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Abstract—The performance of an automatic speech recognition
(ASR) system is highly degraded in the presence of noise
and reverberation. The autoregressive (AR) modeling approach,
which preserves the high energy regions of the signal that are
less susceptible to noise, presents a potential method for robust
feature extraction. Secondly, there are strong correlations in the
spectro-temporal domain of the speech signal which are generally
absent in noise. In this paper, we propose a novel method
for speech feature extraction which combines the advantages
of AR approach and joint time-frequency processing using the
multivariate AR modeling (MAR). Specifically, the sub-band dis-
crete cosine transform (DCT) coefficients obtained from multiple
speech bands are used in the MAR framework to derive the Riesz
temporal envelopes that provide features for ASR. We perform
several speech recognition experiments in the Aurora-4 database
with clean and multi-condition training. In these experiments, the
proposed features provide significant improvements over other
noise robust feature extraction methods (relative improvements of
24 % in clean training and 14 % in multi-condition training over
mel features). Furthermore, the speech recognition experiments
in REVERB challenge database illustrates the extension of the
MAR modeling method for suppressing reverberant artifacts.

Index Terms—Multivariate Autoregressive Models, Riesz En-
velopes, Feature Extraction, Speech Recognition.

I. INTRODUCTION

Ver the last decade, the architecture of automatic speech
recognition (ASR) systems has witnessed a fundamental
change with the use of deep neural networks [1]. While the
ASR performance has seen overall improvements, the relative
degradation in the presence of noise or reverberation continues
to be a substantial challenge in the developing real world
applications of ASR [2]. One common solution to overcome
the performance degradation in noisy conditions is the use
of multi-condition training [3] where the acoustic models are
trained using data from the target domain. However, in a
realistic scenario it is not always possible to obtain reasonable
amounts of training data from all types of noisy environments.
Furthermore, even with multi-condition training, the perfor-
mance of ASR systems are significantly worse compared to
clean controlled testing conditions. The goal of this paper is
to address the robustness issues in feature extraction.
In the past, several approaches have been proposed for
robust feature extraction like modulation filtering (RASTA
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filtering [4]), spectral subtraction [5], [6], multi-step linear
prediction based dereverberation [7], power normalization [8]
etc. The autoregressive modeling (AR) approach to speech
feature extraction relies on estimating an all-pole model where
the peaks of the signal are well preserved. An example of the
AR approach to model the short-term spectral envelopes is
the perceptual linear prediction (PLP) technique [9] which
is widely used for speech recognition. The application of
AR modeling for estimating temporal envelopes [10], [11]
has shown to improve robustness when used in conjunction
with modulation filtering techniques [12]. However, many of
these methods fail to fully exploit the two-dimensional time-
frequency correlations present in the speech signal. Although
a 2-D AR modeling approach was attempted in the past [13],
this involved modeling spectral and temporal envelopes in an
iterative and separable manner.

In this paper, we attempt to jointly model the temporal
envelopes of multiple sub-bands using a time series analysis
approach [14], [15]. The multivariate AR (MAR) modeling
technique is the method of approximating a random time
series vector as a linear combination of “past” vectors. Here,
the prediction coefficients are matrices which are estimated
using a generalized least squares criterion. The MAR model-
ing approach is widely used in econometrics for forecasting
applications [16]. This work represents the first application of
MAR modeling using multi-band Riesz envelope estimation
to the best of our knowledge.

For application to speech processing, we use the long-
term discrete cosine transform (DCT) coefficients of multiple
spectral bands in the MAR framework. The MAR modeling
preserves the signal peaks in the joint spectro-temporal domain
and exploits the inherent 2-D structure of speech spectrograms.
Given the lack of time-frequency correlations in noise, the
proposed 2-D modeling allows the extraction of the long-term
multi-band features representative of the underlying speech
signal even in the presence of noise.

We perform several ASR experiments using the clean and
multi-condition training setup in Aurora-4 database [3] as well
as the REVERB challenge database [7] with a deep neural
network back-end. In these experiments, the proposed front-
end using MAR processing provides significant improvements
compared to other noise robust feature extraction methods.

