employed a match mismatch classification task on fixed

duration windows of speech and their corresponding EEG data. The work also demonstrated

that mel spectrogram features of the speech stimulus provide the best neural tracking perfor-

mance compared to other representations like speech envelope, word embedding, voice activity

and phoneme identity [181]. They have performed the match mismatch task of 5s duration

segments with 90% overlap between successive frames. The prior works [1, 181] use an angular

distance between EEG and speech representations, average pooling over time, and a sigmoid

operation. The model is trained with binary cross entropy loss [181]. We use this approach as

the baseline setup for the proposed framework.

4.4.7.2 Acoustic Encoding

The speech signal representation S is the mel-spectrogram of dimension 28×T , where T denotes

the duration of a speech sentence at 64Hz. Similarly, the EEG data for the same sentence is

denoted as E, and it is of dimension 128× T .

Both the speech and the EEG features are processed through a parallel neural pipeline,

as depicted in Figure 4.3, without any weight sharing. This sub-network consists of a series

of convolutional layers and LSTM layers. The convolutional layers implement 1-D and 2-D

convolutions with 1 × 8 and 16 × 9 kernel sizes, respectively. The 1-D and 2-D layers have 8

and 16 kernels, respectively. Further, the 2-D CNN layers also introduce a stride of (1, 3) to

further down-sample the feature maps.
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Figure 4.3: Proposed model for match mismatch task on speech EEG data. The model training
paradigm is outlined in Figure 4.1.

The word boundary information available in the dataset is converted to the equivalent

sampling rate (both EEG and audio representations at 64
3

Hz). The audio and EEG feature

maps are average pooled at the word level using the word boundary information. As a result,

for a given sentence, the EEG and speech branches generate vector representations sampled at

the word level. An LSTM layer models the inter-word context from these representations. This

layer is included in both the stimulus (speech) and response (EEG) pathways. The last hidden

state of the LSTM layer, of dimension 32, is used as the embedding for the stimulus/response,

denoted as Rs/Re, respectively.

We propose the Manhattan distance between the stimulus and response embeddings [182].

The similarity score is computed as,

d(E, S) = exp(−||Re −Rs||1) (4.1)

The similarity score for the matched pair (E, S+) and mismatched pair (E, S−) are computed.

The model, with a dropout factor of 0.2, is trained using a binary cross-entropy loss, with

[d(E, S+), d(E, S−)] mapped to [1, 0] targets.
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This speech-EEG network can be used for any task with a speech spectrogram as the input.

We modify the speech subnetwork to use the envelope as the stimulus feature, as shown in

Figure 4.4.

4.4.7.3 Semantic Encoding

To compare the encoding of text features with speech features, we used a text-EEG match

mismatch classification task in a similar fashion. We used the text-EEG model sub-network

(bottom row) shown in Figure 4.4 to determine whether the input text sentence matches the

given EEG response. The EEG subnetwork resembles the acoustic encoding model, while the

text subnetwork consists of a two-layer LSTM. Convolutional layers were not used since the

word2vec feature does not contain local information. The similarity scoring component of the

network is similar to the acoustic encoding model.

4.4.7.4 Joint Encoding of Acoustics and Semantics

After exploring the effect of acoustic and semantic features individually, we jointly trained the

MM model with both features. The subnetworks are combined by computing the sum of losses

as shown in Figure 4.4. The combination of the sum of losses ensures that the loss of both

text-EEG and acoustics-EEG pairs are reduced individually. The speech network uses envelope

as the acoustic input, and word2vec features are employed as semantic features for the text

subnetwork.

4.4.7.5 Training and Evaluation Setup

We report the average results of multi-fold cross-validation, with classification accuracy as the

metric. The experiments are run with a batch size of 32. The models are trained using Adam

optimizer with a learning rate of 0.001 and weight decay parameter of 0.0001. The models are

learned with a binary cross-entropy loss.

This study employed two model training scenarios: subject-dependent (SD) and subject-

independent (SI). In the SD scenario, all subjects’ data were present in both the training and
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Figure 4.4: Proposed multi-modality model for match mismatch task on speech EEG data.
The model training paradigm is outlined in Figure 4.1 for natural speech and in Figure 4.2 for
dichotic listening task.

test sets. Conversely, in the SI scenario, the model was evaluated on unseen subjects. For the

SI scenario, data from a subset of subjects were kept aside to form the test set, while data from

the remaining subjects formed the training set.

In the SD scenario, we adopted the following strategy to create different training and test

sets for cross-validation. A subset of trials from all subjects constituted the training set, while

the remaining trials of all subjects served as the test data. For each cross-validation fold, we

randomly chose 3 trials to form the test data, resulting in 6-fold cross-validation for the natural

speech dataset and 10-fold cross-validation for the cocktail party dataset. The difference in

the number of cross-validation folds is attributed to the distinct number of stimulus trials in

each dataset: the NS dataset contains 20 stimulus trials, while the dichotic listening dataset

contains 30 trials.

