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Abstract
Automatic language identification or detection of au-

dio data has become an important preprocessing step for
speech/speaker recognition and audio data mining. In many
surveillance applications, language detection has to be per-
formed on highly degraded audio inputs. In this paper, we
present our work on language detection in highly degraded ra-
dio channel scenarios. We provide a brief description of the
Targeted Robust Audio Processing (TRAP) language detection
system built for the Phase II Evaluation of the Robust Automatic
Transcription of Speech (RATS) program. This system is a
combination of 15 systems with different frontends and speech
activity decisions. We also analyze the usefulness of multi-layer
perceptron (MLP) based non-linear projection of i-vectors be-
fore SVM classification. The proposed backend reduces the
Equal Error Rate (EER) by 11%–25% relative compared to the
baseline PCA-based feature representation for SVM classifica-
tion, on the RATS test data consisting of data from eight high-
frequency radio communication channels.
Index Terms: Language identification (detection), highly de-
graded radio channel, RATS, i-vector, multi-layer perceptron.

1. Introduction
This paper describes the recent effort of the Targeted Robust
Audio Processing (TRAP) team for the Phase II Language Iden-
tification (LID) Evaluation in the DARPA Robust Automatic
Transcription of Speech (RATS) program. In the RATS pro-
gram, noisy speech data transmitted on eight different high-
frequency radio communication channels [1] are studied for
four tasks; Speech Activity Detection (SAD), Keyword Spot-
ting (KWS), Speaker Identification (SID) and Language Iden-
tification (LID). For the LID task, four durations (120s, 30s,
10s and 3s) are considered as data lengths for testing. For
each duration, duration-specific testing examples are supposed
to be identified as one of five target languages (Arabic Levan-
tine, Farsi, Dari, Pashto and Urdu). To achieve the target per-
formance across durations, it is therefore critical to efficiently
handle noisy data and model short-duration segments.

The main components of our LID system for the RATS
Phase II Evaluation are (1) two SADs for diversity in system
combination, (2) seven frontend features, (3) three combina-
tions of projections and/or classifiers and (4) multi-class linear
regression for the system combination of the 15 individual sys-
tems. We managed to improve system performance by more
than 50% relative in terms of the Equal Error Rate (EER) com-
pared to our Phase I LID submission.

This work was supported in part by Contract No. D11PC20192
DOI/ NBC under the RATS program. The views expressed are those
of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

This paper is organized as follows. In Section 2, data cate-
gorization is given for system training and evaluation. In Sec-
tion 3, we describe the details of the frontend and backend con-
figurations of our LID system. In Section 4, experimental re-
sults are given. We further analyze the performance of feature
space expansion using a neural network of one hidden layer and
Support Vector Machine (SVM) classification. This backend
provides the best performance especially for shorter duration
trials among the three backend configurations used in our final
submission system. In Section 5, we provide conclusions and
future directions.

2. Data
The Linguistic Data Consortium (LDC) distributed the training
and development data of the five target languages and ten non-
target languages totaling approximately 3,700 hours of record-
ings (See Table 1). We split the data into three parts for system
training, calibration and internal evaluation; TRAIN, COMB,
and TEST. The TRAIN data set was used to capture background
statistics and train the Universal Background Models (UBMs)
[2]. This data set was also utilized to find subspace projec-
tions for compact feature representations and backend classi-
fiers. The COMB data set was prepared to calibrate parameters
for score combination. The TEST data set is our internal test
set to evaluate the system performance. The DEV2 data set is
one of the official testing data sets for the RATS Phase I LID
Evaluation and was used as an alternative test set in preparation
for the Phase II Evaluation. Table 1 shows the data sets used
for our system building and testing in terms of the number of
recordings and hours.

