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Abstract
We present a feature extraction technique based on static
and dynamic modulation spectrum derived from long-term en-
velopes in sub-bands. Estimation of the sub-band temporal
envelopes is done using Frequency Domain Linear Prediction
(FDLP). These sub-band envelopes are compressed with a static
(logarithmic) and dynamic (adaptive loops) compression. The
compressed sub-band envelopes are transformed into modula-
tion spectral components which are used as features for speech
recognition. Experiments are performed on a phoneme recogni-
tion task using a hybrid HMM-ANN phoneme recognition sys-
tem and an ASR task using the TANDEM speech recognition
system. The proposed features provide a relative improvements
of 3.8 % and11.5 % in phoneme recognition accuracies for
TIMIT and conversation telephone speech (CTS) respectively.
Further, these improvements are found to be consistent for ASR
tasks on OGI-Digits database (relative improvement of13.5 %).
Index Terms: Frequency Domain Linear Prediction (FDLP),
Modulation spectrum, Adaptive compression, Feature extrac-
tion for speech recognition.

1. Introduction
Conventionally, acoustic features for ASR are extracted by esti-
mating the spectral content of relatively short (about10-30 ms)
segments of speech (for example [1]). Each estimated vector
of spectral components represents a sample of the underlying
dynamic speech production process. Stacking these estimates
in time provides a two-dimensional (time-frequency) represen-
tation. Most of the information contained in these acoustic fea-
tures relate to formant information in speech.

On the other hand, it has been shown that important infor-
mation for speech perception lies in the1 − 16 Hz range of
the modulation frequencies [2]. Even when the spectral infor-
mation is limited, the use of temporal amplitude modulations
alone provides good human speech recognition [3]. These stud-
ies suggest that amplitude modulations could provide alterna-
tive feature representations for ASR.

Spectral components of long-term amplitude modulations
in individual frequency sub-bands are called modulation spec-
tra. The modulation spectral representations have been used in
the past for predicting speech intelligibility in reverberant en-
vironments [4]. They are now widely applied in many engi-
neering applications (for example audio coding [5], noise sup-
pression [6], etc). Feature extraction techniques based on mod-
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ulation spectrum have also been proposed for ASR (for exam-
ple [7, 8]).

For phoneme recognition task, the techniques that are based
on deriving long-term modulation frequencies may not preserve
fine temporal events like onsets and offsets. On the other hand,
signal adaptive techniques which try to represent local tempo-
ral fluctuation, cause strong attenuation of higher modulation
frequencies [10].

In our previous work [11], we have shown that a combi-
nation of static and dynamic modulation spectral features per-
form well in mismatched train and test conditions. The input
speech signal is decomposed into a number of critical bands.
In each sub-band, long term envelopes are extracted using Fre-
quency Domain Linear Prediction (FDLP). FDLP envelopes are
compressed using a static and a dynamic compression. The
static compression stage is a logarithmic operation and dynamic
compression stage uses adaptive compression loops [10]. The
compressed envelopes are transformed into modulation spectral
components which are used as features for a phoneme recogni-
tion system.

In this paper, we extend these modulation frequency fea-
tures for phoneme recognition with matched conditions in clean
and conversational telephone speech (CTS). We use a hybrid
Hidden Markov Model - Artificial Neural Network (HMM-
ANN) phoneme recognition system [12]. The proposed fea-
tures provide considerable improvements in phoneme recogni-
tion accuracies for TIMIT and conversation telephone speech
(CTS) databases. We also show the application of the proposed
features for speech recognition tasks using the TANDEM sys-
tem [9]. The improvements obtained in phoneme recognition
are consistent for digit recognition tasks.

The rest of the paper is organized as follows. In Sec. 2, we
describe the FDLP technique for the estimation of the tempo-
ral envelopes using linear prediction in spectral domain. The
extraction of modulation frequency features from the temporal
envelopes is given in Sec. 3. Experiments performed with the
modulation frequency features for phoneme and word recogni-
tion tasks are reported in Sec. 4. In Sec. 5, we conclude with a
discussion of the proposed features.

2. Frequency Domain Linear Prediction
The Hilbert envelope, which is the squared magnitude of the
analytic signal, represents the instantaneous energy of a signal
in the time domain. Hilbert envelopes are typically computed
using the Hilbert transform operator in the time domain or by
exploiting the causality of Discrete Fourier Transforms (DFT)
[15]. For feature extraction in speech recognition, we use a
parametric model of the Hilbert envelopes.

