Computation of $P\left(\boldsymbol{u}_{p} \mid \boldsymbol{u}_{g}\right)$

First compute $P(v \mid u)$ using Bayes rule,

$$
\begin{gathered}
P(v \mid u)=\frac{P(u \mid v) P(v)}{P(u)} \\
P(v \mid u) \propto N(u \mid v, I) N(v \mid 0, \Psi) \\
P(v \mid u)=N\left(v \mid\left(\mathrm{I}+\Psi^{-1}\right)^{-1} u,\left(\mathrm{I}+\Psi^{-1}\right)^{-1}\right)
\end{gathered}
$$

Reference [5] explains how to find mean and variance of gaussian formed by product of gaussian.
Since u_{p} and u_{g} are conditionally independent given v

$$
\begin{gathered}
P\left(u_{p} \mid u_{g}\right)=\int P\left(u_{p}, v \mid u_{g}\right) d v \\
=\int P\left(u_{p} \mid v, u_{g}\right) P\left(v \mid u_{g}\right) d v \\
=\int P\left(u_{p} \mid v\right) P\left(v \mid u_{g}\right) d v \\
\left.P\left(u_{p} \mid u_{g}\right)=N\left(u_{p} \mid\left(\boldsymbol{I}+\Psi^{-1}\right)^{-1}\right) u_{g}, \boldsymbol{I}+\left(\boldsymbol{I}+\Psi^{-1}\right)^{-1}\right)
\end{gathered}
$$

