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Abstract

We present the IBM speech activity detection system that was
fielded in the phase 2 evaluation of the DARPA RATS (robust
automatic transcription of speech) program. Key ingredients of
the system are: multi-pass HMM Viterbi segmentation, fusion
of multiple feature streams, file-based and speech-based nor-
malization schemes, the use of regular and convolutional deep
neural networks, and model fusion through frame-level score
combination of channel-dependent models. Using these tech-
niques, our system achieved an excellent performance during
the RATS phase 2 evaluation.
Index Terms: speech activity detection, robust speech recogni-
tion

1. Introduction
The goal of the DARPA RATS program is to develop tech-
niques for performing speech activity detection (SAD), lan-
guage identification (LID), speaker identification (SID) and
keyword search (KWS) in multiple languages on degraded au-
dio signals transmitted over communication channels that are
extremely noisy and/or highly distorted. The speech activity
detection task deals with determining whether a signal con-
tains speech or is just comprised of background noise or mu-
sic. The segmented speech regions can be send downstream to
the other components (LID, SID and KWS) for further process-
ing as done in [1] or can be directly used by analysts. Given
its importance in the context of this program, SAD is evaluated
in isolation of the other components. The performance metric
used in this paper is the equal error rate which is defined as the
point where the probability of miss (PMiss) coincides with the
probability of false accept (PFA). These two quantities are de-
fined as the duration of missed speech over the duration of total
speech and the duration of false accept speech over the duration
of total non-speech, respectively.

The paper is organized as follows: in section 2 we describe
the system architecture, feature extraction, normalization and
segmentation models; in section 3 we present some experimen-
tal results, and in section 4 we summarize our findings and pro-
pose future directions.

2. System overview
The operation of our system may be broken down into three
stages depicted in Figure 1: (1) channel detection with 8
channel-dependent Gaussian mixture models trained with max-
imum likelihood on a fusion of PLP and voicing features
(see 2.3.1), (2) speech/non-speech HMM Viterbi segmentation
using channel-dependent deep neural networks (DNNs) trained
on a fusion of PLP, voicing and rate-scale features with file-
based mean and variance normalization (see 2.3.3) and (3)
speech/non-speech HMM Viterbi segmentation using a frame-

level score combination of three sets of channel-dependent neu-
ral networks: (i) the models from (2), (ii) DNNs trained on a
fusion of PLP, voicing and FDLP features with speech-based
mean and variance normalization (see 2.3.2) and (iii) deep con-
volutional neural nets (CNNs) trained on log-mel spectra with
speech-based mean and variance normalization (see 2.3.4). The
speech segments needed for speech-based normalization are hy-
pothesised in pass (2).
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Figure 1: System diagram.

2.1. HMM Viterbi segmentation

We propose to treat the segmentation problem as a simple ASR
decoding problem with a three word vocabulary (S, NS, NT)
similar to [2]. The HMM topology used for Viterbi decoding
is shown in Figure 2. All 5 states for a given “word” share
the same output distribution. Analogous to the LM score, the
segment insertion penalty controls the number (and duration)
of the segments. The tradeoff between missed speech and in-
serted speech is controled by adding a fixed threshold to the S
scores for every frame. The frame-level scores are scaled by an
acoustic weight of 0.03 for all the experiments. Following the
decoding, the boundaries of the hypothesized speech segments
are extended by an additional 0.1 seconds to capture low energy
speech as suggested in [3].
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Figure 2: HMM topology for Viterbi segmentation.