In the SI scenario, three subjects were randomly selected to form the test set in each fold,

91



and the data from the remaining subjects constituted the training set for that fold. For the

natural speech dataset, this resulted in 6-fold cross-validation, while the cocktail party dataset

underwent 10-fold cross-validation. The variation in the number of folds is due to the difference

in the number of subjects in each dataset: the NS dataset has 19 subjects, and the dichotic

dataset has 33 subjects.

The average classification accuracy across cross-validation is reported in the subsequent

results section.Please note that Table 4.2 displays the results of a 3-fold cross-validation, chosen

as a representative out of the possible 10-fold cross-validation for the NS dataset.

To assess statistical significance, we employed the Wilcoxon signed-rank test [183] to com-

pare the two models in this study. We utilized the predicted probabilities of the two models as

samples for comparison, resulting in the number of samples for the significance test being equal

to the number of test samples. The same test samples are used to evaluate both models in each

fold. The samples from all folds are then aggregated to form the input for the signed-rank test.

4.5 Results

4.5.1 Natural Speech Listening Condition

4.5.1.1 Baseline model on fixed duration segments.

The baseline implementation for comparison is the work reported in Monesi et al. [1]. This

architecture is an LSTM model that operates on fixed-duration audio EEG data. All experi-

ments are run for 20 epochs of training. The result of the model with fixed duration frames is

given in Table 4.1. In order to increase the amount of training data, we also use 90 % overlap

between segments.

4.5.1.2 Baseline model at the sentence level

The baseline model architecture is implemented for fixed-duration segments in training and

testing for NS dataset. In order to operate at the sentence level with variable length segments,

92



Table 4.1: Match mismatch classification accuracy of baseline model [1] for fixed duration
sequences under natural speech listening condition. The step size between adjacent frames
is 0.5s. The model training was carried out in subject-independent setting with 3-fold cross
validation.

Frame
Width (sec.)

Test
Accuracy (%)

1 62.21
3 72.41
5 76.12

Table 4.2: The match-mismatch classification accuracy of speech stimulus and its EEG re-
sponses in sentence level for baseline [1] and the proposed model, under natural speech listening
condition. Here, a random speech sentence was chosen as the mismatch sample for each EEG
sentence. The model training was carried out in subject-independent setting with 3-fold cross
validation.

Proposed ModelTest Set Baseline
Model Cos. Euclidean Manhattan

Fold 1 65.39 88.22 93.49 94.02
Fold 2 65.32 88.73 93.68 94.00
Fold 3 64.98 86.54 93.72 93.91

Average 65.23 87.83 93.63 93.97

we have modified the dot product operation as element-wise multiplication followed by an

average pooling. This score is passed through the sigmoid function, and the model is learned

on sentence-level audio-EEG pairs. For the mismatch condition, a random speech spectrogram

is paired with the EEG to generate the score. These results are reported in Table 4.2.

4.5.1.3 Proposed model with sentence level processing

The results with the proposed model are also reported in Table 4.2. We compare three dif-

ferent similarity scoring approaches, i) Angular (Cosine) similarity, ii) Negative L2 distance

(Euclidean) and iii) proposed Manhattan similarity (Eq. 4.1). As seen in the results, the

Euclidean and Manhattan similarity improves over the cosine similarity. The proposed EEG-

speech match-mismatch classifier model achieves an average accuracy of 93.97%, which is sta-

tistically significantly higher than the baseline model’s sentence-level performance (Wilcoxon
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Figure 4.5: This figure shows the match-mismatch classification accuracy of the proposed model
for test fold-1 as a function of the training epoch for the baseline model and the proposed
approach under natural speech listening condition. The model training was carried out in
subject-independent setting.

Table 4.3: Impact of mismatch sample selection strategy on classification accuracy under natural
speech listening condition. The reported result is the average accuracy for 3-fold cross-validation
with subject-independent training configuration.

Mismatch Selection
Strategy

Test
Accuracy (%)

Random Sentence 93.97
Next sentence 91.56

signed-rank test, p < 1e − 4). The epoch-wise accuracy for test fold-1 is also illustrated in

Figure 4.5.

4.5.1.4 Mismatch sample selection for sentence processing

Previous match-mismatch EEG-speech studies [159, 1] dealt with fixed-duration speech and

EEG segments. Cheveigne et al. [159] used an unrelated random segment as a mismatched

sample, while studies like [1, 160, 181] employ a neighbouring segment as the mismatched

sample. The sampling of the mismatched segments from the same trial ensures that the dis-

tribution of the matched and mismatched segments is similar. We explore a similar strategy

for sentence-level analysis by selecting the neighbouring sentence in the same trial as the mis-

matched sample. Table 4.3 shows how the mismatch selection strategy affects the classification

accuracy. The average accuracy has a slight degradation when the next sentence is used as the
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Figure 4.6: Average match-mismatch classification accuracy of the proposed model for random
word boundaries,under NS listening condition. The reported result is the average accuracy of
3-fold cross-validation for SI training.

mismatch sample.