FDLP is an efficient technique for auto regressive (AR)
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Figure 2: Block schematic for the modulation spectrum based feature extraction technique.
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Figure 1: Static and dynamic compression of the temporal en-
velopes: (a) a portion of speech signal, (b) the temporal enve-
lope extracted using the Hilbert transform [15], (c) the FDLP
envelope, which is an all-pole approximation to (b) estimated
using FDLP, (d) static compression of the FDLP envelope and
(e) dynamic compression of the FDLP envelope.

modelling of temporal envelopes of a signal [14]. It represents a
dual technique to the conventional Time Domain Linear Predic-
tion (TDLP). In the case of TDLP, the AR model approximates
the power spectrum of the input signal, whereas FDLP fits an all
pole model to the Hilbert envelope. Fig. 1 shows the AR mod-
elling property of FDLP. It shows (a) a portion of speech signal,
(b) its Hilbert envelope computed using the Fourier transform
technique [15] and (c) an all pole approximation for the Hilbert
Envelope using FDLP.

3. Feature extraction

The block schematic for the modulation spectrum based feature
extraction technique is shown in Fig. 2. Long segments of the
speech signal (hundreds of milliseconds) are decomposed into
frequency sub-bands by windowing the discrete cosine trans-
form (DCT). In our experiments, we use a critical band decom-
position. Using FDLP, an all-pole estimate of the temporal en-
velope in each sub-band is obtained. The whole set of sub-band
temporal envelopes forms a two dimensional (time-frequency)
representation of the input signal energy. The sub-band tempo-
ral envelopes are then compressed using a static compression
which is a logarithmic function and a dynamic compression
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Figure 3: Dynamic compression of the sub-band FDLP en-
velopes using adaptive compression loops [10].

scheme [10]. The dynamic compression, shown in Fig. 3, is
realized by an adaptation circuit consisting of five consecutive
nonlinear adaptation loops [10]. Each of these loops consists
of a divider and a low-pass filter with time constants ranging
from 5 ms to1000 ms. The input signal is divided by the out-
put signal of the low-pass filter in each adaptation loop. Sudden
transitions in the sub-band envelope that are fast compared to
the time constants of the adaptation loops are amplified linearly
at the output, whereas the slowly changing regions of the input
signal are suppressed. In this way, changes in the input signal
like onsets and offsets are emphasized in the dynamic compres-
sion stage. This is also illustrated in Fig. 1, where we show the
static and dynamic compression of the FDLP envelopes. The
dynamic compression stage is followed by a low pass filter [10].

Since speech recognition system require speech features
sampled at 100 Hz (i.e one feature vector every 10 ms), the
compressed temporal envelopes are divided into200 ms seg-
ments with a shift of10 ms. The temporal envelopes from the
two compression streams are then converted into modulation
spectral components using DCT, corresponding to the static and
the dynamic modulation spectrum. We use14 modulation fre-
quency components from each of these streams, yielding mod-
ulation spectrum in the0−35 Hz range with a resolution of2.5
Hz. This choice of modulation frequencies is obtained using
phoneme recognition experiments on the cross validation data
in TIMIT database.

4. Experiments and results

4.1. Phoneme recognition in clean speech

The phoneme recognition system is based on the Hidden
Markov Model - Artificial Neural Network (HMM-ANN)
paradigm [12]. The MLP estimates the posterior probability
of phonemes given the acoustic evidenceP (qt = i|xt), where
qt denotes the phoneme index at framet, xt denotes the feature
vector taken with a window of certain frames. The relation be-
tween the posterior probabilityP (qt = i|xt) and the likelihood



Table 1: Phoneme Recognition Accuracies (%) for different fea-
ture extraction techniques on TIMIT database.

PLP MSG MRASTA FDLP
68.4 63.1 65.5 69.6

Table 2: Recognition Accuracies (%) of broad phonetic classes
obtained from confusion matrix analysis on TIMIT database

Class PLP MSG MRASTA FDLP
Vowel 92.8 91.7 91.9 92.7
Plosive 84.7 81.3 84.4 85.5

Fricative 87.3 82.1 85.2 88.2
Semi Vowel 76.9 74.4 74.8 77.6

Nasal 85.9 81.6 83.0 86.2
Avg. 85.5 82.2 83.9 86.0

P (xt|qt = i) is given by the Bayes rule,

p(xt|qt = i)

p(xt)
=

P (qt = i|xt)

P (qt = i)
. (1)

It is shown in [12] that the neural network with sufficient ca-
pacity and trained on enough data estimates the true Bayesian
a-posteriori probability. The scaled likelihood in an HMM state
is given by Eq. 1, where we assume equal prior probability
P (qt = i) for each phonemei = 1, 2...39. The state transition
matrix is fixed with equal probabilities for self and next state
transitions. Viterbi algorithm is applied to decode the phoneme
sequence.

Experiments are performed on TIMIT database containing
speech sampled at16 kHz. The ‘sa’ dialect sentences are ex-
cluded in the experiments. The training data consists of3000
utterances from375 speakers, cross-validation data set consists
of 696 utterances from87 speakers and the test data set consists
of 1344 utterances from168 speakers. The TIMIT database,
which is hand-labeled using61 labels is mapped to the standard
set of39 phonemes [16].