2.2. Training and test data

The audio data consists of recordings from existing speech cor-
pora such as the Fisher English and Arabic Levantine conver-
sational telephone speech as well as new recordings that were
specifically collected for the RATS program (telephone conver-
sations in Arabic Levantine, Pashto and Urdu). These record-
ings were transmitted through 8 different communication chan-
nels denoted by the letters A through H. For the purpose of
SAD, the annotations consist of time-marked regions that are la-
beled either as speech (S), non-speech (NS) or non-transmission
(NT). The annotations were created by mapping the labels and
time marks obtained by an automatic segmentation of the orig-
inal (i.e. non-retransmitted) files. Because of this automatic
annotation scheme, there is a staggering amount of training and
test data available. The training data consists of 2034 hours of
audio and was distributed to the RATS participants by the Lin-
guistic Data Consortium (LDC) in three incremental releases.
For faster experimental turnaround, we also subsampled the
training data at the segment level by a factor of 10. We report
results on the official DEV1 and DEV2 testsets which contain
11 hours and 20 hours of audio, respectively.

2.3. Feature extraction

2.3.1. PLP and voicing features

The first feature set consists of 13-dimensional PLP cepstra
extracted every 10ms within a 25ms sliding window. Simi-
lar to [3], the cepstra are normalized to zero mean and unit
variance using either audio file-based statistics or speech-only
based statistics depending on the models. Additionally, we
apply ARMA-filtering [4] for each dimension within a tem-
poral window of ±20 frames. We found this to be slightly
better than likelihood averaging as proposed in [3]. To each
normalized PLP frame we append a 1-dimensional probability
of voicing feature [5] yielding a 14-dimensional frame. Ev-
ery 17 consecutive PLP+voicing frames are spliced together
and projected down to 40 dimensions using linear discrimi-
nant analysis (LDA). As noted in [3], standard LDA for a three
class (S,NS,NT) problem can only find two dimensions be-
cause of the rank of the between-class covariance matrix. Our
workaround was to use a Gaussian-level LDA where we train 32
Gaussians per class and declare the Gaussians as LDA classes.
This has the effect of splitting each class into several subclasses
and results in more accurate decision boundary modeling.

2.3.2. FDLP features

Frequency domain linear prediction (FDLP) is a technique for
autoregressive modeling of the Hilbert envelopes of the sig-

nal [6]. This is achieved by the application of linear prediction
on the discrete cosine transform (DCT). The FDLP technique
is used for feature extraction of speech by windowing the DCT
of a long-term segment (1000 ms). This is followed by the lin-
ear prediction of sub-band DCT components to yield temporal
envelopes in each band [7]. The sub-band envelopes are inte-
grated in short-term windows (25 ms with a shift of 10 ms) to
derive a spectrographic representation of the speech signal and
the cepstral transformation is applied to derive 13 dimensional
features. Similar to PLP processing, the FDLP cepstra are nor-
malized to zero mean and unit variance using speech-only based
statistics and the same ARMA filtering is applied. FDLP frames
within a ±8 frames context window are spliced together and
projected down to 40 dimensions by means of a Gaussian-level
LDA transform.

2.3.3. Rate-scale features

Inspired by [3], a feature extraction technique is developed
based on spectro-temporal modulation filtering of the auditory
spectrogram [8]. The two dimensional spectrographic represen-
tations are derived by emulating various processing stages in the
periphery of the human auditory system. The auditory spectro-
gram is then transformed to modulation domain using Fourier
transforms along the spectral and temporal axis and modula-
tion filtering is applied to extract key dynamics in the scale and
rate dimensions respectively [9]. The modulation filters used in
this feature extraction scheme are broad enough to cover a wide
range of dynamics ( 0-2 cycles per octave in the scale dimension
and 0.25-25 Hz in the rate dimension). Cepstral transformation
is applied on the filtered auditory spectrograms to obtain 13 di-
mensional features. Similar to PLP processing, the rate-scale
cepstra are normalized to zero mean and unit variance using au-
dio file-based statistics and the same ARMA filtering is applied.
Rate-scale frames within a ±8 frames context window are con-
catenated and projected down to 40 dimensions by means of a
Gaussian-level LDA transform.