4.5.1.5 Importance of accurate word boundaries

We conducted several ablation tests to understand the impact of the word boundary informa-

tion. The model is fed with random word boundaries in the first set of experiments. Each

sentence is assumed to contain a fixed number of words and their boundaries are chosen at

random. The results are reported in Figure 4.6. The accuracy improves gradually when the

number of word boundaries is increased, even though they are random. The accuracy of the

experiment using 8 words in a sentence is 64%, which is significantly lower than the model’s

performance with accurate boundary information (Wilcoxon signed-rank test, p < 0.0001). The

final experiment shown in Figure 4.6 assumes a random number of words in each sentence with

random boundaries, and it provided an accuracy of 60%.

In the second set of experiments, we provide accurate word boundary information but skip

the word boundary information at every n-th word. These results are reported in Table 4.4. For

example, Skip-3 in this table corresponds to removing the word boundary inputs at every 3-rd

entry. The pooling is done with the rest of the available word boundaries for these experiments.

As seen in Table 4.4, the results with a higher value of n (of skip-n experiments), approach the
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Table 4.4: Accuracy (%) in match mismatch task for varying levels of word-boundary informa-
tion ,under NS listening condition. The reported average result is the average accuracy of 3-fold
cross-validation for SI training. Here, Skip − n denotes removing every nth word boundary
information in the model.

Test set Skip-2 Skip-3 Skip-4 Skip-5
Fold 1 82.45 88.96 90.43 90.64
Fold 2 81.86 88.77 90.32 90.28
Fold 3 82.60 88.79 90.30 90.01
Average 82.30 88.84 90.35 90.31

Table 4.5: Average match-mismatch classification accuracy with speech envelope as stimulus
feature for different evaluation configurations in two listening conditions. For the natural listen-
ing condition, a 6-fold cross-validation was performed, while the dichotic listening experiment
undertook 10-fold cross-validation based on the data available in each dataset.

Listening
Condition

Subject
Dependent

Subject
Independent

Natural 93.63 94.09
Dichotic 62.12 45.99

setting without any removal (accuracy of 93.97%). It is also noteworthy that, even with the

Skip-2 setting (word boundary information available for every alternate word), the performance

is 82.3%, significantly better than the baseline model. This study also demonstrates that

accurate word boundary information significantly impacts the match mismatch classification,

which further illustrates that the EEG signal encodes the word level tracking of speech.

4.5.2 Dichotic Listening Condition

4.5.2.1 Subject Dependence

Compared to the match-mismatch detection of natural speech under normal listening con-

ditions, the task of auditory attention detection (AAD) using match-mismatch classification

proves to be more challenging. In our case, the subject-independent setting did not yield sat-

isfactory performance as shown in Table 4.5. Therefore, we opted for a subject-dependent

configuration for the AAD task. All the further experiments mentioned in this chapter are
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Table 4.6: Match-Mismatch classification accuracy of speech stimulus and EEG responses at
the sentence level for various Listening Conditions in a subject-dependent training scenario.
Average results for different feature modalities are reported in this table.

Listening
Condition

Speech
Envelope

Text
word2vec

Multi
modality

Natural 93.63 93.24 93.38
Dichotic 62.12 83.06 84.60

performed with subject-dependent configuration for both tasks unless otherwise stated.

4.5.2.2 Combined Impact of Acoustic and Semantic Cues

Table 4.6 presents the results of the match-mismatch classification accuracy between speech

stimuli and their corresponding EEG responses, focusing on different listening conditions. We

compared different stimulus feature cases in subject-dependent training scenarios.

In the dichotic listening condition, the unattended speech played to the other ear was used

as the mismatch sample. The accuracy values reported in this table are the average accuracy

obtained from multi-fold cross-validation. Specifically, the natural speech condition underwent a

6-fold cross-validation, while the dichotic listening condition employed a 10-fold cross-validation

approach.

For natural speech conditions, both semantic and acoustic features result in similar accuracy

(Wilcoxon signed rank test, p = 0.03125). While for dichotic listening, word2vec features result

in significant improvement in accuracy (Wilcoxon signed rank test, p = 0.00195).

4.5.2.3 Comprehension Scores - A measure of attention

During the dichotic listening task, participants were required to answer multiple-choice ques-

tions after each trial to assess their comprehension and, consequently, their attentiveness to

the played stories. They were asked questions about both stories. The scores obtained were

normalized to a range of 0 to 1. Therefore, we made a decision to include only trials in which

the participant achieved a comprehension score higher than 0.5, considering them as attended
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and using them for matched cases. In the case of a story that was intended to be unattended,

if its comprehension score exceeded 0.5, it indicated that the participant was paying attention

to the story. Consequently, that trial was excluded from our analysis. Figure 4.7 shows the

percentage reduction in the number of trials after removing unattended trials. It shows that

there is only an average reduction of about 6.7% in the number of trials across all classes.

