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A robust feature extraction technique for phoneme recognition is proposed which is based on deriv-

ing modulation frequency components from the speech signal. The modulation frequency compo-

nents are computed from syllable-length segments of sub-band temporal envelopes estimated using

frequency domain linear prediction. Although the baseline features provide good performance in

clean conditions, the performance degrades significantly in noisy conditions. In this paper, a tech-

nique for noise compensation is proposed where an estimate of the noise envelope is subtracted from

the noisy speech envelope. The noise compensation technique suppresses the effect of additive noise

in speech. The robustness of the proposed features is further enhanced by the gain normalization

technique. The normalized temporal envelopes are compressed with static (logarithmic) and dynamic

(adaptive loops) compression and are converted into modulation frequency features. These features

are used in an automatic phoneme recognition task. Experiments are performed in mismatched train/

test conditions where the test data are corrupted with various environmental distortions like tele-

phone channel noise, additive noise, and room reverberation. Experiments are also performed on

large amounts of real conversational telephone speech. In these experiments, the proposed features

show substantial improvements in phoneme recognition rates compared to other speech analysis

techniques. Furthermore, the contribution of various processing stages for robust speech signal repre-

sentation is analyzed. VC 2010 Acoustical Society of America. [DOI: 10.1121/1.3504658]

PACS number(s): 43.72.Ne, 43.72.Ar [SSN] Pages: 3769–3780

I. INTRODUCTION

Conventional speech analysis techniques start with esti-

mating the spectral content of relatively short (about 10–

20 ms) segments of the signal (short-term spectrum). Each

estimated vector of spectral energies represents a sample of

the underlying dynamic process in production of speech at a

given time-frame. Most of the information contained in these

acoustic features relate to formants which provide important

cues for recognition of basic speech units. Further, additional

information about the dynamics of the underlying speech

signal is incorporated with these feature vectors using the de-

rivative features. Stacking such estimates of the short-term

spectra in time provides a two-dimensional (time–frequency)

representation of speech that forms the basis for most speech

features (Hermansky, 1990).

An alternate way to describe a speech signal is a sum-

mation of a number of amplitude modulated narrow fre-

quency bands. In this view, every frequency band can be

considered to consist of a carrier signal (fine structure) and

a time-varying envelope (Kumerasan and Rao, 1999). One

can directly estimate trajectories of spectral energies in the

individual frequency sub-bands, each estimated vector then

representing the underlying dynamic process in a given sub-

band. Such estimates, stacked in frequency, also form a two-

dimensional representation of speech (Athineos et al., 2004).

Spectral components of long-term amplitude modula-

tions in individual frequency sub-bands are called modula-

tion spectra. The modulation spectral representations have

been used in the past for predicting speech intelligibility in

reverberant environments (Houtgast et al., 1980). They are

now widely applied in many engineering applications [for

example, audio coding (Vinton and Atlas, 2001), noise

suppression (Falk et al., 2007), etc.]. Feature extraction tech-

niques that are based on modulation spectrum have also

been proposed for automatic speech recognition (ASR)

(Hermansky and Sharma, 1998; Kingsbury et al., 1998).

The importance of various modulation frequency compo-

nents in human phoneme recognition has been reported in the

past (Riesz, 1928). Speech intelligibility experiments have

been studied by presenting speech stimulus with varying

amounts of modulation spectral information (Drullman et al.,
1994). In these experiments, it has been shown that important

information for phoneme perception lies in the 1–16 Hz range

of the modulation frequencies. The recognition of consonants,

especially the stops, suffers more when the temporal modula-

tions below 16 Hz are filtered out. In another study, the inter-

action between the spectral and temporal modulations has

been analyzed by varying the number of sub-bands in speech

analysis (Shannon et al., 1995). Even when the spectral infor-

mation is limited to four sub-bands, the use of temporal ampli-

tude modulations alone provides good human phoneme

recognition. However, in the presence of noise, the number of

spectral channels needed for good vowel recognition increases,

whereas the contribution of temporal modulations remain sim-

ilar in clean and noisy conditions (Xu and Zheng, 2007).
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For machine recognition of phonemes in noisy speech,

there is considerable benefit in using larger temporal context

for feature representation of a single phoneme (Morgan

et al., 1992; Pinto et al., 2008). The techniques that are based

on deriving long-term modulation frequencies do not pre-

serve fine temporal events like onsets and offsets which are

important in separating some phoneme classes. On the other

hand, signal adaptive techniques, which try to represent local

temporal fluctuation, cause strong attenuation of higher mod-

ulation frequencies which makes them less effective even in

clean conditions (Tchorz and Kollmeier, 1999). Further-

more, the performance of most of these feature extraction

techniques degrades significantly in the presence of additive

or convolutive noise (mismatched train/test conditions).

In our previous work (Ganapathy et al., 2009), we have

proposed a combination of static and dynamic modulation

frequency features for phoneme recognition. Here, the input

speech signal is decomposed into a number of critical bands.

In each sub-band, long-term envelopes are extracted using

frequency domain linear prediction (FDLP), which is an

efficient technique for auto-regressive (AR) modeling of

temporal envelopes of a signal (Athineos and Ellis, 2007;

Kumerasan and Rao, 1999). FDLP envelopes are then com-

pressed using a static and a dynamic compression. The static

compression stage is a logarithmic operation and dynamic

compression stage uses adaptive compression loops (Tchorz

and Kollmeier, 1999). The compressed envelopes are trans-

formed into modulation spectral components which are used

as features for a phoneme recognition system.