3. The TRAP System Description
The TRAP team’s LID system submission for the Phase II
Evaluation of the RATS program consists of 15 system con-
figurations. It is based on two SAD setups, one of which is
a channel-dependent (CD) SAD utilizing multi-pass Hidden
Markov Model (HMM) Viterbi segmentation and fusion of mul-
tiple feature streams [3] and the other is channel-independent
(CI) SAD with a two-pass modified Cumulative Sum (CUSUM)
approach based on Maximum A Posteriori (MAP) adaptation
[4]. Each setup has distinct ingredients as follows:

• CD-SAD: Channel detection with eight channel-
dependent Gaussian Mixture Models (GMMs), followed
by speech/non-speech HMM Viterbi segmentation us-
ing channel-dependent Deep Neural Networks (DNNs)
trained on Perceptual Linear Prediction (PLP), voicing
and rata-scale features. The second-pass segmentation
is then applied for a frame-level score combination of
two sets of DNNs trained on PLP, voicing, rate-scale
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Figure 1: Block schematic of the TRAP submission for the RATS Phase II LID Evaluation.

Table 1: Statistics of the TRAIN, COMB, TEST, and DEV2
data sets for system building and testing.

No. of Recordings Hours
TRAIN 87,774 2,926
COMB 14,328 324
TEST 9,733 478
DEV2 1,914 64
Total 113,749 3,792

and Frequency-Domain Linear Prediction (FDLP) fea-
tures and deep Convolutional Neural Networks (CNNs)
trained on log-mel spectra [3].

• CI-SAD: The modified CUSUM algorithm is used
to MAP-adapt the means of channel-independent
speech/non-speech GMMs before segmentation refine-
ment. Each GMM consists of 4,042 diagonal-covariance
Gaussian components. The GMM parameters are es-
timated using maximum likelihood estimation to make
sure. Every nine frames of 13-dimensional PLP co-
efficients are spliced together and then projected to a
40-dimensional vector using Linear Discriminant Anal-
ysis (LDA) and Maximum Likelihood Linear Transform
(MLLT) [4].

The following sub-sections detail each partner’s contribu-
tion to our final system.

3.1. IBM

IBM contributed 11 system configurations including 6 frontend
features:

• Mel-Frequency Cepstral Coeffiient (MFCC): 13-
dimensional base features generated using 37
mel-frequency filter banks, appended with delta
and acceleration features, resulting in the total 42-
dimensional feature vector for every 32ms frame with
a 10ms shift rate. The frequency bands of interest are
limited to 300–3300Hz for more robustness to unseen
data characteristics.

• Wideband MFCC (WB-MFCC): 19-dimensional cep-
stral coefficients derived from 24 mel sub-bands in the
frequency range of 125–3700Hz for every 32ms frame
with a shift of 10ms. Then they are added with delta and
acceleration components to yield 57-dimensional fea-
tures.

• Shifted Delta Cepstrum (SDC): 7-3-3-7 SDC configura-
tion [5] for MFCCs. It is then concatenated with the base
MFCC features to a create 56-dimensional feature vector
per frame.

• Frequency-Domain Linear Prediction (FDLP): Window-
ing of the Discrete Cosine Transform (DCT) of a long-
term segment (1, 000ms) for a given signal is followed
by the linear prediction of sub-band DCT components
to yield temporal envelopes in each band [6]. The sub-
band envelopes are then integrated in short-term win-
dows (32ms with a shift of 10ms) to derive a spectro-
graphic representation of the signal which is used as
power spectral representation for the second autoregres-
sive (AR) model across the bands [7]. The output of the
second AR model is converted to 14-dimensional cep-
stral features, which are added with delta and accelera-
tion coefficients.

• Cortical modulation (CORT): Two dimensional (2-D)
spectrographic representations are derived for a given
signal by emulating various processing stages in the pe-
riphery of the human auditory system [8]. The auditory
spectrogram is then converted to modulation represen-
tation using Fourier transforms along the spectral and
temporal axis and modulation filtering is applied to ex-
tract key dynamics in the scale and rate dimensions, re-
spectively [9]. The modulation filters used in this fea-
ture extraction scheme are broad enough to cover a wide
range of dynamics (0–2 cycles per octave in the scale di-
mension and 0.25–25Hz in the rate dimension). Cepstral
transformation is applied on the filtered auditory spec-
trograms and delta/acceleration features are appended to
obtain 42-dimensional features.

