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ABSTRACT

The automatic discovery of acoustic sub-word units from raw
speech, without any text or labels, is a growing field of research.
The key challenge is to derive representations of speech that can be
categorized into a small number of phoneme-like units which are
speaker invariant and can broadly capture the content variability of
speech. In this work, we propose a novel neural network paradigm
that uses the deep clustering loss along with the autoregressive con-
trastive predictive coding (CPC) loss. Both the loss functions, the
CPC and the clustering loss, are self-supervised. The clustering cost
involves the loss function using the phoneme-like labels generated
with an iterative k-means algorithm. The inclusion of this loss en-
sures that the model representations can be categorized into a small
number of automatic speech units. We experiment with several
sub-tasks described as part of the Zerospeech 2021 challenge to
illustrate the effectiveness of the framework. In these experiments,
we show that proposed representation learning approach improves
significantly over the previous self-supervision based models as well
as the wav2vec family of models on a range of word-level similarity
tasks and language modeling tasks.

Index Terms— Self-supervised learning, Representation learn-
ing, Contrastive Predictive Coding, Deep clustering, ZeroSpeech
challenge.

1. INTRODUCTION

The area of textless natural language processing (NLP) involves us-
ing raw speech data, without any text or labels, for various infor-
mation extraction tasks [1] like spoken language modeling, speech
recognition and speech synthesis. At the core of these modeling
methods, is the sub-problem of automatic sub-word unit discovery
of speech [2]. This problem is the identification of fundamental units
that allow the modeling of the wide variety of spoken content.

The early approaches to automatic unit discovery used dynamic
time warping (DTW) based cluster templates, proposed by Wilpon
et. al. [3]. Further, following the trends in speech recognition, acous-
tic unit discovery based on hidden Markov model (HMM) was inves-
tigated by Lee et. al. [4] and Varadarajan et. al. [5]. The zerospeech
challenges [6, 7, 8, 9] have propelled this area of research to derive
automatic units of speech. The performance metrics used in these
challenges, include a variety of zero shot metrics for probing the
quality of the learned models at the acoustic level and the linguistic
level. The phonetic quality of representations are measured using
ABX similarity metrics, while the semantic quality is measured as
the correlation between the human and model scores [9]. The lexical
and syntactic abilities of the model are measured in-terms of unnor-
malized probability scores output by the language models.
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The approaches pursued in zero speech challenges include Gaus-
sian mixture modeling by Heck et. al. [10], HMMs by Ansari et. al.
[11], and deep learning methods [12, 13]. In the recent years, self-
supervised learning methods, a method of generating pseudo labels
from raw data itself [14], have been increasingly used for automatic
unit discovery. These efforts focus on the construction of suitable
model architectures, like convolutional networks [15], recurrent net-
works [16], transformer models [17], and conformer models [18], as
well as the choice of suitable cost functions, like contrastive [19],
vector quantization [20], clustering [18] and autoregressive predic-
tive coding [21].

The wav2vec family of models [22, 23, 24] use self-supervision
for unit discovery applied to various downstream tasks like speech
recognition and synthesis. The first model, wav2vec 1.0 [22], is sim-
ilar to the contrastive predictive coding [25], except that the 1-D con-
volution layers are used instead of long short term memory (LSTM)
network layers. The subsequent model, using vector-quantization,
wav2vec-vq [23], is inspired by the use of quantization module pro-
posed by Oord et. al. [26]. The output of the quantization mod-
ule can be then leveraged to train language models like bidirectional
encoder representations from transformer (BERT) [27]. The recent
extension, the wav2vec 2.0 [24], improves the quantization module
with learnable codebooks along with the introduction of the diversity
loss. Most of these approaches use a separate clustering model (like
k-means) on the embeddings derived from the representation learn-
ing network for language modeling tasks which is not optimized with
the representation learning model.

In this paper, we explore a novel approach for joint self-
supervised representation learning and unit discovery inspired by
the deep clustering framework [28]. The deep clustering module
jointly learns the parameters of the representation learning neural
network and the cluster assignments on the learned representations.
Our proposed approach starts with the initial embeddings from the
CPC model, which are trained using the CPC loss. The unsuper-
vised cluster assignments on these embeddings act as pseudo-labels
for subsequent self-supervised learning algorithm. This clustering
loss can also be combined with the contrastive loss to derive rich
representations that are categorical. Using the data from the Ze-
rospeech 2021 challenge, we show that the proposed approach of
deep clustering and self-supervision improves the performance met-
rics of the phonetics (ABX), syntactic and the semantic modeling.
Further, the visualization of the embeddings highlights the ability of
the proposed model to succinctly capture the speech characteristics.

