Derivation

Eigen value decomposition of Φ_w is

$$\Phi_{\rm w} = J\Lambda_{\rm w}J^{\rm T}$$

Where J and Λ_w are **orthogonal eigenvectors matrix** and **diagonal matrix with eigen values** of Φ_w respectively It can be written as

$$\Lambda_{\mathrm{w}}^{(-1/2)} \mathbf{J}^{\mathrm{T}} \boldsymbol{\Phi}_{\mathrm{w}} \mathbf{J} \Lambda_{\mathrm{w}}^{(-1/2)} = \mathbf{J}$$

$$V_1^T \Phi_w V_1 = I$$

Therefore whitening transform is given as,

$$V_1 = J \Lambda_w^{(-1/2)}$$

Applying V_1 to Φ_b and performing **eigen value decomposition** on that, we get

$$V_1^T \Phi_b V_1 = U \Psi U^T$$
$$U^T V_1^T \Phi_b V_1 U = \Psi$$

Where U, Ψ are **orthogonal eigenvectors matrix** and **diagonal eigen values matrix** respectively Applying V_1U to Φ_w we get,

$$U^T V_1^T \Phi_w V_1 U = U^T I U = I$$

Therefore,

 $V = V_1 U$ simultaneously diagonalizes within-class covariance Φ_w and between-class covariance Φ_b .