Although the features proposed in Ganapathy et al.
(2009) perform well in clean conditions, the performance

degrades in noisy environments and mismatched train/test

conditions. This degradation is severe in the presence of

additive noise where the low energy region of the speech sig-

nal gets masked in noise. This causes a mismatch in the rep-

resentation of speech in clean and noisy condition which

results in high error rates.

In this paper, we propose a noise compensation tech-

nique for modulation frequency features based on temporal

envelope subtraction. In each sub-band, an estimate of the

noise envelope is derived from the input noisy speech. This

estimate is subtracted from the noisy speech envelope before

the application of linear prediction in frequency domain. The

noise compensation tries to create an invariance in represen-

tation of speech in clean and noisy conditions.

The noise compensated envelopes are further gain

normalized to suppress the convolutive artifacts in speech

like linear distortions due to frequency characteristics of the

communication channel and reverberations. The gain nor-

malization procedure was previously developed for deriving

short-term spectral features (Thomas et al., 2008). In this

paper, we apply this procedure on long temporal envelopes

to derive static and dynamic modulation frequency features.

Experiments are done on a phoneme recognition using

the hybrid hidden Markov model-artificial neural network

(HMM-ANN) phoneme recognition system (Bourlard and

Morgan, 1994). The test data in these experiments consist of

speech corrupted with variety of real world additive noises

at different signal-to-noise ratios (SNRs), convolutive distor-

tions introduced by different room impulse response func-

tions and multiple telephone channel speech recordings with

different frequency characteristics. In this paper, we show

that the noise compensation technique provides considerable

robustness in additive noise conditions. When this is used

along with gain normalization technique, there is further

improvement in phoneme recognition accuracy in reverber-

ant environments and telephone channel speech recordings

over the other state-of-the-art robust feature extraction tech-

niques. We also illustrate the usefulness of the proposed fea-

tures for phoneme recognition task on large amounts of

conversational telephone speech (CTS) data.

In our previous work (Ganapathy et al., 2009), modula-

tion features were derived from uncompensated envelopes.

The main goal of this paper is to develop a robust representa-

tion of speech in additive noise conditions. Using these tech-

niques, considerable improvements are shown on all types of

additive noise and SNR conditions. Furthermore, these tech-

niques also enhance the robustness in the presence of other

acoustic distortions like reverberation and telephone channel

artifacts. Experiments are done only with distortions which

involve non-speech interference. The usefulness of the pro-

posed techniques for speech interference (like recognition of

overlapped speech and speaker separation) is not addressed

in this paper.

Robust phoneme recognition has a huge impact in wide

range of applications like language identification, large vo-

cabulary continuous speech recognition (LVCSR), keyword-

spotting, and voice activity detection (VAD) (Schwarz,

2008). Most of these systems have a front-end phoneme rec-

ognition followed by further processing stages which use

this phoneme sequence. Hence, almost all these applications

benefit from improved robustness in phoneme recognition.

II. FREQUENCY DOMAIN LINEAR PREDICTION

Typically, AR models have been used in speech/audio

applications for representing the envelope of the power spec-

trum of the signal [time domain linear prediction (TDLP)

(Makhoul, 1975)]. This paper utilizes AR models for obtain-

ing smoothed, minimum phase, and parametric models for

temporal rather than spectral envelopes. The duality between

the time and frequency domains means that AR modeling

can be applied equally well to discrete spectral representa-

tions of the signal instead of time-domain signal samples.

The Hilbert envelope, which is the squared magnitude of

the analytic signal, represents the instantaneous energy of a

signal in the time domain. A discrete time analytic signal can

be obtained by forcing the causality of the discrete Fourier

transform (DFT) and by ensuring the orthogonality of real

and imaginary parts (Marple, 1999). Mathematically, it can

be shown that the autocorrelation of discrete cosine trans-

form (DCT) of the input signal and the discrete time Hilbert

envelope are Fourier transform pairs (Athineos and Ellis,

2007). This means that the application of linear prediction on

the cosine transform of the signal yields an AR model of the

Hilbert envelope of the signal. Thus, a parametric model for

the Hilbert envelopes can be obtained using FDLP (Athineos

and Ellis, 2007; Kumerasan and Rao, 1999).
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Figure 1 shows the block schematic for the implementa-

tion of FDLP technique. The input signal is transformed into

frequency domain using DCT. The full-band DCT is win-

dowed using bark-spaced windows to yield sub-band DCT

components. In each sub-band, the inverse discrete Fourier

transform (IDFT) of the DCT coefficients represents the

discrete time analytic signal (Athineos and Ellis, 2007).

Spectral autocorrelations are derived by the application of

DFT on the squared magnitude of analytic signal. These

autocorrelations are used for linear prediction [similar to

the application of TDLP using time domain autocorrelations

(Makhoul, 1975)]. The output of linear prediction is a set of

AR model parameters which characterize the sub-band Hil-

bert envelopes.

For example, if the signal is sampled at 8 kHz, we get

8000 DCT coefficients for a 1000 ms window of the signal.

These 8000 coefficients are windowed into 15 critical bands

using bark-spaced windows (approximately 1 bark) in the

DCT domain. The IDFT is performed on the sub-band DCT

for 1000 ms signal. Then, spectral autocorrelations are derived

using DFT operation and are used for FDLP. The order of the

linear prediction is one pole per ten sub-band DCT samples.