Figure 4.7: This violin plot shows the percentage reduction in the number of trials after the
removal of unattended trials.

In Table 4.7, the first row shows the baseline performance, when none of the trials were

disregarded based on the behavioural score. Subsequently, two experiments were conducted. In

the first experiment, trials were eliminated from both the training and test datasets using the

behavioural score. In the second experiment, the behavioural score was employed to exclude

unattended trials solely from the training data, while all trials in the test dataset were evaluated

regardless of the subject’s attentiveness.

The data presented in Table 4.7 demonstrates that filtering based on attention significantly

affects the performance of the model when using the envelope as the stimulus feature (Wilcoxon

signed rank test, p = 0.03710). However, this notable improvement is not observed when using
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Table 4.7: Match-Mismatch classification accuracy of speech stimulus and EEG responses at
the sentence level for the dichotic listening condition in a subject-dependent training scenario
utilizing the comprehension score of subjects. We have Comprehension question scores for
attended and unattended stories.If the comprehension score of a trial is less than 0.5 for the
attended story, ignore that trial. Similarly, if the unattended score of a trial is greater than 0.5,
ignore that trial from the mismatch data.

Comprehension Score
based Trial-Filtering

Speech
Envelope

Text
word2vec

Multi
modality

No Filtering 62.12 83.06 84.60
Both train and test data 66.48 83.86 84.61
Only on train data 66.68 84.27 83.19

the word2vec text feature or in the case of multi-modal feature input (Wilcoxon signed rank

test, p = 1.0). The enhanced performance of the former case indicates the robustness of the

word2vec features to minor variations in the test data. The model incorporating semantic

features exhibits greater generalizability.

4.5.2.4 Importance of word boundary on Auditory Attention Detection

Word-level segmentation holds significant importance in speech perception during normal lis-

tening conditions[172]. To investigate the role of word segmentation in auditory attention

detection, we conducted a comparison of match-mismatch classification performance using the

proposed model with and without word boundary information in the dichotic listening condi-

tion.

As seen in the table, Table 4.8, word level segmentation plays an important role in auditory

attention detection. Word boundary information has more impact on the semantic feature than

the envelope feature.

4.5.2.5 Importance of accurate word boundaries

We conducted several ablation tests to understand the impact of the word boundary informa-

tion. The model is fed with random word boundaries in the first set of experiments. Each
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Table 4.8: Role of word boundary information in auditory attention detection. The table
shows the match-mismatch classification accuracy of speech stimulus and its EEG responses
at sentence level for dichotic listening condition in the subject-dependent training scenario.
The model was trained with and without word boundary information for comparison. Here,
an unattended speech sentence was chosen as the mismatch sample for each EEG sentence.
(Multimodality: sum of losses)

Stimulus Feature Without
word-boundary

With
word-boundary

Envelope 56.90 62.12
word2vec 64.06 83.06
Multi-modal 62.35 84.60

Table 4.9: Average match-mismatch classification accuracy for auditory attention detection
with random word boundaries.

Number of words 2 3 4 5
Envelope 60.00 59.82 60.11 61.02
word2vec 80.36 79.57 80.64 80.15
Multi-modal 78.14 77.81 76.74 76.80

sentence is assumed to contain a fixed number of words, and their boundaries are chosen at

random. The results are reported in Table 4.9. The accuracy improves only slightly when the

number of word boundaries is increased, even though they are random.

In the second set of experiments, we provide accurate word boundary information but skip

the word boundary information at every n-th word. These results are reported in Table 4.10. For

example, Skip-3 in this table corresponds to removing the word boundary inputs at every 3-rd

entry. The pooling is done with the rest of the available word boundaries for these experiments.

4.6 Discussion
In this study, we have attempted to validate the hypothesis that speech perception in the brain

is segmented at the word level. For this task, we developed a deep neural network model
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Table 4.10: Accuracy (%) in auditory attention detection task for varying levels of word-
boundary information. Here, Skip−n denotes removing every nth word boundary information
in the model.

Stimulus Feature Skip-2 Skip-3 Skip-4 Skip-5
Envelope 63.06 62.37 62.00 62.37
word2vec 83.97 84.12 82.97 83.19
Multi-modal 84 85.33 83.81 84.52

consisting of convolutional encoders, word-level aggregators and recurrent layers. A novel loss

function for this task based on Manhattan similarity was also proposed.

The proposed model validated the hypothesis by improving the accuracy of match-mismatch

classification of speech and EEG responses at the sentence level. The incorporation of word

boundary information yields statistically significant improvements compared to the baseline

model, demonstrating the importance of this information in the neural tracking of speech.

