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Introduction

Figure: Automatic Speech Recognition (ASR) is the process of deriving
the transcription (word sequence) of an utterance, given the speech
waveform.
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Far-field Speech Recognition

Figure: Talker and the microphone are far apart.
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Far-field Speech Recognition - Real world Issues...

Figure: Degradation due to multipath signals - Reverberation.
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Reverberation model

▶ Signal received at the microphone is modelled as follows,

r(t) = x(t) ∗ h(t)

where x(t), h(t) and r(t) denote the clean speech signal, the
room impulse response and the reverberant speech,
respectively.

▶ The room response function h(t) can further be split into,

h(t) = he(t) + hl(t)

where he(t) and hl(t) represent the early and late reflection
components.
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Reverberation - Impact on applications

▶ The degradation of the automatic speech recognition (ASR)
systems in presence of noise and reverberation is a challenging
problem due to the low signal to noise ratio.

▶ Application like speaker recognition is also affected by
reverberation.

▶ Can severely degrade speech intelligibility for human listeners,
especially for hearing-impaired listeners.
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Speech enhancement for far-field ASR

▶ In most of the present day ASR systems the multi-channel
far-field recording will be going through a set of
pre-processing/enhancement steps before feature extraction.

▶ The usual pipe line is to do a dereverberation on all the
channels using a method like weighted prediction error
(WPE).

▶ To do a beamforming step where all the available channels are
combined to form a single channel.
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Contributions of the work

▶ This work is focused on developing frequency domain linear
prediction (FDLP) based systems for dereverberation and
enhancement of speech signals.

▶ This work pursues two broad directions for addressing issues in
far-field speech.

▶ In the first part of the talk, two methods for addressing
reverberation is discussed.

▶ In the second part of the talk, we discuss a speech
enhancement model using temporal envelopes and
corresponding carriers.
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Motivation

▶ In the traditional setting, the first step in the analysis of a
signal is the short-term Fourier transform (STFT).

▶ The key assumptions about the convolution model of
reverberation artifacts, is applicable for a long-analysis window
in the time domain, or using convolutional transfer function
with cross-band filters in the STFT domain.

▶ In our case, we use the former approach of long analysis
window and explore dereverberation in the sub-band envelope
domain.

▶ As the reverberation is a long-term convolution effect, we
highlight that room impulse response (typically with a
T60 > 400ms) can be absorbed as a multiplication in the
frequency domain, as well as a convolution in the sub-band
envelope domain.
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BACKGROUND
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Frequency Domain Linear Prediction (FDLP)
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Figure: Processing happens in sub-band signals of longer duration,
typically in seconds.

▶ FDLP is the frequency domain dual of Time Domain Linear
Prediction (TDLP).

▶ Just as TDLP estimates the spectral envelope of a signal,
FDLP estimates the temporal envelope of the signal.1

1Samuel Thomas, Sriram Ganapathy, and Hynek Hermansky. “Recognition
of reverberant speech using frequency domain linear prediction”. In: IEEE
Signal Processing Letters 15 (2008), pp. 681–684.
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Frequency Domain Linear Prediction (FDLP)
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▶ In TDLP, the processing happens in small 20-30ms duration
of time windows.

▶ In FDLP, long temporal duration of sub-band signals, typically
1-2 sec. duration are analysed.
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Frequency Domain Linear Prediction

▶ FDLP estimates the temporal envelope of the signal, i.e.
square of its Hilbert envelope

▶ Temporal envelope is given by the inverse Fourier transform of
the auto-correlation function of DCT,

e(t) = F−1 {Autocorr(y [k])}

▶ where y [k] is the DCT of a signal x [n] having N- points.
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Frequency Domain Linear Prediction

Figure: Illustration of the AR modeling property of FDLP. (a) a portion
of speech signal, (b) its Hilbert envelope and (c) envelope obtained from
all pole modeling in frequency domain.