As explained in Sec. 3, static and dynamic modulation fre-
quency features are extracted for every frame. A three layered
multi-layer perceptron (MLP) is used to estimate the phoneme
posterior probabilities. The network is trained using the stan-
dard back propagation algorithm with cross entropy error cri-
teria. The learning rate and stopping criterion are controlled
by the frame classification rate on the cross validation data. In
our system, the MLP consists of1000 hidden neurons, and
39 output neurons (with soft max nonlinearity) representing
the phoneme classes. The performance of phoneme recogni-
tion is measured in terms of phoneme accuracy. In the de-
coding step, all phonemes are considered equally probable (no
language model). The optimal phoneme insertion penalty that
gives maximum phoneme accuracy on the cross-validation data
is used for the test data.

Table 1 summarizes the results for the experiments with
FDLP based modulation features. In these experiments, the
proposed features are compared with other feature extraction
techniques namely PLP features with a9 frame context [16],
and other modulation spectrum based features like MRASTA
features [17] and modulation spectrogram (MSG) features [18].
The proposed feature extraction technique provides relative im-
provement of3.8 % compared to the PLP features. We also re-
port the results for recognition of broad phonetic classes using

Table 3: Phoneme Recognition Accuracies (%) for different fea-
ture extraction techniques on CTS database.

PLP RASTA MRASTA ETSI FDLP
52.3 52.8 52.2 54.0 59.3

Table 4: Recognition Accuracies (%) of broad phonetic classes
obtained from confusion matrix analysis on CTS database

Class PLP RASTA MRASTA ETSI FDLP
Vowel 70.5 71.0 69.4 72.2 75.3
Plosive 82.7 84.3 83.6 83.9 85.4

Fricative 71.5 72.4 72.1 72.6 75.4
Semi Vowel 71.3 73.8 73.0 74.8 77.9

Nasal 65.5 66.0 65.8 66.2 69.4
Avg. 72.3 73.5 72.8 73.9 76.7

confusion matrix analysis (Table 2). The proposed technique of
combining static and dynamic modulation spectrum provides
good performances for most of the broad phonetic classes.

4.2. Phoneme recognition in CTS

The CTS database consists of300 hours of conversational
speech recorded over a telephone channel at8 kHz [19]. The
training data consists of250 hours of speech from4538 speak-
ers, cross-validation data set consists of40 hours of speech from
726 speakers and the test data set consists of10 hours from182
speakers. It is labeled using45 phonemes. The phoneme la-
bels are obtained by force aligning the word transcriptions to
the previously trained HMM/GMM models [19].

We use the phoneme recognition system based on HMM-
ANN system (described in Sec. 4.1). Here, the MLP consists
of 8270 hidden neurons, and45 output neurons (with soft max
nonlinearity) representing the phoneme classes. Table 3 reports
the results for the phoneme recognition experiments on CTS
database. We compare the proposed FDLP features with other
features like PLP, RASTA [20], MRASTA and Advanced-ETSI
(noise-robust) distributed speech recognition front-end [21].
The proposed modulation features result in improved phoneme
recognition rate for all the broad phonetic classes (Table 4) and
hence, provide significant improvements in individual phoneme
recognition rate. We obtain a relative improvement of11.5 %
compared to the ETSI feature extraction technique.

4.3. Word Recognition on OGI-Digits

Experiments are performed with small vocabulary continuous
digit recognition task (OGI-Digits database). The vocabulary
consists of eleven (0 − 9 digits and ”Oh”) digits in28 different
pronunciations. Features extracted from speech for every10 ms
are used to train an ANN with1800 hidden nodes. The ANN
estimates posterior probabilities of29 English phonemes [17].
The training data consists of the whole Stories database plus the
training part of the Numbers95 database. Around10 % of the
data is used for cross-validation. Log and Karhunen Loeve (KL)
transforms are applied on these features. This is done in order
to convert the phoneme posterior probabilities into features ap-
propriate for a conventional HMM recognition system [9]. The
HMM based recognizer, trained on the training part of the OGI-
Digits database, is used for classification.

The performance of the proposed features is compared with



Table 5: Word Recognition Accuracies (%) for different feature
extraction techniques on OGI-Digits database.

PLP-D-A PLP MSG MRASTA FDLP
95.9 96.2 96.0 96.3 96.8

other features like PLP, MRASTA and MSG features (Table 5).
We also report the base-line performance with39 dimensional
PLP features (PLP-D-A) on the HMM-GMM system (without
the use of TANDEM setup) The proposed features provide a rel-
ative improvement of about13.5 % compared to the MRASTA
features.

5. Conclusions
We have presented a feature extraction technique based on de-
riving static and dynamic modulation spectrum from speech sig-
nal. The input speech signal is analyzed in critical bands and
sub-band temporal envelopes are estimated using FDLP. These
envelopes are compressed using a static and dynamic compres-
sion scheme. The compressed envelopes are transformed using
DCT to obtain static and dynamic modulation frequency fea-
tures. In the presence of telephone noise, these features provide
significant robustness for all the broad phonetic classes. These
features are currently investigated for speech recognition in ad-
ditive noise.
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