2. BACKGROUND

The prior works related to the proposed approach can be divided
into two broad directions, one based on autoregressive predictive
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coding [21] and the wav2vec models which contain a masked rep-
resentation learning in the discrete latent space [24]. Both these
paradigms learn using the contrastive loss.

2.1. Contrastive predictive coding

The CPC model [25] consists mainly of 2 layers. The first layer
performs a non-linear encoding of the input features. This is based
on convolutional networks with 1-D kernels. Next, an autoregressive
model summarizes all the encoded outputs in the latent space and
produces a context representation. The model predicts the density
ratio, which preserves the mutual information between the context
vector and the future input time-series.

The raw audio samples ) € X, are forward passed through
convolutional layer f : X — Z, where Z represents the the learn-
able features. This block outputs the low frequency representation
z+ € Z which is sampled at 30 ms with a stride of 10 ms. The
features z; are then fed to the LSTM layer G. For each time step ¢ ,
LSTM layers aggregate (zt, Zio1y ey zt_v) to generate the context
vector ¢; with a receptive field v. The CPC model loss is based on
the prediction of the K future embeddings {z ¢4« }1<k<x by mini-
mizing the following contrastive loss [26],

K T
1 exp(z4 Wiet)
L= K E ZOQ(Z T (D
k=1

seN, exp(z” Wiey)

Here, N; is a random subset of negative embedding samples, and
Wi, is a linear classifier used to predict the future k-step observa-
tions.

2.2. wav2vec models

The wav2vec models [22, 23, 24] also have an initial 1-D convolu-
tional network based encoder f : X — Z. The sampling of the rep-
resentations z vary according to the model. The wav2vec [24] and
wav2vec-vq [23] output z; at 100Hz, while the wav2vec 2.0 outputs
representations at 49Hz. These models differ in the way they handle
the representations z; subsequently.

2.2.1. wav2vec

The representations z, obtained from the encoder, are fed to another
multi-layered convolutional neural network, called the aggregator G,
that combines the encoder outputs of the multiple time steps into a
new representation c;, for each time step ¢t. Given an aggregated
representation c;, the model is trained to distinguish a sample 2z
from distractor samples Z, by minimizing the contrastive loss,

=3 loglo

Here, N is the set of distractor samples, hy, defines an affine trans-
form and A is a hyper-parameter.

zerrhi(e) + A Y log(a(2 hi(er) ()

zeN:

2.2.2. VQ-wav2vec

This model learns vector quantized representations from raw audio
using future prediction task. Architecturally it is same as wav2vec
with two convolutional networks f : X +— Z and g : Z +— C for
feature extraction and aggregation. However, the model contains
additional quantization module g : Z +— Z
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Fig. 1. Schematic of the proposed approach for automatic unit dis-
covery. The final cluster indices are used as the acoustic sub-word
unit representations of the speech.

2.2.3. wav2vec 2.0

In this model, the output of the feature encoder z; is fed to a con-
text network which follows the transformer architecture [24]. For
self-supervised training, discretized outputs are obtained using the
product quantization [29] of the feature encoder. The product quan-
tization amounts to using multiple codebooks and concatenating the
quantized representations from all of them. While training, masking
a proportion of feature encoder output is done before feeding them to
the context networks. The model was trained to minimize the com-
bination of contrastive loss and the diversity loss that helps to avoid
the mode collapse problem.

3. OUR FRAMEWORK

The schematic of the proposed framework is shown in Figure 1. The
initial processing steps are inspired by the contrastive predictive cod-
ing model [25]. The convolutional layers generate features z; and
recurrent layers generate context vectors c;. The context vectors are
clustered to generate the psuedo-labels for self-supervision.

