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Abstract

The language identification (LID) task in the Robust Automatic
Transcription of Speech (RATS) program is challenging due
to the noisy nature of the audio data collected over highly de-
graded radio communication channels as well as the use of short
duration speech segments for testing. In this paper, we report
the recent advances made in the RATS LID task by using bottle-
neck features from a convolutional neural network (CNN). The
CNN, which is trained with labelled data from one of target lan-
guages, generates bottleneck features which are used in a Gaus-
sian mixture model (GMM)-ivector LID system. The CNN bot-
tleneck features provide substantial complimentary information
to the conventional acoustic features even on languages not seen
in its training. Using these bottleneck features in conjunction
with acoustic features, we obtain significant improvements (av-
erage relative improvements of 25% in terms of equal error rate
(EER) compared to the corresponding acoustic system) for the
LID task. Furthermore, these improvements are consistent for
various choices of acoustic features as well as speech segment
durations.
Index Terms: Convolutional Neural Networks, Bottleneck Fea-
tures, Language Identification.

1. Introduction
The DARPA Robust Automatic Transcription of Speech
(RATS) [1] program targets the development of speech systems
operating on highly distorted speech recorded over “degraded”
radio channels. The data used here consists of recordings ob-
tained from retransmitting a clean signal over eight different
radio channel types, where each channel introduces a unique
degradation mode specific to the device and modulation char-
acteristics [1]. For the language identification (LID) task, the
performance is degraded due to the short segment duration of
the speech recordings in addition to the significant amount of
channel noise. In this paper, we discuss the techniques devel-
oped to improve the LID system performance over the previous
submission [2].

Traditionally, phoneme recognition followed by language
modeling (PRLM) was one of the popular methods for au-
tomatic LID task [3, 4]. This approach uses a multilingual
phoneme recognizer to generate phoneme sequences which are
converted to language model (n-gram) features for the LID clas-
sifier. The success of this approach is dependent on the perfor-
mance of the phoneme decoder. For relatively clean data with
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Figure 1: Architecture of a convolutional neural network con-
taining one convolutional layer followed by deep neural net-
work.

good phoneme recognition accuracies, the PRLM method pro-
vides good performance comparable to acoustic systems [5].
However, the performance of phoneme decoders and speech
recognition systems is significantly degraded for the highly
noisy data in the RATS corpus [6]. In the recent past, the use
of multi-layer-perceptron (MLP) based posterior features were
attemped for LID [7]. The Tandem features have shown promis-
ing results [8]. Motivated by this effort, we explore the use of
convolutional neural network (CNN) based features for LID.

CNNs are variants of MLPs containing one or more con-
volutional layers and max pooling layers [9]. A convolu-
tional layer consists of a set of weights which process a por-
tion of the input signal. These weights are shared along the
entire input space. The max pooling layer generates a lower
resolution version of convolutional filter outputs by comput-
ing the maximum value of filter activations within a speci-
fied window. Recently, CNNs have shown promising results
for various phoneme recognition and keyword spotting (KWS)
tasks [10, 11].

In this paper, we develop a LID system using a CNN based
phoneme recognizer trained on one of the target languages. The
CNN is trained withlog-mel spectrogram and contains a bot-
tleneck (BN) layer before the output layer. For LID, the output
of the BN layer from the trained CNN is used as feature repre-
sentations for a Gaussian mixture model (GMM). The Gaus-
sian mean supervector is converted to an ivector representa-



Figure 2: Block schematic of LID system using acoustic features appended with CNN bottleneck features.

tion [12] which is used to train language specific support vector
machine (SVM) classifiers with higher order polynomial ker-
nels [2]. We perform LID experiments on the RATS corpus
for various speech segment durations. In these experiments, the
additional information from the CNN BN layer provides signif-
icant improvements in the performance of the LID system (av-
erage relative improvements of25% in EER compared to the
corresponding acoustic feature based LID system).

The rest of the paper is organized as follows. In Sec. 2, we
describe the CNN framework for phoneme recognition. Sec. 3
describes the application of CNN based features for LID. We
analyze the characteristics of CNN-BN features for LID in
Sec. 4. The LID experiments with CNN features are reported
in Sec. 5. In Sec. 6, we conclude with a summary of the paper.