As the conventional AR models are used effectively on

signals with spectral peaks, the AR models of the temporal

envelope are appropriate for signals with peaky temporal

envelopes (Kumerasan and Rao, 1999). The individual poles

in the resulting polynomial are directly associated with spe-

cific energy maxima in the time domain waveform. For sig-

nals that are expected to consist of a fixed number of distinct

energy peaks in a given time interval, the AR model could

well approximate these perceptually dominant peaks and the

AR fitting procedure removes the finer-scale detail. This sup-

pression of detail is particularly useful in speech recognition

applications, where the goal is to extract the general form of

the signal by means of a parametric model. An illustration of

the all-pole modeling property of the FDLP technique is

shown in Fig. 2, where we plot a portion of sub-band speech

signal (frequency range of 500–700 Hz), its Hilbert envelope

computed from the DFT (Marple, 1999) and the AR model fit

to the Hilbert envelope using FDLP with a model order of 80.

A. Noise compensation in FDLP

When speech signal is corrupted by additive noise, the

signal that reaches the microphone can be written as

x t½ � ¼ s t½ � þ n t½ �; (1)

where x[t] is the discrete representation of the input signal,

s[t] represents the clean speech signal which is corrupted by

noise n[t].

FIG. 1. Block schematic for the FDLP. The steps involved are application of DCT, estimation of spectral autocorrelations, and linear prediction to estimate

the AR model of Hilbert envelope.

FIG. 2. (Color online) Illustration of the all-pole modeling property of FDLP. (a) A portion of the sub-band speech signal (with frequency range of 500–

700 Hz), (b) its Hilbert envelope, and (c) all-pole model obtained using FDLP with model order of 80.
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Assuming that the speech and noise are uncorrelated,

we obtain

PX t;xkð Þ ¼ PS t;xkð Þ þ PN t;xkð Þ; (2)

where PX(t, xk), PS(t, xk), and PN(t, xk) are the short-term

power spectral densities (PSD) at frequency xk of the noisy

speech, clean speech, and noise, respectively.

Conventional feature extraction techniques for ASR

estimate the short-term (10–30 ms) PSD of speech in bark or

mel scale (Hermansky, 1990). Hence, most of the recently

proposed noise robust feature extraction techniques apply

some kind of spectral subtraction in which an estimate of the

noise PSD is subtracted from the noisy speech PSD (ETSI,

2002).

The proposed noise compensation technique for FDLP

is shown in Fig. 3. A VAD operates on the input speech sig-

nal to indicate the presence of non-speech frames. The VAD

is implemented using the same technique proposed in ETSI

(2002). The VAD output is a flag indicating the speech/non-

speech decision for every short-term frame of speech (with a

length of 25 ms and a shift of 10 ms).

As mentioned in Sec. II, long segments of the input

speech signal are transformed to DCT domain where they

are decomposed into sub-band DCT components. The dis-

crete time analytic signal is obtained as the squared magni-

tude IDFT of the DCT signal. We apply short-term noise

subtraction on the analytic signal. This is achieved in two

steps. In the first step, we window the analytic signal into

short-term segments (of length 25 ms with a shift of 10 ms).

The next step is to subtract an estimate of the short-term

noise component from these segments.

Since the noise component is assumed to be additive in

signal domain, we can write

X k½ � ¼ S k½ � þ P k½ �; (3)

where X[k], S[k], and P[k] are the kth DCT coefficient of

noisy speech, clean speech, and noise, respectively. If speech

and noise are uncorrelated, they continue to be uncorrelated

in the DCT domain by virtue of the orthogonality property

of the DCT matrix. Further, the application of squared mag-

nitude IDFT gives (using the assumption of uncorrelated

speech and noise)

AX t½ � ¼ AS t½ � þ AN t½ �; (4)

where AX[t], AS[t], and AN[t] are the short-term analytic signal

representations of the noisy speech, clean speech, and noise,

respectively. The previous equation shows that the effect of

noise can be alleviated if an estimate of AN[t] is subtracted

from the short-term noisy speech analytic signal AX[t].
An estimate of the short-term noise envelope is obtained

by averaging the envelope segments in the non-speech

region (from the beginning and end of speech utterance).

This estimate is subtracted from the short-term envelopes of

speech similar to the spectral subtraction technique (ETSI,

2002). The noise compensated short-term envelopes are syn-

thesized using overlap-add to obtain the long-term sub-band

envelopes. These are converted back to sub-band DCT do-

main and used for FDLP.

Figure 4 shows the effect of the proposed noise compen-

sation technique on sub-band envelopes. The additive noise

present in speech signal modifies the FDLP envelope in such

a way that the dynamic range is reduced. This is illustrated

in Fig. 4(a), where we plot the sub-band FDLP envelopes in

clean and noisy conditions for the same speech utterance.

The effect of noise is more pronounced in the valleys of the

log-FDLP envelopes, where there is substantial mismatch

between clean and noisy speech. When features are derived

FIG. 3. (Color online) Log-FDLP envelopes for a sub-band of clean speech and speech corrupted with babble noise at 10 dB SNR. (a) Without noise compen-

sation and (b) with noise compensation.
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from noisy speech using the uncompensated FDLP enve-

lopes, the performance of the phoneme recognition system

degrades significantly.