3.1. Self-Supervised learning using pseudo labels

Our work is inspired by the self supervised learning technique de-
scribed in [28]. In this prior work, the output of the convolution
layer was clustered using k-means. Subsequently, these cluster as-
signments were used as pseudo-labels. The convolutional network
then updates the weights by minimizing the classification loss. The
cluster updates and the weight updates happen in an alternating fash-
ion. In our work, we explore a similar algorithm where the represen-
tations are clustered and the pseudo labels are used in discriminative
learning framework. The rationale behind this approach is to exploit
the weak supervision labels to bootstrap the discriminative power of
the representation learning network and to encourage the represen-
tations to form succinct cluster categories. We found this approach
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Fig. 2. The plot of the two loss functions used in the proposed ap-
proach. As seen here, both the cluster loss (left) and the CPC accu-
racy (right) are aligned well in the model training.

to train the model beneficial in terms of several evaluation metrics.

3.2. Architecture

The model architecture, shown in Figure 1, consists of initial pro-
cessing steps similar to the CPC model described in Sec. 2.1.
The first two processing steps consist of the non linear encoder
f: X — Z, and the autoregressive model G. At each time
step ¢, the autoregressive model G takes as input the available
embeddings z1, z2....z; and produces a context representation
ct = G(z1,...2¢).

An initial clustering of the context vectors using k-means al-
gorithm generates the pseudo-labels for training the deep clustering
model. A feed-forward layer with a softmax linearity acts as the
classification network. The encoder f : X — Z is parameterized
by a 5-layer 1-D convolutional network with kernel sizes of 10,8,4,4
and 4 and with stride lengths of 5,4,2,2 and 2 respectively. This re-
sults in the down-sampling factor of 160 and the z; representations
are of dimension 256. Thus, the input audio signal sampled at 16000
Hz will have embeddings z; sampled at 100Hz.

The autoregressive model is a 2 layer LSTM model with 256
hidden units. The number of clusters is kept as 50 in this work. For
the contrastive prediction task, we use simple linear classifier Wy,
that takes in c; as the input and tries to predict the future K feature
representations, {z:4x }1<k<x. We use the value of K = 12.

3.3. Loss function

We use a joint loss which combines the contrastive loss along with
cluster loss. The contrastive loss is defined in Equation 1. The clus-
ter loss is introduced to increase the discriminability of phoneme-
like sub-word units. This is the cross-entropy loss, denoted as Lcjqs-

The total loss function is, Liotai = Lepe + & X Lepus. Our ex-
periments showed that a high value of (o« = 12) gives the best per-
formance. This indicates that the clustering loss is more important
in the model learning compared to the contrastive loss'.

4. EXPERIMENTAL SET UP

4.1. Data

The training data consists of audio from LibriSpeech [30] and the
Libri-light dataset [31]. The CPC-small model is trained on the 100
hours of clean audio subset from the LibriSpeech data. The CPC-big

'Our implementation of experimental setups can be found at https:
//github.com/iiscleap/CPC_DeepCluster

Dim1 Dim1

Fig. 3. t-SNE embeddings of representations c; derived from two
phoneme units w; and ws and from two speakers s; and s2. The
embeddings from the baseline CPC model (left) have more overlap
of within speaker across phoneme representations, while the embed-
dings from the proposed approach (right) cluster the same phonemes
across the two speakers while also being discriminative.

model, also having the same architecture of the CPC-small model, is
trained on a 6k-hour subset of the Libri-light data. The deep cluster-
ing model training is performed on the 100 hours of the clean subset.
The final representations from the model, ¢;, are re-clustered using
k-means and are used to generate the pseudo-text sequences on Lib-
riSpeech 960 hours data for training the language model. Each of
the four metrics is evaluated on the development set designed for
specific tasks of the ZeroSpeech 2021 challenge [9]. We use the
Track-1, speech based language modeling task, for the experiments
reported in this work. The language models are developed to gener-
ate likelihood scores to novel utterances, indicating the probability
of token sequence. More details about the dataset are available in
Dunbar et al. [9].

4.2. Model training

The pre-trained CPC-small/big model is used as the extractor for the
initial embeddings for the k-means clustering. The k-means clus-
tering is run for 100 epochs with 50 centroids. These pseudo labels
extracted for 100 hour clean subset of Librispeech dataset along with
the raw audio are used to train our models. Both the CPC-small and
the CPC-big models are re-trained for 200 epochs with early stop-
ping criteria using the joint loss. A patience factor of 5 is used in the
training.