The rest of the paper is organized as follows. In Sec. II, we
describe the MAR parameter estimation method. The applica-
tion of the MAR model for feature extraction is discussed in
Sec. III. The speech recognition experiments are described in
Sec. IV followed by a summary of the paper in Sec. V.
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II. MULTIVARIATE AUTOREGRESSIVE MODELING

Given a D dimensional vector process y of sequential data
indexed by ¢ = 1...Q0, a multivariate AR model of order p is
given by [15],

p
Yo = Aryg—k + g, (1)
k=1

where u is a D dimensional white noise random process with
a covariance matrix X, and the MAR coefficients A are
square matrices of size D which characterize the model. In
the following subsection, we provide the generalized least
squares (GLS) estimation of the parameters [{Ax},_;, Xu]
of the MAR model.

In order to succinctly represent the MAR model in Eq. (1),
let us define, Y := [y1 y2 ... yg] of dimension D x @,

B := [A; A; ... A)] of dimension D x Dp, Z, :=
I yI, .. yI 1" of dimension Dp x 1 and U :=
[u; us... ug] of dimension D x Q. With these definitions,

the MAR model of Eq. (1) for ¢ = 1..Q) is given by,
Y=BZ+U )

where Z := [Zg,...,Zg—1] of dimension Dp x @) and we
have assumed the availability of presample data observations
Y—p+1,-,Yo. Let vec denote the splicing operator which
converts a matrix of size m X n into a vector of size mn x 1
by stacking the columns of the matrix one below the other.
If u := vec(U) (of dimension DQ x 1), B := vec(B) (of
dimension D?px 1) and t := vec(Y) (of dimension D?px 1),
then,

vec(BZ) +u
(2" ©1Ip)B+u 3)

where ® is the Kronecker product and Ip is the identity matrix
of size D. The covariance matrix of wis 3, = Io ® X,,. The
GLS estimator minimizes the cost S(3) given by [17],

SB) = u'E,'u
= - (Z"2Ip)B"=. 'y — (2" ®1p)B]
= pHZZ" 22, )B-28"(Z2%,")+C (@)

where the inverse of Kronecker product' and the commutative
property” are invoked and C' is a constant independent of 3.

A. Model parameter estimation

The parameters (3) can then be estimated by setting % =
0. This estimate can be shown to be

B=(22")'ZxIk)y (5)

In this case, the Hessian matrix 8g;ﬁT =2(ZZ" @ 21) is

indeed positive definite which guarantees a minimum estimate.
Note that, with D = 1, the above formulation simplifies
to the normal equations in a conventional AR model. The
estimator given in Eq. (5) can be shown to be consistent and

I1f A, B are two matrices, (A® B)*1 =AlgB 1
2If A, B, C, D are matrices, (A®B)(C®D)=AC®BD.

Speech Mekband | | war
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Fig. 1. Block schematic of the MAR spectrogram model.

asymptotically normal [15]. The estimate of the covariance
matrix of the noise ¥, can be obtained as,

3 Q Zuq = _Y(Ig - 2" (2Z")'2)YT  (6)

Thus, given the observations y, for the vector random
process, the parameters of the MAR model [{Ax}_,, %]
can be estimated using Eq. (5),(6).

B. Envelope Estimation

Unlike the application of MAR modeling in forecasting
[16], this paper uses the MAR model for temporal envelope
estimation. For the one dimensional AR modeling case in the
time domain, the spectral envelope of the sequence y, (g is
the sample index in time domain) with Ay = ay is given by,

o2

1= S0 ane 2T "
where s, [f] is the power spectral density, f is the normalized
discrete frequency index and o2 is the prediction gain [18]. In
the case of AR estimation of temporal envelopes [11], [10],
the DCT sequence vy, is used as the input and the AR envelope
§y[n] denotes the Hilbert envelope of the signal (n denotes the
discrete time index).