Figure Credit:2
2Sriram Ganapathy. “Signal analysis using autoregressive models of

amplitude modulation”. PhD thesis. Johns Hopkins University, 2012.
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Feature Extraction - Frequency Domain Linear Prediction
based...
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Figure: Typical process flow in FDLP based feature extraction for ASR.
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FDLP based dereverberation (Part - 1)
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Feature Extraction using Spactio-Spectral Autoregressive
Modeling (SSAR)
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Figure: Features are extracted from all the channels jointly without
beamforming step.
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Feature Extraction using Spatio-Spectral Autoregressive
Modeling (SSAR)
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SSAR - Comparision of Spectrograms...
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Figure: Comparison of spectrogram estimation using SSAR modeling with
conventional mel spectrogram for clean (near-room) and reverberant
speech (far-room) recordings from the REVERB Challenge dataset.
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Experiments and results

Baseline ASR setup

▶ Classical delay sum beamforming with filter bank features
(BF-FBANK) was used as the features.

▶ A 2-D acoustic model (AM)3 was used to perform ASR.

3Anurenjan Purushothaman, Anirudh Sreeram, and Sriram Ganapathy. “3-d
acoustic modeling for far-field multi-channel speech recognition”. In: ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE. 2020, pp. 6964–6968.
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Experiments and results

Dataset
▶ REVERB challenge dataset

▶ Consists of 8 channel recordings with British English.
▶ The training set consists of 17 hours of audio.
▶ The Dev and Eval datasets consists of roughly 3 hours and 6

hours of audio recordings, respectively.
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Experiments and results

Table: Word Error Rate (%) in REVERB dataset.

Experiments
Dev Eval

Real Simu Avg Real Simu Avg

BF-FBANK (2-D AM) 19.7 6.2 12.9 22.2 6.5 14.4
MC-FBANK (3-D AM) 20.4 6.7 13.5 21.2 6.6 13.9
SSAR (3-D AM) 18.6 6.4 12.5 20.5 6.8 13.6
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Dereverberation of temporal envelopes for far-field ASR

▶ Dereverberation of the autoregressive estimates of the
sub-band envelope using a CLSTM model followed by feature
extraction for ASR.

▶ Deriving a signal model for reverberation effects on sub-band
speech envelopes and posing the dereverberation problem as a
gain estimation problem.

▶ Joint learning of the dereverberation model parameters and
the acoustic model for ASR in a single neural pipeline.
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Signal model

▶ The speech data recorded by a far-field microphone is
modeled as,

r(n) = x(n) ∗ h(n)

where x(n), h(n) and r(n) are the source speech signal, the
room impulse response function and the far-field speech,
respectively.

▶ The room response function can be further expanded as,

h(n) = he(n) + hl(n)

where he(n) and hl(n) represent the early and late reflection
components.
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Signal model

▶ Let xq(n), hq(n) and rq(n) denote the sub-band clean speech,
room-response and the reverberant speech, respectively for
the qth sub-band.

▶ The sub-band envelopes of far-field speech mrq(n), extracted
using frequency domain linear prediction (FDLP), can be
approximated as, 4

mrq(n) ≈
1

2
mxq(n) ∗mhq(n)

where, mxq(n), mhq(n) denote the sub-band envelope of the
clean source signal and the room impulse response function,
respectively.

4Anurenjan Purushothaman et. al,“Dereverberation of autoregressive
envelopes for far-field speech recognition”, in Journal of Computer Speech and
Language 2022.
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Signal model

▶ Given this envelope convolution model, we can further split
the far-field speech envelope into early and late reflection
components.

mrq(n) = mrqe(n) +mrql(n)

where mrqe(n) and mrql(n) denote the sub-band envelopes of
early and late reflection parts.
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Envelope dereverberation model

▶ The envelope dereverberation model tries to subtract the late
reflection components mrql(n) from reverberant sub-band
temporal envelope mrq(n).

▶ The sub-band envelope residual (targets for the neural model)
is the log-difference of the sub-band envelope for the direct
components and the sub-band envelope of the reverberant
sub-band signal.

▶ The neural model is trained with reverberant sub-band
envelopes ( log (mrq(n)) as input and model outputs the gain

(in the log domain this is log
mxq(n)
mrq(n)

), which when multiplied

with the reverberant envelopes (additive in log domain),
generates the estimate of source signal envelope
(log (m̂xq(n)).
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Envelope dereverberation model
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Figure: Block schematic of the proposed envelope dereverberation
model5.

5Anurenjan Purushothaman et al. “Deep Learning Based Dereverberation of
Temporal Envelopes for Robust Speech Recognition”. In: Proc. Interspeech
2020. 2020, pp. 1688–1692. doi: 10.21437/Interspeech.2020-2283. url:
http://dx.doi.org/10.21437/Interspeech.2020-2283.