• Power-Normalized Cepstral Coefficient (PNCC): The
power law nonlinearity is applied on temporal envelopes
estimated from Gammatone filters [10]. This is followed
by a noise supression procedure using assymmetric fil-
ters and a power normalization module using a long win-
dow span. A frequency smoothing is applied and cepstral
features are derived using DCT on the compressed spec-
trogram. We derive 19 cepstral features and these are
used with delta and acceleration components.

CI-SAD was used for MFCC and SDC while CD-SAD for the
other features. All the frontends are Wiener-filtered before SAD
to suppress channel noise effects [11].

For each feature stream except WB-MFCC1, two separate
projection/classifier backends were developed. One backend
consists of PCA-based feature space projection and SVM clas-
sification with the 5th-order polynomial kernel [12]. In [12],
higher order polynomial kernels such as 5th or 6th were ex-
perimentally proven to outperform lower orders like 2nd or 3rd

in SVM classification. The other, “advanced backend”, con-

1WB-MFCC has only one backend of PCA projection and SVM
classification with the 5th-order polynomial kernel.
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Figure 2: Individual system performance on DEV2.

tains i-vector representation followed by feature space expan-
sion using a one hidden layer perceptron and SVM classification
with higher-order polynomial kernel functions such as 10th/11th.
The advantage of this backend can be seen when comparing
each pair of frontend feature systems (Figure 1), especially for
shorter duration trials. (We will discuss it in more detail in Sec-
tion 4.2.) One-versus-all binary SVM classifiers for the target
languages were trained using the LIBSVM package [13].

3.2. USC

With CI-SAD, USC implemented 4 sub-systems using simpli-
fied and supervised i-vector modeling [14, 15] based on 4 dif-
ferent frontend features, each of which feature warping was ap-
plied for:

• MFCC: 25ms Hamming window applied with a 10ms
shift. 18-dimensional base features are appended with
their delta coefficients, resulting in 36-dimensional fea-
ture vector per frame.

• SDC: 7-1-3-7 SDC configuration for MFCCs. It is then
concatenated with the base MFCC features including C0
to a 56-dimensional feature vector per frame.

• Gammatone Frequency Cepstral Coefficient (GFCC)
[16]: 44-dimensional feature vector per frame generated
using 64 Gammatone filter banks (22-dimensional base
features without C0, and their first derivatives).

• Gabor Filtering (GABF) [17]: Gabor filters applied for
spectro-temporal information to yield 153-dimensional
feature vectors.

For these frontends, we adopted the simplified and super-
vised i-vector modeling framework [14, 15] which not only
achieved good results but also reduced a computational time by
more than 100 times. In this framework, traditional i-vectors
[18] are extended to label-regularized supervised vectors by
concatenating GMM mean supervectors (GSVs) and the to-
tal variability matrix (T-matrix) with a label vector and a lin-
ear classifier matrix, respectively. These supervised i-vectors
are optimized to not only reconstruct the GSVs but also mini-
mize mean-squared errors between the original and the recon-
structed label vectors, such that they become more discrimi-
native. Also, Factor Analysis (FA) can be performed on pre-
normalized GSVs to ensure that each Gaussian component is

Table 2: DEV2 results of the TRAP team’s submissions across
duration in terms of EER (%). The numbers in the parentheses
indicate the total number of sub-systems combined.

System 120s 30s 10s 3s
Primary (15) 1.8 3.2 5.6 10.0

Contrastive I (11) 1.8 3.1 5.8 10.0
Contrastive II (7) 1.9 3.7 6.1 11.4

Phase I (3) 2.9 6.9 12.7 18.9

treated equally during FA, which reduces a computational cost
significantly by a factor of 25. Moreover, we can further en-
hance the efficiency by using a pre-computed table. More de-
tails about the simplified and supervised i-vector modeling are
provided in [14, 15].

Within-Class Covariance Normalization (WCCN) [19] was
applied on the resulting i-vectors before SVM. For fast train-
ing of SVM models, we used the 2nd-order polynomial map-
pings [20] in the LIBLINEAR package [21], which resulted in
a multi-class SVM classifier for each duration testing. More-
over, we sub sampled the in the SVM training to make it more
balanced and efficient.