In this paper, the input y, denotes DCT coefficients indexed
by ¢ for multiple speech sub-bands and the sub-band Riesz
envelopes are estimated using MAR modeling. The following
multidimensional z-transform (in temporal AR modeling, z
represents complex time domain variable [11]) filter expres-
sion can be written for the model described in Eq. (1),

p
[ID - Z Akz_k] Yq
k=1

Let H(z) = Ip — > 0_, Apz~*. If sy[n] denotes the Riesz
envelope (extension of Hilbert envelope to 2-D signals) of
speech sub-bands, then the MAR estimate of the Riesz enve-
lope is given by (for H[n] = H[z]|,—.—izxn),

Sy[n] = diag(H[n]_lfJuH[n]_l) 9)

§y[f] =

= Uy (8)

III. FEATURE EXTRACTION USING MAR

The block schematic of the proposed approach for feature
extraction is shown in Fig. 1. Long segments of the input
speech signal (2000ms of non-overlapping windows) are trans-
formed using DCT. The full-band DCT signal is windowed
into a set of 39 over-lapping sub-bands using Gaussian shaped
windows with center frequencies chosen uniformly along the
mel scale. The DCT sequences of multiple sub-bands are
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Fig. 2. Comparison of spectrogram estimation using MAR modeling with conventional mel spectrogram for clean and noisy speech recordings from Aurora-4

database.

stacked together to form vector series data y, (¢ denotes the
DCT coefficient index) of Eq. (1). The estimation procedure of
the MAR model is applied and model parameters are estimated
(Eq. 5). We use a fixed model order of p = 160 for the
MAR estimation of 2000ms of speech. The sub-band temporal
envelopes are then computed using Eq. (9). In this paper, the
DCT coefficients of 3 mel bands are jointly used in the MAR
modeling (i.e, D = 3).

The sub-band MAR envelopes are integrated with a Ham-
ming window over a 25 ms window with a 10 ms shift.
The integration in time of the sub-band envelopes yields an
estimate of the MAR spectrogram of the input speech signal.
In Fig. 2, we compare the spectrographic representation from
MAR modeling and the conventional mel spectrogram. As
seen here, the MAR modeling results in a smooth represen-
tation which emphasizes only the high energy regions of the
signal. The joint estimation of the envelopes obtained by the
two-dimensional spectro-temporal modeling also allows the
model to focus primarily on time-frequency correlations of the
underlying speech signal while suppressing the effects of noise
as illustrated by the representations obtained for the noisy
signal (babble noise at 10 dB SNR as well as in the presence of
channel noise). These properties of the MAR model improve
the noise robustness in the representations derived from this
approach. For the ASR feature extraction, the integrated sub-
band temporal envelope for a duration of 200 ms (centered
around a 10 ms frame) are transformed to 14 DCT coefficients
for each sub-band. The MAR features are also appended with
spectral delta features yielding features of dimension of 1092.

IV. EXPERIMENTS AND RESULTS
A. Noisy Speech Recognition

The WSJ Aurora-4 corpus is used for conducting ASR
experiments in noisy speech [3]. This database consists of
continuous read speech recordings recorded under clean and
noisy conditions (street, train, car, babble, restaurant, and

TABLE I
WORD ERROR RATE (%) IN AURORA-4 DATABASE FOR CLEAN TRAINING
CONDITION WITH VARIOUS FEATURE EXTRACTION SCHEMES.