For the language model based evaluation tasks, we cluster the
embeddings (c;) into discrete tokens and train the LSTM language
model with architecture similar to the one described in [9]. This
language model is trained using 960 hours of LibriSpeech data. The
model is trained using fairseq tools>.

The loss plots are shown in Figure 2. It is interesting to note
that, while the objectives of predicting future representations (CPC
loss) and that of being categorical (clustering loss), are fundamen-
tally different, they align well on the training data. The plots also
indicate that, for both the CPC-small and big models, the loss func-
tion behavior is similar.

The t-distributed stochastic neighborhood (tSNE) [32] based
visualization of the representations from the baseline CPC model
[9] and the proposed approach is shown in Figure 3. Here, we plot
the scatter of the two dimensions from two different phonemes (us-
ing the ground truth information) w1, ws spoken by two different
speakers s; and s2. As seen in the plot, the baseline CPC model
is unable to cluster the different phonemes from the same speaker.

2https://github.com/pytorch/fairseq
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System

| Pre-Training | Cluster Loss |

ABX

\ Data \ Training Data | Clean Within | Clean Across | Other Within | Other Across
CPC-small : Baseline [9] LS-100h - 10.26 14.17 14.24 21.26
CPC-big : Baseline [9] LL-6kh - 6.38 8.26 10.22 14.86
Wav2Vec [24] LS-960h - 9.47 11.69 12.35 17.61
Vg-Wav2Vec k-means [23] LS-960h - 12.68 14.83 15.16 20.11
Vg-Wav2Vec Gumbel [24] LS-960h - 10.66 12.02 13.17 17.55
DeepCluster-small : Proposed LS-100h LS-100h 6.57 9.51 8.69 14.96
DeepCluster-big : Proposed LL-6kh LS-100h 5.83 8.21 7.71 13.60

Table 1. The performance of various systems in terms of ABX error (%) metric on the ZeroSpeech 2021 challenge data.

System Pre-Training - LM Training 5515 g ugoer swuGGY  seLivp  SSMI

Data Data o

synth.  libri.

CPC-big + BERT-small : Baseline LL-6kh LS-960h 60h 65.81 5291 3.88 5.56
CPC-big + LSTM-small : Baseline LL-6kh LS-960h 60h 66.13 53.02 442 7.56
DeepCluster-big + LSTM-small : Proposed LL-6kh LS-960h 60h 61.20 59.42 396 | 10.25
CPC-small + BERT-big : Baseline LS-100h LS-960h 1536h 70.69 54.26 2.99 6.68
CPC-big + BERT-big : Baseline LL-6kh LS-960h 1536h 75.56 56.14 6.25 8.72

Table 2. The performance in terms of various spoken language modeling metrics, sSWUGGY, sBLIMP and sSIMI.

The embeddings from the proposed approach show more speaker
in-variance for the same phoneme representations while being dis-
criminative with the other phoneme representations.

4.3. Performance metrics

Phonetic - Given three-phoneme words, a, = and b, where a and
b differ in one of the three phoneme-like units, while = and a are
same, the ABX metric computes the fraction of cases when a and x
are more distant than ¢ and b. An ABX error in the range of 5-10%
corresponds to good separation; 20%-30% indicates some signal,
but not very good separation.

Lexical - The sWUGGY “’spot-the-word” [33] is used to differenti-
ate between a legitimate word from a non-word, which is similar in
the lexical sense. The metric measures the fraction of events where
the pseudo probability of the real word is higher than that of the
non-word.

Syntactical - The sBLIMP metric is used as the syntactical metric.
This measure, derived from [34], differentiates a grammatical sen-
tence from an incorrect sentence. The metric measures the fraction
of events where the pseudo probability of a grammatically correct
sentence is greater than the incorrect one.

Semantic - The sSIMI similarity measures the similarity between
the representations of pairs of words and compares the results with
human judgment. The metric is computed as the Spearman’s rank
correlation coefficient p between the semantic similarity scores
given by the model and the human scores in the dataset.