Figure 4(b) provides an illustration of the effect of this

noise compensation technique on the sub-band FDLP enve-

lopes for clean and noisy speech. The noise compensation

procedure modifies the clean envelopes in such a way that

the valleys of trajectory are deemphasized. When the com-

pensated value reduces below zero, the corresponding mag-

nitude value is used. Although this method of compensation

affects the information in valleys of clean speech signal, it

reduces the mismatch between FDLP envelopes extracted

from clean and noisy speech. In this view, the proposed

approach operates like an envelope normalization procedure

as opposed to a noise removal technique.

B. Gain normalization in FDLP

In reverberant environments, the speech signal that

reaches the microphone is superimposed with multiple re-

flected versions of the original speech signal. These super-

positions can be modeled by the convolution of the room

impulse response, that accounts for individual reflection

delays, with the original speech signal, i.e.,

r t½ � ¼ s t½ � � h t½ �; (5)

where s[t], h[t], and r[t] denote the original speech signal,

the room impulse response, and the reverberant speech,

respectively.

Let s[t] be decomposed into contiguous frequency bands

denoted as band limited signals sn[t]. Each of these sub-band

signals can be modeled in terms of product of a slowly vary-

ing, positive, envelope function Esn[t] and an instantaneous

phase function psn[t] (Mourjopoulos and Hammond, 1983)

such that

s½t� ¼
XN

n¼1

sn½t� ¼
XN

n¼1

Esn½t� cosðpsn½t�Þ: (6)

Reverberant speech r[t] can similarly be expressed as sum of

band limited signals rn[t] in sub-bands as

r½t� ¼
XN

n¼1

rn½t� ¼
XN

n¼1

Ern½t� cosðprn½t�Þ

’
XN

n¼1

hn½t� � sn½t�

¼
XN

n¼1

Ehn½t� cosðphn½t�Þ � Esn½t� cosðpsn½t�Þ; (7)

where Ern, Esn, and Ehn represent the envelope functions of

the band passed reverberant speech, the original speech, and

the room impulse response; their corresponding phase func-

tions are given by prn[t], psn[t], and phn[t]. For typical room

impulse responses, it has been shown in Mourjopoulos and

Hammond (1983) that the envelope functions are related by

Ern ’
1

2
Ehn � Esn: (8)

If Ern represents the Hilbert envelope of the nth sub-band,

Eq. (8) shows that the Hilbert envelope of the sub-band sig-

nal for the reverberant speech can be approximated as the

convolution of the Hilbert envelope of the clean speech sig-

nal in that sub-band with that of the room impulse response.

The Hilbert envelope and the spectral autocorrelation

function form Fourier transform pairs. Thus, the Hilbert enve-

lope convolution model in Eq. (8) shows that the spectral

autocorrelation function of the reverberant speech is the mul-

tiplication of spectral autocorrelation function of the clean

speech with that of the room impulse response. For the room

impulse response, the spectral autocorrelation function in

sub-bands can be assumed to be slowly varying compared to

that of the speech signal. Thus, normalizing the gain of the

sub-band FDLP envelopes suppresses the multiplicative

effect present in the spectral autocorrelation function of the

reverberant speech (Thomas et al., 2008). In our experiments,

gain normalization is implemented by setting the prediction

gain [gain of inverse linear prediction (LP) filter] to unity.

C. Robustness in telephone channel noise

When speech signal is passed through a telephone chan-

nel, the output signal can be modeled as a combination of

back-ground additive noise and a convolutive noise in the

channel

x½t� ¼ s½t� � h½t� þ n½t�: (9)

In such conditions, the combination of noise compensa-

tion and gain normalization provides suppression of additive

and convolutive distortions. This is illustrated in Fig. 5,

where we plot the log-FDLP envelopes for clean and tele-

phone speech in two conditions: (a) without gain normaliza-

tion and noise compensation and (b) with gain normalization

and noise compensation. This figure shows that the applica-

tion of these techniques reduce the mismatch between the

FDLP envelopes extracted from clean and noisy speech.

Hence, these techniques provide significant robustness to

features derived from FDLP envelopes.

FIG. 4. Noise compensation in FDLP.
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III. FEATURE EXTRACTION

The block schematic for the proposed feature extraction

technique is shown in Fig. 6. Long segments of the speech

signal (full speech utterances which are typically 2–3 s long

for TIMIT sentences) are decomposed into frequency sub-

bands by windowing the DCT. In our experiments, we use a

critical band decomposition (Hermansky and Fousek, 2005).

FDLP is applied on the sub-band DCT components to derive

sub-band temporal envelopes of speech. The whole set of

sub-band temporal envelopes forms a two-dimensional

(time–frequency) representation of the input signal energy.