Cond [[ Mel. [ PN [8] [ ET [6] | MH [19] | RA[4] [ MAR
A. Clean with same Mic

Clean [ 34 | 33 [ 32 ] 3.5 [ 35 [ 31
B: Noisy with same Mic

Airport || 22.5 18.3 15.0 19.5 19.3 13.3

Babble 19.2 16.0 155 17.7 19.9 13.0

Car 7.8 6.2 9.8 7.9 79 5.1

Rest. 25.6 229 20.5 232 23.0 17.9

Street 20.5 17.8 19.5 18.1 18.7 135

Train 20.0 16.3 17.4 17.9 19.4 139

Avg. 19.3 16.2 16.3 17.4 18.0 12.8
C: Clean with diff. Mic

Clean [[ 153 ] 117 | 145 | 146 [ 160 [ 118
D: Noisy with dift. Mic

Airport || 39.4 36.4 314 39.2 38.7 314

Babble 36.0 342 32.1 36.8 38.5 30.9

Car 24.3 215 249 259 24.8 19.2

Rest. 39.8 39.0 354 39.3 39.1 32.8

Street 359 34.1 35.0 35.8 35.8 29.0

Train 35.6 31.8 33.2 359 36.4 29.4

Avg. 352 32.8 32.0 354 35.6 28.8

Avg. of all conditions
Avg. 12477 221 [ 219 | 239 | 244 [ 189

airport) at 10 — 20 dB SNR. The training data has two sets of
7138 clean and multi condition recordings from 84 speakers.
The validation data has two sets of 1206 recordings (14
speakers) for clean and multi condition and the test data has
330 recordings (8 speakers), each of the 14 clean and noise
conditions. The test data is classified into group A - clean data,
B - noisy data, C - clean data with channel distortion, and D
- noisy data with channel distortion.

We compare the ASR performance of the proposed MAR
approach with traditional mel filter bank energy (MF) fea-
tures, power normalized filter bank energy (PN) features [8],
advanced ETSI front-end (ET) [6], mean Hilbert envelope
coefficients (MH) features [19] and RASTA features (RA) [4].
All the features are processed with utterance level mean and
variance normalization.

The speech recognition Kaldi toolkit [20] is used for training
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TABLE II
WORD ERROR RATE (%) IN AURORA-4 DATABASE FOR MULTI CONDITION
TRAINING WITH VARIOUS FEATURE EXTRACTION SCHEMES.

TABLE III
WORD ERROR RATE (%) IN REVERB CHALLENGE DATABASE FOR CLEAN
AND MULTI-CONDITION TRAINING.

the ASR system which is based on hybrid Hidden Markov
Model-Deep Neural Network (HMM-DNN) framework. A
deep belief network- deep neural network (DBN-DNN) with 4
hidden layers each having 2048 hidden units is used for acous-
tic modeling. All the baseline input features are processed with
a input temporal context of 31 acoustic frames with 40 bands
(yielding an input dimension of 1240) and the DNN is trained
with sigmoid nonlinearity and soft-max output layer. A tri-
gram language model is used in the ASR decoding.

The ASR performance in clean training condition is reported
in Table I. From this table, it can be observed that PN
and ET features provide better performance compared to the
Mel. and RA features. The proposed approach of using MAR
spectrogram improves the baseline performance significantly
in various noise and channel distortion conditions (average
relative improvements of 24 % over mel features and about
14 % over the ET features).

In the multi condition training scenario (reported in Table
II), most of the noise robust front-ends show only minor
improvements over the baseline mel features. However, the
proposed MAR features perform better than all other noise
robust front-ends (average relative improvements of 12 % over
ET features). Even when the training and test conditions are
matched, the proposed features improve the ASR performance
as the MAR model focuses on the 2-D structure of the spectro-
gram. Since the noise and other channel artifacts present in the
signal are typically less correlated and lack an inherent time-
frequency structure, the MAR model extracts more speech
related information from the signal compared to other robust
front-ends. This is evident from improvements obtained for a
variety of noise types and channel distortions (Table I, II).