2.3.4. Log-mel spectral features

We also extracted log-mel spectra which have the property that
neighboring dimensions in time and frequency are highly corre-
lated. This locality property is important for training convolu-
tional neural nets. We opted for a 40-dimensional Mel filterbank
spanning the entire 0-8Khz frequency range. The log-energies
are normalized to zero mean and unit variance using speech-
only based statistics.

2.4. Acoustic modeling

2.4.1. GMMs for channel detection

Channel information is not provided to the SAD system dur-
ing testing and must be inferred. Note that the channel set is
closed i.e. the same eight channels are present during train-
ing and testing. Channel detection is necessary in order to use
channel-dependent modeling. Our approach to channel detec-
tion was to train 8 channel-dependent GMMs with 3072 diago-
nal covariance Gaussians each. The Gaussians were estimated
using maximum likelihood on 40-dimensional PLP and voicing
features described in 2.3.1. All Gaussians are scored for ev-
ery frame and the GMM with the highest total likelihood deter-
mines the channel. This approach has 100% channel detection
accuracy on the two official testsets (DEV1 and DEV2).



Model DEV1 DEV2
GMM 1.99 3.26
NN 1 hidden 1.79 2.59
NN 2 hidden 1.68 2.62

Table 1: Equal error rates (%) on DEV1 and DEV2 for GMMs
and neural networks trained on 1/10th of the data in the same
feature space (PLP+voicing).

2.4.2. Deep neural networks

Inspired by the recent success of deep neural networks for gen-
eral ASR [10], we experimented with such models for segmen-
tation. The methodology for training the nets is as follows. We
fully train a network with N hidden layers (with 1024 units)
which is then used to initialize a network with N + 1 hidden
layers which in turn is also fully trained. The training step size
is annealed (i.e. halved) whenever the cross-entropy criterion
decreases on some held-out data (typically 1/10th of the train-
ing data). It usually takes around 30 passes (epochs) through
the training data for the training to converge.

2.4.3. Convolutional neural networks

We also experimented with convolutional neural networks
(CNNs) [11] which are designed to handle distortions in the
frequency domain. The network structure is as follows. The
input features are 40-dimensional log-mel spectra (see 2.3.4)
augmented with first and second order derivatives resulting in
3 blocks. 3 sliding windows of size 9×9 cover an input con-
text of 11 frames for each block. At the frequency level, we get
40 − 9 + 1 = 32 positions. Accounting for the ∆ and ∆∆

features, we get 3 × 32 = 96 windows, and each window has
3 × 9 × 9 = 243 features. The first hidden layer performs
maximum pooling in frequency. The second hidden layer is
also convolutional and uses a sliding window over the previous
layer. More details about this architecture and training can be
found in [12].

3. Experiments and results
In this section we describe the various experiments that were
performed and their impact on the segmentation performance.
More concretely, we discuss the benefit of using neural net-
works over GMMs, the effect of feature fusion, the effect of
using more training data, and the effect of model combination
on system performance.

3.1. Neural networks versus GMMs

In this experiment, we compare channel-dependent GMMs with
1024 40-dimensional Gaussians/class with channel-dependent
neural networks with one and two hidden layers. Both sets of
models are trained on 1/10th of the data on 40-dimensional PLP
and voicing features as described in 2.3.1. The neural networks
use 40-dimensional features augmented with single, double and
triple deltas leading to an input layer of size 40×4 = 160. The
hidden layers have 1024 neurons each and the output layer has
3 neurons corresponding to S, NS and NT.

As can be seen from Table 1, the use of neural networks
leads to a 15% relative improvement in equal error rate over
GMMs. In light of this result, GMMs were abandoned in favor
of neural networks in all subsequent experiments.