The sub-band temporal envelopes are then compressed

using a static compression scheme which is a logarithmic

function and a dynamic compression scheme (Dau et al.,
1996). The use of the logarithm is to model the overall non-

linear compression in the auditory system which covers the

huge dynamical range between the hearing threshold and the

uncomfortable loudness level. The adaptive compression is

realized by an adaptation circuit consisting of five consecu-

tive nonlinear adaptation loops (Dau et al., 1996). This is

shown in Fig. 7. Each of these loops consists of a divider

and a low-pass filter with time constants ranging from 5 to

500 ms. The input signal is divided by the output signal of

the low-pass filter in each adaptation loop. Sudden transi-

tions in the sub-band envelope that are very fast compared to

the time constants of the adaptation loops are amplified line-

arly at the output due to the slow changes in the low-pass fil-

ter output, whereas the slowly changing regions of the input

signal are compressed. The dynamic compression stage is

followed by a low-pass filter with a cut-off frequency of

8 Hz (Tchorz and Kollmeier, 1999).

The static and dynamic compression of FDLP envelopes

is illustrated in Fig. 8. Here we plot (a) a portion of sub-band

temporal envelope derived using FDLP, (b) logarithmic

compression of temporal envelope (static compression

scheme), and (c) adaptive compression of the temporal enve-

lope (using the adaptive compression loops).

The architecture of the conventional speech recognizer

is typically set for speech features sampled at 100 Hz (i.e.,

one feature vector every 10 ms). For using our speech repre-

sentation in a conventional recognizer, the compressed tem-

poral envelopes are divided into 200 ms segments with a

shift of 10 ms. DCT of both the static and the dynamic seg-

ments of temporal envelope yields the static and the dynamic

modulation spectrum, respectively.

We use 14 modulation frequency components from

each cosine transform, yielding modulation spectrum in the

FIG. 5. (Color online) Log-FDLP envelopes for a sub-band of clean speech and telephone speech. (a) Without gain normalization and noise compensation,

and (b) with gain normalization and noise compensation.

FIG. 6. Block schematic for the sub-band feature extraction. The steps involved are critical band decomposition, estimation of sub-band envelopes using

FDLP, static and adaptive compression, and conversion to modulation frequency components by the application of cosine transform.
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0–35 Hz region with a resolution of 2.5 Hz. This choice

of modulation frequencies is found from a set of cross-

validation experiments on the TIMIT database. In these

cross-validation experiments, the upper cut-off frequency in

the modulation spectrum is varied from 20 to 45 Hz in steps

of 5 Hz and the frequency resolution is varied from 1.5 to

3 Hz. The clean cross-validation set of TIMIT database is

used for phoneme recognition. In these experiments, the best

phoneme recognition accuracy is obtained for an upper cut-

off frequency of 35 Hz and a resolution of 2.5 Hz in the

modulation spectrum. In all the subsequent experiments, we

use this choice of parameters.

IV. EXPERIMENTS

A. Phoneme recognition task

The phoneme recognition system is based on the

HMM-ANN paradigm (Bourlard and Morgan, 1994). The

multi-layer perceptron (MLP) estimates the posterior proba-

bility of phonemes given the acoustic evidence P(qt ¼ ijxt),

where qt denotes the phoneme index at frame t, xt denotes

the feature vector taken with a window of certain frames.

The relation between the posterior probability P(qt ¼ ijxt)

and the likelihood P(xtjqt ¼ i) is given by the Bayes rule,

pðxtjqt ¼ iÞ
pðxtÞ

¼ Pðqt ¼ ijxtÞ
pðqt ¼ iÞ : (10)

It is shown in Bourlard and Morgan (1994) that the neu-

ral network with sufficient capacity and trained on enough

data estimates the true Bayesian a-posteriori probability. The

scaled likelihood in an HMM state is given by Eq. (10),

where we assume equal prior probability P(qt ¼ i) for each

phoneme i ¼ 1,2 ,…, 39. The state transition matrix is fixed

with equal probabilities for self and next state transitions.

Viterbi algorithm is applied to decode the phoneme sequence.

A three layered MLP is used to estimate the phoneme

posterior probabilities. The network is trained using the

standard back propagation algorithm with cross entropy error

criteria. The learning rate and stopping criterion are con-

trolled by the frame classification rate on the cross-validation

data. In the TIMIT phoneme recognition system, the MLP

consists of 1000 hidden neurons, and 39 output neurons

(with soft max nonlinearity) representing the phoneme

classes. The performance of phoneme recognition is meas-

ured in terms of phoneme accuracy. In the decoding step, all

phonemes are considered equally probable (i.e., there is no

language model deployed). The optimal phoneme insertion

penalty that gives maximum phoneme accuracy on the cross-

validation data (which is a sub-set of the database excluding

the train and the test set) is used for the test data. The parti-

tion of the database into train, test, and cross-validation data

is described below.

B. TIMIT database

Experiments are performed on TIMIT database down-

sampled to 8 kHz. In the TIMIT database, there are two “sa”

dialect sentences spoken by all speakers in the corpus. The

FIG. 8. (Color online) Static and

dynamic compression of the FDLP

envelopes. (a) A portion of sub-band

FDLP envelope, (b) logarithmic com-

pression of the FDLP envelope, and

(c) adaptive compression of the

FDLP envelope.

FIG. 7. Dynamic compression scheme using adaptive compression loops.
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use of these “sa” sentences in training leads to the learning

of certain phoneme contexts. This may result in artificially

high recognition scores (Lee, 1989) and bias the context in-

dependent phoneme recognition experiments. In order to

avoid any such unfair bias for certain phonemes in certain

contexts, we remove the “sa” dialect sentences from the

training and test data (Lee, 1989). The remaining training

data consists of 3000 utterances from 375 speakers, cross-

validation data set consists of 696 utterances from 87 speak-

ers and the test data set consists of 1344 utterances from

168 speakers. The TIMIT database, which is hand-labeled

using 61 labels, is mapped to the standard set of 39 pho-

nemes (Pinto et al., 2008). We do not apply any speaker

based normalization on the input features.