5. RESULTS

The phonetic metric based results (ABX error rate) for the proposed
approach is shown in Table 1. In these experiments, we compare the
performance of various approaches, like CPC small/big [9], wav2vec
[22], vg-wav2vec [23], wav2vec 2.0 [24]. As seen in this table,
among the various wav2vec models, the basic wav2vec [24] gives
the lowest ABX similarity error. The CPC model with large train-
ing (CPC-big) gives the best ABX error among all the baselines
compared in this work. The proposed approach of deep clustering
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applied on CPC-small embeddings improves significantly over the
CPC-small model itself. Further, the application of the deep clus-
tering on the pre-trained CPC-big model gives the best ABX error
among all the systems compared. Note that, the deep clustering
model is trained with only 100 hours of Librispeech data in this
work.

In terms of the language model based metrics reported in Ta-
ble 2, the top panel consists of methods that are low budget training
using small LSTM/BERT based models for language modeling. The
bottom panel reports methods using larger language models with
higher GPU budget. In terms of the various metrics compared here,
the proposed deep clustering approach (DeepCluster-big) approach,
using a small budget LSTM based LM, yields the best performance
in sBLIMP (syntactical) and sSIMI (semantic) metric on the lib-
rispeech dataset. The performance on other metrics like s WUGGY
(lexical) is worse than the baseline CPC system. As reported in the
Zerospeech challenge [9], the amount of data used in training does
not necessarily improve all metrics considered here. From Table 1
and 2, we see that, even with a reduced GPU budget and reduced data
for the deep cluster model training, the proposed approach yields
representations that improve on multiple metrics over big models
trained with larger GPU budgets.

6. SUMMARY

This paper presents our work on proposing a deep clustering based
representation learning framework for automatic unit discovery. We
develop a self-supervised learning approach that relies on cluster-
ing of representations to create pseudo phoneme-like units from raw
speech. The model is trained using a combination of contrastive and
cluster based loss functions. The experiments are performed on the
ZeroSpeech 2021 challenge dataset using various metrics measuring
phonetic, syntactic, semantic and lexical information captured by the
acoustic units derived from the deep clustering framework. In these
experiments, we find the proposed model, with reduced GPU bud-
get and data for re-training, improves over larger models in terms of
phonetic, syntactic and semantic metrics. Further, the visualization
of the embeddings shows that the model is able to generate speaker
invariant phoneme-like units.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 13,2022 at 04:49:36 UTC from IEEE Xplore. Restrictions apply.



(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 13,2022 at 04:49:36 UTC from IEEE Xplore. Restrictions apply.

7. REFERENCES

Kushal Lakhotia et al., “Generative spoken language modeling
from raw audio,” arXiv preprint arXiv:2102.01192, 2021.

“unsupervised pattern discovery in speech,” .

“an investigation on the use of acoustic sub-word units for au-
tomatic speech recognition,” .

Chin-Hui Lee, Frank K Soong, and Bing-Hwang Juang, “A
segment model based approach to speech recognition,” in
ICASSP, 1988, pp. 501-502.

Balakrishnan Varadarajan, Sanjeev Khudanpur, and Emmanuel
Dupoux, “Unsupervised learning of acoustic sub-word units,”
in Proceedings of ACL-08: HLT, Short Papers, 2008, pp. 165—
168.

Maarten Versteegh, Roland Thiolliere, Thomas Schatz,
Xuan Nga Cao, Xavier Anguera, Aren Jansen, and Emmanuel
Dupoux, “The zero resource speech challenge 2015,” in Inter-
speech, 2015.

Ewan Dunbar, Xuan Nga Cao, et al., “The zero resource speech
challenge 2017, in ASRU. 1EEE, 2017, pp. 323-330.

Ewan Dunbar, Julien Karadayi, et al., “The zero resource
speech challenge 2020: Discovering discrete subword and
word units,” arXiv preprint arXiv:2010.05967, 2020.

Ewan Dunbar, Mathieu Bernard, et al., “The zero resource
speech challenge 2021: Spoken language modelling,” 2021.

Michael Heck, Sakriani Sakti, and Satoshi Nakamura, “Feature
optimized DPGMM clustering for unsupervised subword mod-
eling: A contribution to zerospeech 2017,” in ASRU. IEEE,
2017, pp. 740-746.