In the second study, we conducted a comparison of EEG-stimulus models between nat-

ural speech and dichotic listening conditions. We performed these experiments in a subject-

dependent manner, as attempts to achieve subject-independent configuration for AAD detection

with this dataset were not successful.

Our findings suggest that modelling EEG responses and stimuli yield superior performance

during natural speech perception. Furthermore, we observed that the relative importance of tex-

tual and acoustic content is approximately similar in the natural listening condition. However,

during dichotic listening, the human brain exhibits a prioritization of perceiving the semantics

over the acoustic characteristics of the attended speech. Word boundary information emerges

as a crucial component for speech perception during the dichotic listening task, although not

all boundaries are as critical as in the case of natural speech.
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4.6.1 Natural Speech: Role of Speech Envelope vs Semantic Feature

Table 4.6 displays the outcomes of the match-mismatch classification task conducted using two

distinct stimulus features: speech envelope and word2vec features. The classification was done

at the sentence level using data recorded under normal listening conditions. In this task, a

random sentence was selected as the mismatch sample for each EEG sentence. The results do

not show a major difference in performance between the two features (Wilcoxon signed rank test

with α = 0.01, p = 0.03125). Therefore, it can be concluded that both acoustic and semantic

features hold comparable importance in speech perception during normal listening conditions.

4.6.2 Dichotic Listening: Role of Speech Envelope vs Semantic Fea-

ture

To assess the relative impact of acoustics and semantics in speech perception under more com-

plex listening conditions, we conducted a match-mismatch classification for auditory attention

detection at the sentence level. For this experiment, unattended speech was used as the mis-

match sample. The model training followed a subject-dependent approach described in Section

4.4.7.5.

The results, presented in Table 4.6, demonstrate that the stimulus-response model using

semantic features as input outperformed the model utilizing speech envelope features (Wilcoxon

signed rank test, p = 0.00195). This indicates that semantic features are better entrained in

the EEG response recorded during the dichotic listening experiment.

The findings suggest that semantics hold higher significance than acoustic traits for speech

perception under complex listening conditions.

4.7 Chapter Summary
The key findings of this chapter are as follows:

• We validated the segmented nature of human speech perception. Incorporating word
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boundary information improves stimulus-response modelling accuracy for sentence-level

processing.

• The proposed neural network can incorporate multiple modalities of stimulus data (speech

and text) to correlate with the neural response (EEG).

• The information encoded in EEG is also related to the underlying semantic content (tex-

tual content) of the stimulus.

• The match-mismatch performance is enhanced by the combined use of low-level speech

features along with textual features during different listening conditions.

• The human brain tends to prioritise assimilating semantic information over the acoustics

while listening to speech in dichotic condition.

The results of these experiments can have various applications. They can help improve our

understanding of attention disorders, such as attention deficit hyperactivity disorder (ADHD) or

hearing impairments. Furthermore, they may contribute to the development of brain-computer

interfaces (BCIs) that can decode and interpret a person’s attention state in real time, leading

to advancements in areas such as auditory prosthetics or assistive communication devices.

103



Chapter 5

Summary and Future Perspectives

5.1 Key contributions of the thesis

5.1.1 Isolated Word Learning

The study focused on the neural correlates of word discrimination in adults learning a new

language. Repeated exposure to words from an unfamiliar language led to the formation of a

consistent neural representation, aligning with language learning as indicated by pronunciation

rating. The correlation between audio stimuli and the EEG envelope was stronger for Japanese

than English trials, suggesting differential auditory information processing during word discrim-

ination. These findings suggest that as individuals learn a new language, their neural systems

develop specific patterns of activation that contribute to the accurate discrimination of words.

It implies that neural plasticity plays a crucial role in language acquisition, facilitating the

formation of neural representations that align with the process of learning and discriminating

words.

5.1.2 Learning Words in Context

The effects of semantic incongruity were investigated in a proficient language (English) versus

a newly acquired language (Japanese). Rapid semantic learning in the newly acquired language
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elicited delayed positive responses in event-related potentials (ERPs) at 500-700ms from the

onset of the end-word for incongruent words. The delayed positive ERP responses observed

for incongruent words in the newly acquired language indicate the engagement of semantic

processing mechanisms during language learning. It suggests that the brain rapidly adapts to

new semantic information and establishes distinct neural signatures, facilitating the process

of acquiring and differentiating meanings in a new language. Scalp electrodes showing these

semantic effects were predominantly located in the parietal and occipital regions. These specific

brain areas are engaged in the integration of semantic information during language acquisition.

5.1.3 EEG Decoding of Continuous Speech

A match-mismatch classification model incorporating word boundary information was intro-

duced for speech EEG matching tasks. The model utilized a loss function based on the Manhat-

tan distance, resulting in improved classification performance compared to previous approaches.