The robustness of the proposed features is tested on

three versions of the test data corresponding to distortions

introduced by additive noise, convolutive noise, and tele-

phone channel. In the case of additive noise conditions, a

noisy version of the test data is created by adding various

types of noise at different SNRs [similar to Aurora 2 data-

base (Pearce and Hirsch, 2000)]. The noise types chosen are

the “Restaurant”, “Babble,” “Subway,” and “Exhibition

Hall” obtained from Hirsch and Finster (2005). These noises

are added at SNRs 0, 5, 10, 15, and 20 dB using the FaNT

tool (Hirsch, 2001). The generation of the noisy version of

the test data is done using the set-up described in Gelbart

(2008). Thus, there are four real noise types and five SNR

yielding 20 versions of the test data each with 1344

utterances.

For phoneme recognition experiments with reverberant

speech, the clean TIMIT test data are convolved with a set of

nine different room responses collected from various sources

(Gelbart and Morgan, 2001; Dhillon, 2002) with spectral colo-

ration (defined as the ratio of the geometric mean to the arith-

metic mean of the spectral magnitudes) ranging from �2.42

to �0.57 dB and reverberation time (T60) ranging from 100

to 500 ms. The use of nine different room responses results in

nine reverberant test sets consisting of 1344 utterances each.

For phoneme recognition experiments in telephone channel,

speech data collected from nine telephone sets in the handset

TIMIT (HTIMIT) database (Reynolds, 1997) are used. For

each of these telephone channels, 842 test utterances, also

having clean recordings in the TIMIT test set, are used.

In all the experiments, the system is trained only on the

training set of TIMIT database, representing clean speech

without the distortions introduced by the additive or convol-

utive noise but tested on the clean TIMIT test set as well as

the noisy versions of the test set in additive, reverberant, and

telephone channel conditions (mismatched train and test

conditions).

C. Results

The baseline experiments use perceptual linear predic-

tion (PLP) features with a context of nine frames (Morgan

et al., 1992; Pinto et al., 2008). The results for the proposed

technique are also compared with those obtained for several

other robust feature extraction techniques namely:

(1) Modulation spectrum based features—Relative spectra

(RASTA) (Hermansky and Morgan, 1994) features with

nine frame context and multi-resolution RASTA

(MRASTA) (Hermansky and Fousek, 2005),

(2) Features proposed for robustness in additive noise—

advanced-ETSI (noise-robust) distributed speech recogni-

tion front-end (ETSI, 2002) and mean-variance auto re-

gressive moving average (MVA) processing (Chen and

Bilmes, 2007) with nine frame context (MVA),

(3) Robust features for reverberant speech recognition—

long-term log spectral subtraction (LTLSS) (Gelbart

and Morgan, 2002) and log-DFT mean normalization

(LDMN) (Avendano and Hermansky, 1997) with nine

frame context.

These techniques are chosen as baseline features as they

are commonly deployed in ASR and phoneme recognition

systems. For the proposed FDLP based modulation fre-

quency features, we use 15 critical bands in the 300–

4000 Hz with an equal band-width (in the bark frequency

scale) of approximately 1 bark. Table I shows the average

phoneme recognition performance for the various feature

extraction techniques on clean speech, speech with additive

noise, reverberant speech, and telephone channel speech. In

TABLE I. Recognition accuracies (%) of individual phonemes for different feature extraction techniques on clean speech, speech with additive noise (average

performance of four noise types at 0, 5, 10, 15, and 20 dB SNRs), reverberant speech (average performance for nine room impulse response functions), and

telephone speech (average performance for nine channel conditions). The best performance for each condition is indicated in bold.

Clean speech

PLP RASTA MRASTA LDMN LTLSS MVA ETSI FDLP

65.4 61.2 62.8 64.8 64.8 61.9 64.0 62.1

Speech with additive noise

PLP RASTA MRASTA LDMN LTLSS MVA ETSI FDLP

28.2 29.4 30.2 36.0 32.5 36.4 41.6 43.9

Reverberant speech

PLP RASTA MRASTA LDMN LTLSS MVA ETSI FDLP

20.3 22.7 22.1 30.0 29.4 29.4 22.7 33.6

Telephone speech

PLP RASTA MRASTA LDMN LTLSS MVA ETSI FDLP

34.3 45.4 48.0 50.1 37.3 49.9 47.7 55.5
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clean conditions, the baseline PLP feature extraction tech-

nique provides the best performance. However, the perform-

ance of the PLP based phoneme recognition system degrades

significantly in all the mismatched conditions. In the case of

additive noise, the ETSI features give good robustness

among the short-term spectral features. For phoneme recog-

nition in reverberant speech and telephone speech, LDMN

and MVA features provide good performance among the

short-term spectral features.

In all the mismatched conditions, the FDLP features

provide significant robustness compared to other feature

extraction techniques. On the average, the relative perform-

ance improvement over the other feature extraction techni-

ques is about 4% for speech in additive noise, 5% for

reverberant speech, and about 11% for telephone speech.

The phoneme recognition performance on the individual

noise types (“Restaurant,” “Babble,” “Subway,” and

“Exhibition Hall”) and SNR conditions (0–20 dB) is shown

in Table II. Since the RASTA technique was mainly pro-

posed for robustness in convolutive distortions, we replace

the RASTA features with the gammatone frequency cepstral

coefficients (GFCC) (Shao et al., 2009) for additive noise

experiments reported in this table. These features are audi-

tory model based and the cepstral coefficients are derived

directly from sub-band energies (instead of log energies).

