Derivation

Eigen value decomposition of Φ_{w} is

$$
\Phi_{\mathrm{w}}=\mathrm{J} \Lambda_{\mathrm{w}} \mathrm{~J}^{\mathrm{T}}
$$

Where J and Λ_{w} are orthogonal eigenvectors matrix and diagonal matrix with eigen values of Φ_{w} respectively It can be written as

$$
\begin{gathered}
\Lambda_{\mathrm{w}}^{(-1 / 2)} \mathrm{J}^{\mathrm{T}} \Phi_{\mathrm{w}} \mathrm{~J} \Lambda_{\mathrm{w}}^{(-1 / 2)}=\mathrm{I} \\
V_{1}^{T} \Phi_{w} V_{1}=I
\end{gathered}
$$

Therefore whitening transform is given as,

$$
V_{1}=J \Lambda_{\mathrm{w}}^{(-1 / 2)}
$$

Applying V_{1} to Φ_{b} and performing eigen value decomposition on that, we get

$$
\begin{aligned}
& V_{1}^{T} \Phi_{b} V_{1}=U \Psi U^{T} \\
& U^{T} V_{1}^{T} \Phi_{b} V_{1} \mathrm{U}=\Psi
\end{aligned}
$$

Where U, Ψ are orthogonal eigenvectors matrix and diagonal eigen values matrix respectively Applying $V_{1} U$ to Φ_{w} we get,

$$
U^{T} V_{1}^{T} \Phi_{w} V_{1} \mathrm{U}=\mathrm{U}^{\mathrm{T}} \mathrm{IU}=\mathrm{I}
$$

Therefore,
$V=V_{1} U$ simultaneously diagonalizes within-class covariance Φ_{w} and between-class covariance Φ_{b}.