Experimental illustrations highlighted the model’s effectiveness in capturing and utilizing word

boundary information. Ablation experiments provided insights into the specific impact of word

boundary information on speech EEG matching tasks, emphasizing its relevance in neural pro-

cessing. This finding highlights the importance of temporal cues and linguistic segmentation in

understanding the neural mechanisms underlying speech comprehension.

A paradigm for auditory stimulus-response modelling was developed in monoaural and di-

chotic listening contexts. Including word boundaries enhanced the match-mismatch perfor-

mance of audio signals during monoaural natural speech listening. In this listening condition,

textual information alone produced comparable results to audio signals, emphasizing the signif-

icance of linguistic cues. In the dichotic speech listening task, EEG signals exhibited a higher

match-mismatch performance for text data than the audio signal, indicating a prominent en-

coding of higher-level semantic information over acoustic envelope information. A multimodal

architecture for the match-mismatch task demonstrated improved performance over individual

modalities, suggesting that EEG signals encode semantic and acoustic content jointly. This
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finding supports the hypothesis that semantic processing plays a crucial role in speech per-

ception and indicates the significance of considering both linguistic and acoustic factors in

understanding the neural mechanisms underlying language comprehension.

Overall, these findings have broad implications for our understanding of the neural processes

involved in word discrimination, language learning, semantic processing, and speech perception.

They provide valuable insights into the plasticity of the brain during language acquisition, the

role of different neural regions in processing semantic information, the integration of auditory

and visual cues in audio-visual correspondence learning, the importance of word boundary

information in speech processing, and the contribution of semantic content to neural responses

during speech perception.

5.2 Limitations
While this research has provided valuable insights into the neural processes underlying word

discrimination, language learning, and speech perception, it is important to acknowledge the

limitations of this work. These limitations should be considered when interpreting the findings

and assessing their validity and generalizability.

The word-learning experiments primarily focused on a specific language-learning context

and language pairs (e.g., English and Japanese). The findings may be influenced by the unique

characteristics of these languages and the specific learning experiences of the participants. It

is important to recognize that different languages and language pairs may exhibit variations

in neural processing and learning outcomes. Therefore, caution should be exercised when

extrapolating the results to other languages or language learning scenarios.

Using EEG signals as the primary measure of neural activity has limitations in spatial

resolution compared to other neuroimaging techniques. Combining EEG with other imaging

modalities, such as fMRI, could provide a more comprehensive understanding.
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5.2.1 Isolated Word Learning

Firstly, the sample size used in this study may have implications for generalisability. A larger

and more diverse sample size would enhance the external validity of the findings and allow for a

better understanding of how these processes unfold across different individuals and demographic

groups.

Learning involves memory and medium to long-term analysis as well. This was not per-

formed in this study. The isolated word study discussed in chapter 2 did not involve the se-

mantics of the novel words. Especially for adults, learning is mostly associated with semantics.

This study did not consider the multi-modal aspects of learning.

Additionally, we did not evaluate the effects of repetitive suppression. In the past, studies

using MEG signals have shown that there are two major effects seen in the brain when the same

words are presented repeatedly. In Repetitive Enhancement (RE), the frontal regions in the

brain get activated when the same word from an unknown language is presented to the subject

multiple times [184], after which the activations drop, leading to Repetitive Suppression (RS).

The RS is also observed when a word familiar to the subject is presented. These studies indicate

that activations are seen till new brain connections are formed, after which the intensity of the

activations drops.

5.2.2 Learning Words in Context

We introduced the meaning of novel words with visual modality, but the analysis was done with

a code-switching setup. This work did not study the effects of visual vs auditory introduction

of semantics. We did not analyse the medium to long-term effects of learning. The ERP effects

shown in chapter 3 were averaged over all subjects and words. We did not perform a single-trial

analysis on this data.

107



5.2.3 EEG Decoding of Continuous Speech

The EEG analysis (chapter 4) was primarily done with a match-mismatch task. This may not

reveal all the nuances of EEG encoding. Verifying the results with other correlation/decoding

models might further establish the claims.

5.3 Future Directions
Based on this study’s findings, several potential future research areas can further enhance

our understanding of the neural processes underlying word discrimination, language learning,

semantic processing, and speech perception. We identify some possible future extensions:

1. Longitudinal Studies: Conduct longitudinal studies to track the neural changes over time

during language acquisition. Examining how neural representations evolve as individu-

als progress in their language-learning experience can provide valuable insights into the

dynamic nature of language processing and the neural plasticity involved.

2. Cross-Linguistic Comparisons: Expand the investigation to include a broader range of

languages and compare the neural processes involved in word discrimination and language

learning across different linguistic contexts. This can help identify language-specific effects

and generalize the findings to a diverse range of language learners.

3. Neural Connectivity: Investigate the functional connectivity patterns between different

brain regions involved in word discrimination, language learning, and semantic processing

using fMRI. Analyzing the interactions and communication between brain regions can

provide a more comprehensive understanding of the neural networks underlying these

processes.