The features are 29 dimensional and are appended with first

order derivatives (Shao et al., 2009). We also apply a nine

frame context yielding GFCC features of dimension 522.

In the experiments reported in Table II, the ETSI tech-

nique (ETSI, 2002) provides the best baseline performance

in all noise conditions. For almost all noise types and SNR

conditions, the proposed FDLP features provide good

improvements over the best baseline features.

D. Phoneme recognition in CTS

The CTS database consists of 300 h of conversational

speech recorded over a telephone channel at 8 kHz (Hain

et al., 2005). The training data consist of 250 h of speech

from 4538 speakers, cross-validation data set consists of

40 h of speech from 726 speakers and the test data set con-

sists of 10 h from 182 speakers. The CTS data are labeled

using 45 phonemes. The phoneme labels are obtained by

force aligning the word transcriptions to the previously

trained hidden Markov model-Gaussian mixture model

(HMM-GMM) models (Hain et al., 2005).

We use the phoneme recognition system based on

HMM-ANN system (described in Sec. IV A). For the CTS

experiments, the MLP consists of 8 270 hidden neurons, and

45 output neurons (with soft max nonlinearity) representing

the phoneme classes. Table III reports the results for the

phoneme recognition experiments on CTS database. The

proposed modulation features result in improved phoneme

TABLE II. Phoneme recognition accuracies (%) for different feature extraction techniques for four noise types (“Restaurant,” “Babble,” “Subway,” and

“Exhibition Hall”) at 0, 5, 10, 15, and 20 dB SNRs. The best performance for each condition is indicated in bold.

SNR (dB) PLP GFCC MRASTA LDMN LTLSS MVA ETSI FDLP

Restaurant noise

0 13.2 12.5 7.8 19.8 14.4 18.8 23.2 23.0

5 18.1 24.2 17.4 25.8 21.1 26.2 31.2 32.0

10 25.7 36.6 28.5 33.6 30.1 35.0 40.5 43.4

15 35.1 46.0 39.1 41.9 40.8 43.6 48.3 52.0

20 45.4 51.9 47.6 49.2 51.9 50.4 54.3 58.1

Babble noise

0 12.2 10.5 6.0 18.8 13.9 16.1 20.8 22.4

5 16.3 21.9 15.2 24.2 19.6 25.1 29.5 31.3

10 23.4 34.7 26.5 31.8 28.2 34.4 39.0 43.2

15 32.7 45.6 37.6 40.8 39.2 43.1 47.9 53.0

20 43.8 52.2 47.5 49.2 51.3 50.3 54.6 58.7

Subway noise

0 16.6 18.2 19.9 28.1 20.3 27.5 32.6 34.5

5 23.0 31.3 30.3 35.3 27.4 35.4 41.3 42.6

10 31.0 42.6 38.4 42.2 35.8 42.5 48.5 50.6

15 39.6 49.5 45.3 48.8 43.7 47.9 54.3 56.2

20 48.3 53.6 50.8 54.7 51.1 52.5 58.6 59.9

Exhibition hall noise

0 14.7 9.2 8.6 20.9 17.3 20.5 24.4 25.4

5 19.7 21.1 18.9 27.1 23.2 28.0 33.1 34.7

10 26.6 34.1 29.7 34.5 31.0 36.3 42.0 45.0

15 34.8 45.1 39.9 43.0 40.3 43.9 50.3 53.5

20 44.0 52.0 48.5 50.6 50.3 50.4 55.5 58.7

TABLE III. Phoneme recognition accuracies (%) for different feature extrac-

tion techniques on CTS database. The best performance is indicated in bold.

PLP RASTA MRASTA ETSI FDLP

52.3 52.8 52.2 54.0 56.6
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recognition rate compared to other feature extraction techni-

ques (a relative improvement of 6%).

V. RELATIVE CONTRIBUTION OF VARIOUS
PROCESSING STAGES

The previous section showed that the proposed feature

extraction provides promising improvements in various types

of distortions. In this section, we analyze the contribution of

the various processing stages of the proposed feature extrac-

tion technique for robust phoneme recognition. This is done

by a set of phoneme recognition experiments on the TIMIT

database with various modifications of the proposed tech-

nique. As before, the system is trained only on clean TIMIT

training data, while the test data consists of clean speech, one

condition of additive noise (Babble noise at 10 dB SNR),

reverberant speech from one room response (with a reverber-

ation time of 300 ms), and telephone channel speech from

one set in HTIMIT database.

A. Modifications

The main processing stages in the proposed technique

are the FDLP processing, gain normalization, and noise

compensation and the use of two-stage compression scheme.

Here, we modify these processing stages in various ways to

determine their relative importance in robust phoneme rec-

ognition. The various modifications (V1–V7) with their

meanings are listed in Table IV.

In the first modification (V1), the envelope estimation is

done using with trajectories of short-term critical band ener-

gies instead of the FDLP processing. This is similar to the

representation of speech used in MRASTA (Hermansky and

Fousek, 2005). Speech signal in short analysis windows (of

length 25 ms) is transformed into spectral domain and the

spectral content in individual critical band is integrated. The

remaining processing stages described in Sec. III are applied

on these critical band energies.