Model CMVN DEV1 DEV2
PLP+v file-based 1.68 2.62
PLP+v+FDLP file-based 1.52 2.25
PLP+v+FDLP speech-based 1.36 2.24
PLP+v+RS file-based 1.51 2.26
PLP+v+RS speech-based 1.37 2.27

Table 2: Equal error rates (%) on DEV1 and DEV2 for neu-
ral networks trained on 1/10th of the data on various feature
streams with either file-based or speech-based normalization
(RS stands for rate-scale features 2.3.3).

Model Data DEV1 DEV2
PLP+v+FDLP-F 1/10th 1.52 2.25
PLP+v+FDLP-F all 1.16 2.06
PLP+v+FDLP-S 1/10th 1.36 2.24
PLP+v+FDLP-S all 1.01 1.96
PLP+v+RS-F 1/10th 1.51 2.26
PLP+v+RS-F all 1.14 2.01

Table 3: Equal error rates (%) on DEV1 and DEV2 for neu-
ral networks trained on subsampled and entire data on various
feature streams (-F,-S stand for file-based and speech-based nor-
malization, respectively).

3.2. Feature fusion

Feature fusion is a powerful technique for speech activity de-
tection as shown in [3, 13]. We train neural networks on fused
feature streams obtained by adding various 40-dimensional fea-
tures to the 40-dimensional PLP+voicing stream. As before,
the resulting 80-dimensional vector is augmented by finite dif-
ferences up to order 3 yielding an input of size 80 × 4 = 320.
The idea in this set of experiments is to let the neural network
perform an optimal feature stream combination as opposed to
using ad-hoc feature stream weights. All networks in these ex-
periments have two hidden layers with 1024 hidden units.

We observe from Table 2, that adding either the FDLP or
the rate-scale feature stream results in an additional 10% im-
provement in the segmentation performance. There is no ad-
ditional gain when adding both FDLP and RS streams to the
PLP+voicing features. Also, models trained with speech-based
cepstral mean and variance normalization are more effective on
DEV1 than models using file-based CMVN.

3.3. Amount of training data

In this subsection, we compare training the neural networks on
the subsampled data versus training them on the entire data. The
best configuration when training on all the data resulted in mod-
els with 3 hidden layers (as opposed to 2 layers for the ones esti-
mated on the subsampled data). Surprisingly, even though SAD
is deemed to be a “simple” problem, training on 2000 hours of
audio helps by an additional 20% relative for all the models as
can be seen from Table 3. This is in contrast to GMM training
where, in some earlier experiments, adding more data on top of
the subsampled data did not help the segmentation performance.

3.4. Model fusion

Finally, we experimented with model fusion using a weighted
log-linear frame-level score combination of three sets of chan-



nel dependent networks at the frame level. The three models
that were combined are: (i) nets trained on a fusion of PLP,
voicing and rate scale features with file-based normalization
(the models from pass (2)), (ii) nets trained on a fusion of PLP,
voicing and FDLP features with speech-based normalization,
and (iii) convolutional nets trained on log mel spectral features
with speech-based normalization. These models were trained
on all the data and were selected for diversity and because of
similar performance which is desirable for system combination.
Model fusion was also preferred over additional feature fusion
because adding more feature streams results in prohibitive disk
space and training time requirements when training on all the
available data. In Figure 3 we show the ROC curves for the
individual networks and the model fusion on DEV1 and DEV2.
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Figure 3: ROC curves for individual networks and model fusion
on DEV1 (top) and DEV2 (bottom).

4. Conclusion
We have presented the SAD system developed by IBM for the
RATS phase 2 evaluation. The system achieves equal error rates
between 1% and 1.7% depending on the testset and has shown
excellent results on the unseen evaluation data. The techniques
that were instrumental in reaching this level of performance are:
the use of regular and convolutional channel-dependent neural
networks, combining multiple feature streams that differ in type
and normalization (file-based and speech-based CMVN), train-
ing on all of the available data, and model fusion by combining
the frame-level scores of neural networks that differ in input
features and type (regular and convolutional). Future work will

address supervised and unsupervised adaptation to unseen chan-
nels.
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