4. Individual Differences: Explore individual differences in language learning and their re-

lation to neural processes. Investigate factors such as age, aptitude, and prior language

108



experience to determine how these variables influence the neural correlates of word dis-

crimination, language learning, and semantic processing. Especially the sensitivity of

P600 magnitude for various variables like language proficiency can be investigated.

5. Patient population: Conducting the repetitions of sounds study (Chapter 2) and the

ERP study on short-term learning with context (Chapter 3) among patients with lan-

guage disorders can offer valuable insights into the existence or absence of neural markers

previously identified in a healthy adult population. These findings can be used as a metric

for identifying individuals with language disorders.

6. Multi-modal Approaches: Further explore the integration of multiple modalities, such

as incorporating visual or gestural cues along with auditory stimuli, to investigate the

role of multimodal information in language acquisition and speech perception. This can

help unravel how different sensory inputs contribute to neural processing and facilitate

language learning.

7. Naturalistic Language Learning: Conduct studies in more ecologically valid settings to

investigate word discrimination and language learning in real-life language learning con-

texts. Observing neural processes during naturalistic language learning situations can

provide insights into how the brain adapts to authentic language input and facilitates

comprehension.

8. Big data-based models: It would be advantageous to train the stimulus-response models

introduced in chapter 4 using larger speech-EEG datasets and enhanced machine learning

architectures.

5.4 Impact of this Thesis
The potential impact of this research extends beyond theoretical advancements. The insights

gained from this study can inform language education and intervention strategies, aiding indi-
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viduals in language learning. Educators can design effective teaching methods tailored to indi-

vidual learners’ needs by recognising the neural mechanisms underlying word discrimination and

language acquisition. Furthermore, the findings can contribute to developing neurofeedback-

based interventions and assistive technologies for individuals with language-related difficulties.

Insights from this thesis can also contribute to technology development. Findings from

chapter 2 can pave the way for the development of Computer Assisted Language Learning

(CALL) technologies. One example is the pronunciation scoring technique discussed. The

insights gained from chapter 4, understanding the underlying auditory attention mechanism of

humans, can contribute to the development of assistive technologies for individuals with speech

or language impairments.

Investigating language learning and speech perception at the neural level opens doors to

further exploration and understanding of human communication’s intricate processes. It chal-

lenges us to consider the complex interplay between language, cognition, and the brain. By

continuing to delve into these areas, we can unlock new insights and pave the way for future

advancements in language technologies.
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Appendix

Electrode Layout with 10-20 enhanced montage

Electrode placements of 32 channels according to the international 10–20 system. This is the
electrode layout of the EEG cap used for data recording in Chapter 2.
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64 channel Electrode Layout

Electrode placements of 64 channel electrode cap used for data recording of Chapter 3.
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Stimuli Set of Semantic Learning Experiment

List of highly predictable English sentences and end words in different conditions used in the
experiment discussed in chapter 3.

Sentences and End words

Sentence Prefix English congruent English Japanese Japanese

end word incongruent congruent incongruent

She made the bed with clean bedsheets swan mokkori maggu

My T.V has a fifty-inch screen van gamen komugi

The beer drinkers raised their mugs hen maggu mokkori

Harry could see the blooming flowers rope hanabana senro

The bread was made from whole wheat garage komugi hon

I made a phone call from a booth bowl būsu chizu

A termite looks like an ant goalpost ari kēki

For your birthday I baked a cake map kēki ami

Kevin went to the library to read books calf hon kouzui

The fruit was shipped in wooden box tablets hako hachinosu

We’re lost so let’s look at the map spoon mappu ari

Household goods are moved in a van beehive kasha naifu

The honey bees swarmed round the beehive thorns hachinosu besuto

I cut my finger with a knife screen naifu nedoko

The candle flame melted the wax clock rou toge

This key won’t fit in the lock pool jou suwan

The baby slept in the crib lock nedoko rou

A rose bush has prickly thorns pie toge koromo

Ruth poured the water down the sink ant nagashi genkotsu

The cop wore a bullet-proof vest jar besuto taiko

After his bath he wore a robe bomb koromo shippu

The soup was served in a bowl cot bouru kesshouten

They marched to the beat of the drum cloth doramu nuno

The sailor cleaned the deck of the ship broom senpaku nawa
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Continuation of Table 5.1