B. Reverberant speech recognition

The ASR experiments on reverberant speech data are per-
formed using the REVERB challenge [7] data which uses the
WSJCAMO database for training. This database consists of

Cond || Mel. [ PN [8] [ ET [6] [ MH [19] | RA [4] | MAR Cond | Mel [ PN | ET | MAR || Mel | PN | ET | MAR
A. Clean with same Mic Clean training Sim. Reverb training
Clean [ 42 | 41 | 45 | 41 | 46 | 37 Sim-dt || 372 | 363 | 259 | 238 || 119 | 113 | 123 | 11.0
B: Noisy with same Mic Sim-et 358 | 352 | 25.0 224 122 | 11.5 | 12.0 10.7
Airport 9.1 7.9 8.0 8.2 8.1 7.1 Real-dt 70 733 | 57.6 51.1 259 | 25.7 | 364 25.1
Babble 8.7 7.9 7.9 8.6 8.7 7.1 Real-et 73.1 77 59.7 57.6 309 | 30.7 | 34.1 28.5
Car 5.1 4.9 5.6 4.9 5.0 4.4 Avg. 54.0 | 55.5 | 42.1 38.7 20.2 | 19.8 | 23.7 18.8
Rest. 10.7 10.2 11.0 11.1 11.0 9.4
Street 9.2 8.8 10.0 8.8 9.0 7.5
Train 9.3 8.3 9.3 8.4 9.1 8.0 . L. .
Avg. 8.7 8.0 8.6 8.3 8.5 73 7861 recordings from 92 training speakers, 1488 recordings
C: Clean with diff. Mic from 20 development test (dt) speakers and 2178 recordings
Clean [] 86 [ 78 | 80 | 81 [ 97 [ 78 from two sets of 14 evaluation test (et) speakers, with each
D: Noisy with dift. Mic .1 .
Airport || 207 | 209 1335 208 301 82 speaker providing about 90 utterances. These recordings were
Babble | 20.6 | 20.9 19.3 214 20.0 17.9 carried out with two sets of microphone- head mounted as
Car 12.8 13.1 14.1 12.8 12.5 10.5 well as desk microphone positioned about half meter from the
Rest. 22.8 23.7 21.8 23.1 23.1 20.0 s . ..
Strect 197 | 200 19.4 205 18.9 17.6 speaker’s head. The database consists of three subsets: training
Train 18.7 19.6 19.6 18.9 19.9 17.7 data set (Train) - for both clean and multi condition training
Avg. 192 | 197 | 188 | 196 9.1 | 17.0 using simulated reverb data, a simulated test dataset (Sim) and
Ave. of all conditions 11 b t recording of the test dataset (Real)
Avg. [ 129 [ 127 [ 127 | 128 [ 128 | 112 a naturally reverberan g .

The Kaldi toolkit [20] is used for training and the acoustic
model configuration is similar to the one used for Aurora-4.
The average performance on 6 simulated room environments
and 2 real recordings for each of the (dt) and (et) speaker set
is reported in Table III.

It can be observed that the proposed features perform better
than other features under all the test conditions with clean and
multi-condition training data. For the clean training, there is an
average relative improvement of 28 % over MF features and
the results with the proposed MAR front-end are better than
the best published results in REVERB Challenge [7]. For the
multi condition reverb training (simulated), there is an average
relative improvement of 7 % over MF features.

V. SUMMARY AND DISCUSSION

In this paper, a novel method of multivariate autoregres-
sive (MAR) modeling is proposed for speech spectrogram
estimation. The MAR model uses the linear prediction model
on the multi band DCT components to predict the long-term
Riesz transform envelopes of speech. With the joint modeling
of multiple sub-bands, the MAR model can capture the 2-
D structure of the speech spectrogram in the time-frequency
domain and the AR modeling attempts to emphasize the
high energy regions in the resulting envelopes. The MAR
spectrogram, used for speech recognition experiments with
noisy and reverberant speech, shows significant improvements
over various other noise robust front-ends. These experiments
also highlight that robustness in ASR can be achieved by
focussing primarily on speech characteristics without explicitly
modeling noise or reverberation artifacts. Hence, the improved
robustness in the proposed approach does not lead to any
degradation in clean or matched test conditions. The proposed
modeling framework still uses only localized sub-band struc-
ture (only 3 bands in the MAR modeling). In future, we plan
to extend the approach to efficiently utilize the entire spectral
range of the sub-bands.
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