In the second modification (V2), all steps described in

Sec. III are performed except for the linear prediction step.

This would mean that the features are derived from sub-band

Hilbert envelopes directly without the use of FDLP.

In modification V3, we implement the FDLP technique

without gain normalization and noise compensation. Modifi-

cation V4 implements our previous work (Ganapathy et al.,
2009) with the gain normalization procedure (Thomas et al.,

2008). In V4, we omit the step of noise compensation and

for V5 we omit the gain normalization step in the proposed

feature extraction method. These modifications are intended

to analyze the contribution of these steps in realizing robust

representations of speech corrupted with additive and con-

volutive distortions.

In modifications V5 and V6, we analyze the use of two-

stage compression mechanism. This is done by using only

one type of compression (either static V5 or dynamic V6) in

the proposed feature extraction technique.

B. Results

The phoneme recognition accuracies obtained for the

various modifications are reported in Table V. The last row

of the table shows the result for the proposed feature extrac-

tion technique without any modification (Sec. III). The com-

parison of V1 with V2 shows that the Hilbert envelopes form

an improved representation compared to short-term critical

band energy trajectories. The modification V2 improves over

V1 in clean and noisy conditions. The improvement in per-

formance for the proposed feature extraction over V2 shows

that the application of FDLP for deriving AR models of Hil-

bert envelopes improves the overall performance in clean and

noisy conditions.

The performance of V3 forms the baseline for the pro-

posed noise compensation technique. Although, V3 provides

good performance in clean conditions, its performance

degrades considerably in all noise conditions. The noise

compensation technique provides good robustness in addi-

tive noise conditions (V5). When this is applied along with

the gain normalization procedure, the resulting features

(Prop.) improve significantly on all types of distortions. The

application of these techniques results in a drop in perform-

ance for clean speech. The gain of the sub-band envelope

can be a useful cue for phoneme recognition of clean speech

(as indicated by a moderate drop in performance in clean

conditions for V3 and V4). Furthermore, noise compensation

technique tends to deemphasize the valleys of the envelope

trajectory [Fig. 4(b)]. As the valleys of the envelope contain

information in discriminating certain phoneme classes (like

nasals), there is a reduction in the recognition accuracy in

TABLE IV. Various modifications to the proposed feature extraction and

their meanings.

Name Meaning

V1 Short-term critical band energies

V2 Hilbert envelopes without FDLP

V3 Without gain normalization and noise compensation

V4 Only gain normalization

V5 Only noise compensation

V6 Only static compression

V7 Only adaptive compression

Prop. Proposed technique using static and adaptive compression

of gain normalized and noise compensated FDLP envelopes

TABLE V. Phoneme recognition accuracies (%) for various modifications

to the proposed feature extraction in clean speech, with one condition of

additive noise (Babble noise at 10 dB SNR), reverberant speech (with a

reverberation time of 300 ms), and one condition of telephone channel

speech. The phoneme recognition results without any modification to the

proposed technique are shown at the bottom.

Feature

extraction Clean

Additive

noise

Reverberant

speech

Telephone

channel speech

V1 56.9 38.2 37.9 50.8

V2 60.9 41.5 36.5 52.7

V3 66.5 28.6 28.3 43.0

V4 65.0 33.9 31.9 51.4

V5 62.7 38.7 30.8 46.6

V6 61.1 40.7 34.0 51.6

V7 59.0 38.0 34.2 49.7

Prop. 62.1 43.2 36.9 55.5
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clean conditions (comparison of V3 and V5). However, the

improvements obtained for all types of mismatched condi-

tions justify the employment of these normalization techni-

ques in the proposed features.

The proposed approach (Prop.) also improves over V4

[which forms a combination of our past approaches (Ganapa-

thy et al., 2009; Thomas et al., 2008)]. The improvement is

consistent on all types of noise conditions with substantial

improvements on additive noise. This improvement is attrib-

uted to the noise compensation procedure. Application of

log compression or adaptive compression alone is worser

than the joint application of these two compression schemes

(V6–V7). Although this was reported in Ganapathy et al.
(2009) for clean conditions, we find here that the joint appli-

cation of static and dynamic compression schemes improved

the performance in noisy conditions as well. The static com-

pression scheme provides good robustness for fricatives and

nasals (which is due to modeling property of the signal peaks

in static compression), whereas the dynamic compression

scheme provides good robustness for plosives and affricates

(where the fine temporal fluctuations like onsets and offsets

carry the important phoneme classification information).

Hence, the joint application of these feature streams results

in considerable improvement in performance for most of the

phonetic classes.

VI. SUMMARY

We have proposed a robust feature extraction technique

based on modulation spectrum of speech derived from nor-

malized sub-band temporal envelopes. The main findings in

this work can be summarized as follows:

(1) The application of linear prediction in frequency domain

forms an efficient method for deriving sub-band

modulations.

(2) The two-stage compression scheme of deriving static

and dynamic modulation spectrum results in good pho-

neme recognition for all phoneme classes even in the

presence of noise.

(3) The noise compensation technique provides a way to

derive robust representation of speech in almost all types

of noise and SNR conditions.

(4) The robustness of the proposed features is further enhan-

ced by the application of gain normalization technique.

(5) These envelope normalization techniques provide sub-

stantial improvements in noisy conditions over the previ-

ous work (Ganapathy et al., 2009).
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