30 / 56

https://doi.org/10.21437/Interspeech.2020-2283
http://dx.doi.org/10.21437/Interspeech.2020-2283


Experiments and results

Table: Word Error Rate (%) in REVERB dataset for different features
and proposed dereverberation method.

Model
Features

Dev Eval

Real Simu Avg Real Simu Avg

WPE-BF-FBANK 19.1 6.1 12.6 14.7 6.5 10.6
WPE-BF-FDLP 17.8 6.8 12.3 14.0 7.0 10.5
WPE-BF-FDLP + derevb. 16.3 5.6 10.9 13.4 7.1 10.2
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Joint Learning

▶ Encouraged by the results obtained by the envelop
dereverberation, we further wanted to improve the
dereverberation model with the ASR cost.

▶ By jointly training the pre-trained dereverberation and
pre-trained ASR with the ASR cost function, we further find
improvements.

▶ The Joint training is performed for 3 iterations on the given
data.
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Joint Learning
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Figure: Block schematic of joint learning framework, the entire model can
be constructed as an end-to-end neural framework. The black arrows
denote the forward pass, the red arrows represent backward propagation
with ASR loss, and green arrows denote the backward propagation with
mean square error loss.
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Experiments and results

Table: Word Error Rate (%) in REVERB dataset for different features
and proposed dereverberation method.

Model
Features

Dev Eval

Real Simu Avg Real Simu Avg

WPE-BF-FBANK 19.1 6.1 12.6 14.7 6.5 10.6
WPE-BF-FDLP 17.8 6.8 12.3 14.0 7.0 10.5
WPE-BF-FBANK + derevb. 17.3 5.5 11.4 13.1 6.9 10.0
WPE-BF-FBANK + derevb.6 15.8 5.2 10.5 12.8 6.7 9.8
WPE-BF-FBANK + derevb.7 19.6 6.9 13.3 17.5 9.0 13.3
WPE-BF-FDLP + derevb. 16.3 5.6 10.9 13.4 7.1 10.2
WPE-BF-FDLP + derevb. + joint. 15.2 5.6 10.4 12.1 7.1 9.6

6K. Han etal, “Learning Spectral Mapping for Speech Dereverberation and
Denoising”, IEEE/ACM TASLP 2015

7J. F. Santos etal, “Speech Dereverberation With Context-Aware Recurrent
Neural Networks”, IEEE/ACM TASLP 2018
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Dereverberation of temporal envelopes - extension to E2E
ASR

▶ Here, we extend the work done on HMM-DNN hybrid ASR to
E2E ASR systems.

▶ We also investigate the effect to new regularizing loss
functions.

▶ We propose a far-field E2E ASR system, where a joint learning
of enhancement model and the E2E ASR model is done8.

8Rohit Kumar et al. “End-To-End Speech Recognition with Joint
Dereverberation of Sub-Band Autoregressive Envelopes”. In: ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE. 2022, pp. 6057–6061.
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Dereverberation of temporal envelopes for E2E ASR
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Experiments and results

Table: WER (%) in REVERB dataset for separate learning of the
dereverberation and E2E models as well as the joint learning.

Model
Config.

Dev Eval

Real Sim Avg Real Sim Avg

WPE-BF-FBANK (baseline) 15.3 10.5 12.9 11.5 9.2 10.4
WPE-BF-FDLP 14.1 6.7 10.4 10.1 6.5 8.3
- + derevb. [MSE] 11.4 7.7 9.5 9.5 7.0 8.2
- + derevb. [MSE+BEGAN] 11.3 7.5 9.4 8.7 6.6 7.6

- + joint. [MSE] 10.3 6.3 8.3 7.1 5.6 6.3
- + joint. [MSE+BEGAN] 9.3 6.1 7.7 7.7 5.9 6.8
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Summary - Part 1

▶ In this work, we propose a new framework of multi-channel
features using SSAR modeling and a 3-D acoustic model for
neural beamforming.

▶ We propose a new neural model for dereverberation of
temporal envelopes.

▶ Further the neural model was jointly trained with the acoustic
model to improve the ASR cost.

▶ We extended the previously proposed dereverberation method
to E2E ASR framework.
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Speech enhancement with FDLP (Part - 2)
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Speech enhancement with FDLP

▶ We decompose the sub-band speech signal into the
constituent envelope and carrier part.