T Ansari, Rajath Kumar, Sonali Singh, Sriram Ganapathy, and
Susheela Devi, “Unsupervised HMM posteriograms for lan-
guage independent acoustic modeling in zero resource condi-
tions,” in ASRU. IEEE, 2017, pp. 762-768.

Benjamin van Niekerk, Leanne Nortje, and Herman Kam-
per, “Vector-quantized neural networks for acoustic unit dis-
covery in the zerospeech 2020 challenge,” arXiv preprint
arXiv:2005.09409, 2020.

T Ansari, Rajath Kumar, Sonali Singh, and Sriram Ganapa-
thy, “Deep learning methods for unsupervised acoustic model-
ing—leap submission to zerospeech challenge 2017,” in ASRU.
IEEE, 2017, pp. 754-761.

“learning problem-agnostic speech representations from mul-
tiple self-supervised tasks,” .

Jan Chorowski, Ron J Weiss, Samy Bengio, and Aédron van den
Oord, “Unsupervised speech representation learning using
wavenet autoencoders,” IEEE/ACM transactions on audio,
speech, and language processing, vol. 27, no. 12, pp. 2041—
2053, 2019.

Mirco Ravanelli, Jianyuan Zhong, Santiago Pascual, Pawel
Swietojanski, Joao Monteiro, Jan Trmal, and Yoshua Bengio,
“Multi-task self-supervised learning for robust speech recogni-
tion,” in ICASSP. IEEE, 2020, pp. 6989-6993.

Andy T Liu, Shang-Wen Li, and Hung-yi Lee, “Tera: Self-
supervised learning of transformer encoder representation for
speech,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 29, pp. 2351-2366, 2021.

[18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

3272

Takashi Maekaku, Xuankai Chang, Yuya Fujita, Li-Wei Chen,
Shinji Watanabe, and Alexander Rudnicky, “Speech repre-
sentation learning combining conformer cpc with deep clus-
ter for the zerospeech challenge 2021,  arXiv preprint
arXiv:2107.05899, 2021.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang,
Jing Zhang, and Jie Tang, “Self-supervised learning: Gener-
ative or contrastive,” IEEE Transactions on Knowledge and
Data Engineering, 2021.

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura,
“Transformer vqg-vae for unsupervised unit discovery and
speech synthesis: Zerospeech 2020 challenge,” arXiv preprint
arXiv:2005.11676, 2020.

Yu-An Chung, Wei-Ning Hsu, Hao Tang, and James Glass,
“An unsupervised autoregressive model for speech represen-
tation learning,” arXiv preprint arXiv:1904.03240, 2019.

Steffen Schneider, Alexei Baevski, Ronan Collobert, and
Michael Auli, “wav2vec: Unsupervised Pre-training for
Speech Recognition,” 2019.

Alexei Baevski, Steffen Schneider, and Michael Auli, “vg-
wav2vec: Self-Supervised Learning of Discrete Speech Repre-
sentations,” 2020.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and
Michael Auli, “wav2vec 2.0: A Framework for Self-
Supervised Learning of Speech Representations,” 2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals, “Represen-
tation Learning with Contrastive Predictive Coding,” 2019.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu,
“Neural Discrete Representation Learning,” 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, “Bert:  Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze, “Deep Clustering for Unsupervised Learning
of Visual Features,” 2019.

Herve Jégou, Matthijs Douze, and Cordelia Schmid, “Product
quantization for nearest neighbor search,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 33, no. 1,
pp- 117-128, 2011.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur, “Librispeech: An ASR corpus based on public
domain audio books,” ICASSP, pp. 5206-5210, 2015.

Jacob Kahn, Morgane Riviere, et al., “Libri-light: A bench-
mark for ASR with limited or no supervision,” CoRR, vol.
abs/1912.07875, 2019.

Laurens Van der Maaten and Geoffrey Hinton, ‘“Visualizing
data using t-sne.,” Journal of machine learning research, vol.
9, no. 11, 2008.

Gaél Le Godais, Tal Linzen, and Emmanuel Dupoux, “Com-
paring character-level neural language models using a lexical
decision task,” in European Chapter of the ACL, 2017, pp.
125-130.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey,
Wei Peng, Sheng-Fu Wang, and Samuel R. Bowman, “Blimp:
A benchmark of linguistic minimal pairs for english,” CoRR,
vol. abs/1912.00582, 2019.