Sentence Prefix English congruent English Japanese Japanese

end word incongruent congruent incongruent

They played a game of cat and mouse truck nezumi torakku

We shipped the furniture by truck booth torakku supūn

He tossed the drowning man a rope crib rōpu suwan

Stir your coffee with a spoon mouse supūn kuraun

At breakfast he drank apple juice gown jūsu bouru

He hit me with a clenched fist police genkotsu oin

The king wore a golden crown drum kuraun houki

The duck swam with the white swan ant suwan shako

Let’s decide by tossing a coin crown koin būsu

The girl swept the floor with a broom truck houki tokei

We heard the ticking of the clock mugs tokei yakuzai

The doctor prescribed the tablets sling yakuzai medaru

Unlock the door and turn the knob flowers nobu sankakukin

Her entry should win a medal lock medaru torappu

The mouse was caught in the trap ship torappu nedoko

The house was robbed by a thief mop dorobou benchi

Wash the floor with a mop coin moppu tento

Harry slept on the folding cot medal nedoko mendori

The man is sitting on the bench mold benchi kouzui

The heavy rains caused a flood bench kouzui kaeru

The chicks followed the mother hen mat mendori ushi

We camped out in our tent juice tento hitsuji

The pond was full of croaking frogs wheels kaeru hato

The shepherd watched his flock of sheep fist hitsuji mune

The swimmer dove into the pool cap pu-ru gaun

The cigarette smoke filled his lungs bread mune ryourin

The bride wore a white gown wheat koromo koushi

We swam at the beach during high tide trap shio satsu
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Continuation of Table 5.1

Sentence Prefix English congruent English Japanese Japanese

end word incongruent congruent incongruent

A bicycle has two wheels bedsheets ryourin kyappu

The cow gave birth to a calf tent koushi pai

Paul was arrested by the police track satsu matto

On a sunny day she wore a cap dove kyappu jūsu

For dessert he had apple pie knob pai dorobou

Please wipe your feet on the mat ox matto nobu

When she got out of the car she closed the Door stars doa sakana

He mailed the letter without a Stamp milk kitte miruku

In the shower he washed his face with Soap plates sekken kyoukai

After every meal it’s good to brush your Teeth gifts hanarabi isu

He brought his bait to the lake to catch Fish pants sakana cha

Joan fed her baby some warm Milk eyes miruku taiyou

Every Sunday the family goes to Church bank kyoukai shita

The man happily sat down in the comfortable Chair socks isu ushi

He liked lemon and sugar in his Tea shark cha shuzu

The player’s cap protected him from the Sun nest taiyou yubiwa

While eating Steve accidentally bit his Tongue fire shita kagi

The farmer spend the morning milking his Cow yarn ushi hikouki

Susan put on the socks and Shoes bag kutsu jumoku

Bob proposed and gave her a diamond Ring kite yubiwa hoshiboshi

Carolyn couldn’t start her

car without the right Keys door kagi

Tim joined the Airforce as he always

wanted to fly an Aeroplane stamp hikouki kaban

To learn about their ancestors

they drew a family Tree fish jumoku sokkusu

In the night sky it is easier to see all the Stars church hoshiboshi omeme

It was windy enough to fly a Kite tea kaito ginkou
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Continuation of Table 5.1

Sentence Prefix English congruent English Japanese Japanese

end word incongruent congruent incongruent

The thief ran by and snatched the lady’s Bag tongue kaban doa

Derek’s feet were cold, so he put on some Socks chair sokkusu kouhan

Without her sunglasses the sun hurt Annie’s Eyes cow omeme zubon

He deposited his new paycheck at the Bank ring ginkou sekken

On her birthday she excitedly opened the Gifts shoes purezento nesuto

After dinner the maid collected the family’s Plates sun kouhan kaji

Sid needed a belt to hold up his Pants fish zubon neiru

The birds lay the eggs in the Nest teeth nesuto purezentsu

Dan gathered more wood for the Fire aeroplane kaji kitte

We had a candle-light dinner in a lakeview restaurant camera restoran pasupoto

Mary missed her company bus, so she took a taxi passport takushi restoran

She clicked the picture with a camera taxi kamera takushi

Travelling to foreign land needs a visa and passport restaurant pasupoto kamera

Illustration of different phases of the semantic learning

experiment
The different stages of the experiment of chapter 3 is shown pictorially.(i) Listening Session, (ii)

Learning Session, (iii) Recall Session, and (iv) Test Session. These stages are in serial order for

a particular word. But as a whole, stages for different words are interspersed and randomized.

(Sources of Images used in the experiment: ©pixabay.com, unsplash.com, pexels.com).
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(i)

REST

1.5s
LISTEN
>1.5s 

(audio duration)

REST

1.7s
QUESTION

2.5s

"The cow gave birth to a
koushi."

Did you expect this end-word 
for the sentence you listened?

(ii)

REST

1.5s
LISTEN
>0.5s 

(word duration)

IMAGE

1s
SPEAK

2.5s
REST

1s

"kouhan"
Speak the word you

heard.

(iii)

REST

1.5s
LISTEN
>0.5s 

(word duration)

IMAGE

1s
SPEAK

2.5s
REST

1s
Speak the japanese word
for the object you saw. "kouhan"

(iv)

REST

1.5s
LISTEN
>1.5s 

(audio duration)

REST

2s
QUESTION

2.5s

"The cow gave birth to a
koushi."

Pick the image number of the
sentence end-word you listened.
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