▶ A dereverberation neural model is designed that attempts to
enhance the envelope and carrier signals jointly.

▶ Further, joint learning of the speech enhancement model with
the end-to-end ASR model is proposed with a single neural
framework.
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Envelope-carrier decomposition

▶ We use a uniform 64-band Quadrature Mirror Filter bank
(QMF) for decomposing the input signal, x [n] into 64
uniformly spaced frequency bands.

▶ This is a perfect reconstruction analysis/synthesis filter bank.

▶ We use FDLP to estimate the envelope of the sub-band signal
xq[n].
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Envelope-carrier decomposition cont...

▶ Let eq[n] represent the sub-band temporal envelope found out
by FDLP.

▶ The corresponding carrier (remaining residual signal), cq[n] is
found by point wise division of the signal xq[n] by the
estimated envelope eq[n],

cq[n] = xq[n]/eq[n], ∀ n ∈ Z (1)
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Enhancement with envelope-carrier

▶ Apart from independently enhancing either the envelope or
the carrier, we can learn the mapping between clean and
reverberant versions of both the envelope and the carrier in
parallel.

▶ By feeding a neural model with the reverberant envelope
concatenated with the corresponding carrier, the network is
trained to output the late reflection components.

▶ The joint learning of the envelope-carrier enhancement
module and the E2E ASR architecture is done by combining
the two separate models and training it jointly.
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Enhancement with envelope-carrier
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Figure: Block schematic of speech enhancement model, the feature
extraction module and the E2E ASR model. Red arrows denote the
envelopes, e[n], the green arrows represent the carrier, c[n]. The entire
model can be constructed as an end-to-end neural framework.
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Dual path LSTM (DPLSTM)
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Figure: The dual path LSTM model architecture for speech enhancement.
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Experiments and results

Table: WER (%) in REVERB dataset for separate learning of the
dereverberation and E2E models as well as the joint learning.

Model
Config.

Dev Eval

Real Sim Avg Real Sim Avg

WPE-BF-FBANK (baseline) 12.8 8.7 10.8 11.9 7.9 9.9
WPE-BF-FBANK- + env. derevb. 12.7 8.5 10.6 10.1 7.8 9
WPE-BF-FBANK- + crr. derevb. 11.2 8.3 9.8 10.8 7.6 9.2
WPE-BF-FBANK- + env. & crr. derevb. 10.6 7.6 9.1 9.1 6.9 8

- + joint. 9.4 6.4 7.9 7.3 5.7 6.5
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Experiments and results

Table: SRMR and PESQ values (%) in REVERB dataset for envelope
and carrier based enhancements.

SRMR PESQ

Dev.
Real

Dev.
Simu

Eval.
Real

Eval.
Simu

REVERB
Tr cut

REVERB
Tr cut

WPE-BF-FBANK (baseline) 5.35 4.2 4.61 4.75 4.48 3.01
WPE-BF-FBANK + env. derevb. 4.62 3.83 4.12 4.25 4.11 2.89
WPE-BF-FBANK + crr. derevb. 5.52 4.46 4.69 5.27 4.77 3.01
WPE-BF-FBANK +env. + crr. derevb. 5.52 4.47 4.69 5.27 4.77 3.01
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Experiments and results

Table: MOS values (%) in REVERB dataset for envelope and carrier
based enhancements.

Eval Real - near Eval Real - far Eval Simu - near Eval Simu - far

Baseline - WPE - GEV 3.78 3.65 3.74 4.12
+ FDLP enhancement 3.98 3.67 4.01 4.4

Five audio files were randomly selected from Eval Real and Eval
Simu, both near and far room settings. Participants were asked to
rate the audio quality on a scale from 1 (Poor) to 5 (Excellent). 20
subjects participated in the study.
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Figure: Spectrograms, after and before enhancement.
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Summary - Part 2

▶ In this part of the work, we propose a speech enhancement
model for E2E ASR systems using frequency domain linear
prediction based sub-band envelopes and carrier.

▶ Using the joint learning of the neural speech enhancement
module and the E2E ASR model, we perform several speech
recognition experiments on the REVERB challenge dataset as
well as on the VOiCES dataset.

▶ We also performed subjective and objective speech quality
evaluation on REVERB challenge dataset.

▶ Results show that the proposed speech enhancement method
improves speech quality over the baseline.
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