4. Experimental Results
4.1. Discussions on DEV2 results

Figure 2 shows the performance of individual system configu-
rations on the DEV2 data set, where all individual system per-
formance is compared. For shorter duration testings such as
10s and 3s, the advanced backend is shown to provide signifi-
cant improvement of 11%–25% especially for FDLP, CORT and
PNCC compared to the PCA-SVM setup. (We will analyze this
further in the next sub-section.) Among the frontend features,
PNCC shows the best results across durations, while FDLP of-
fers similar performance except for the 30s trials. From the
USC streams GFCC is the best, which can be expected since,
in comparison with MFCCs, GFCCs have higher resolution on
low frequency responses.

Table 2 shows our final submission results for the Phase II
Evaluation compared with our Phase I submission. The primary
submission consists of all the 15 system configurations com-
bined by multi-class logistic regression using the FoCal toolkit
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Figure 3: Scatter plot of two dimensional t-SNE projections for the input i-vectors as well as the MLP hidden layer outputs.

[22] in a duration-specific manner. For the Contrastive I system,
we reduced the number of sub-systems by choosing ten system
configurations that could achieve similar performance with the
Primary system across duration. The Contrastive II system is
a combination of seven IBM individual systems. All the three
submission results show that we improved our LID system per-
formance by more or less 50% relative compared to the Phase I
submission.

4.2. Analysis on advanced backends

In this section, we analyze the usefulness of MLP-based trans-
formation of i-vectors which are input to SVM classification.
As shown in Figure 1, the input features are used to adapt the
GMM means and the GSVs are transformed to i-vectors using
total variability matrix (T-matrix).

In contrast to the past approach of using i-vectors as fea-
tures to a MLP classifier for LID [23], our proposal of a “deep”
architecture for LID using an MLP-based non-linear projection
was inspired by the advances in Deep Belief Networks (DBNs)
for Automatic Speech Recognition (ASR) [24]. In ASR ap-
plications, the discriminative pre-training of DBNs is done by
training a single-hidden layer MLP which is used as an initial-
ization for MLPs with multiple hidden layers [25].

For LID applications, we use a single hidden layer MLP
as a feature transformation before SVM classification. The i-
vectors are used as features for the MLP and dimensionality
of the hidden layer is much higher than the input layer. The
MLP is trained with language targets using speech data from
all durations and channels. Once the MLP is trained, the non-
linear transformation from the i-vectors to hidden layer outputs
is alone retained and these features are used for SVM classifia-
tion.

We illustrate the usefulness of MLP-based transformation
with the Stochastic Neighborhood Embedding (SNE) based
data visualization tool [26]. The input i-vectors as well as the
high dimensional MLP hidden layer outputs are projected to
two dimensions and this scatter plot is shown in Figure 3. We
use 200 random utterances from two different languages (Ara-
bic Levantine (alv) and Pashto (pus)) recorded from two differ-
ent channels in the RATS development database (channel E and
F [1]). As seen in Figure 3, the two-dimensional projection of
MLP hidden layer outputs are more discriminative compared to
the i-vectors. This explains why in our LID experiments (Sec-

tion 4.1) systems using MLP-based non-linear features provided
significant improvements (relative improvements of 11%–25%)
compared to the PCA-SVM setup. It is also observed in Figure
3 that utterances from the same channel tend to form clusters
although no channel information was used in the MLP training.

5. Conclusions
In this paper, we discussed the TRAP submission for the RATS
LID Phase II evaluation. The submission was a combination
of 15 systems with diverse SADs, frontends and backend mod-
els. We provided a brief description of each system with em-
phasis on the new system components compared to our Phase I
submission. These new components improved the performance
on the RATS DEV2 test set by more than 50% relative. One
of these components is the simplified and supervised i-vector
modeling framework which not only achieved good results but
also reduced the computational load for FA by a factor of 100.

We also provided an analysis of another new component
namely the MLP-based non-linear projection of i-vectors before
SVM classification. It reduced the EER by 11%–25% relative
compared to the baseline PCA-based features for SVM classi-
fication. The better performance of these MLP-based represen-
tations can be attributed to using the annotation of the training
data in estimating the non-linear projection compared to the un-
supervised learning of the PCA projection.
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