2. CNN Based Phoneme Recognition
The CNN models used in this paper are trained on noisy data
provided under the RATS program for Arabic Levantine (ALV)
and Farsi (FAS) KWS [11]. For each of these languages, about
300 hours of data, transmitted over 8 noisy channels, is avail-
able for acoustic modeling [1]. The CNNs are trained on 32
dimensionallog-mel spectra augmented with∆ and∆∆s. The
log-mel spectra are extracted by first applyingmel scale integra-
tors on power spectral estimates in short analysis windows (25
ms) of the signal followed by thelog transform. Each frame of
speech is also appended temporally with a context of 11 frames.

The block schematic of the CNN architechture is shown in
Fig. 1. The CNNs use 2 convolutional layers with 512 hidden
nodes. All the nodes in the first convolutional layer are pro-
cessed with 9×9 filters that are two dimensionally (2D) con-
volved with the input representations. The output of the filters
from the log, delta and double-delta streams are summed and
are processed with the max-pooling operation, which down-
samples the 2D representation along the spectral dimension.
Here, three consecutive spectral values are replaced with their
maximum value. The output of the max pooling is processed
with sigmoidal non-linearity. The second convolutional layer
has a similar set of 4×3 filters followed by max-pooling. The
non-linear outputs from the second convolutional layer are then
input to a fully connected deep neural network (DNN). We use
three hidden layers with 2048 units, followed by a bottleneck
layer with 25 activations before the final output layer (The num-
ber of BN activations was chosen to be small enough to facili-
tate the training of the LID system by concatenation with acous-
tic features). The networks are trained with the cross-entropy
criterion.

The main advantage of CNNs for noisy and channel de-
graded speech comes from the use of local filters, weight shar-
ing and max pooling. The use of local filters in CNNs which fo-
cus only on a few sub-bands, provides better robustness against

channel distortions that are only present in parts of the spec-
trum. In such a case, the assumption is that the local filters
which focus on relatively cleaner parts of the spectrum can still
extract speech characteristics well enough to overcome any am-
biguity arising from the noisy parts. The weight sharing and
max pooling improve the robustness of the CNN to small fre-
quency shifts. This is important because, for example, the for-
mant locations for the same phoneme may appear on slightly
different frequencies for different speakers or even for the same
speaker due to linear frequency transpositions caused by the
channel [1]. Furthermore, weight sharing of the filters helps
in avoiding the issues with over-fitting and improves general-
ization due to the reduced number of trainable parameters.

3. LID system

The block schematic of the LID system [2] is shown in Fig. 2.
The input signal is processed using Wiener filtering [13] and
cepstral coefficients are derived which are referred to as acous-
tic features. We also use the CNN to generate bottleneck fea-
tures of 25 dimensions which are concatenated with the acous-
tic features. A Gaussian mixture model-universal background
model (GMM-UBM) with 1024 components is trained using
the training and development portion of the LID data [1]. The
zeroth and first order GMM statistics for each recording are
obtained and these are used for training a factor analysis (FA)
model [12]. We use 300 dimensional ivectors derived from the
FA model to train a multi-layer perceptron (MLP) with one hid-
den layer. Once the MLP is trained, the nonlinear transforma-
tion from the ivectors to hidden layer outputs is alone retained
and these hidden layer activations are used as inputs for SVM
classification.

In our experiments, we use a SVM classifier with a higher
order polynomial kernel for each target language of interest. For
testing, the ivectors for the test utterance, processed by the MLP
hidden layer, are used with each language dependent SVM to
generate a score. A common threshold is applied to the score
and the performance of the system is evaluated using equal er-
ror rate (EER) obtained from the detection error tradeoff (DET)
curves.

4. Analyzing CNN-BN features for LID

In this section, we explore the usefulness of CNN-BN features
for the LID system. We use a CNN trained on Arabic Levantine
(ALV). The spectrographic representation of a portion of Arabic
recording is shown in the left panel of Fig. 3. The posteriogram
representation, which is the two dimensional plot of phoneme
posteriors stacked along time, for this recording is shown in the
bottom panel of Fig. 3. The similar plots for a Pashto (PUS)
recording is shown in the right panel. Typically, a posteriogram
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Figure 3: Comparison of spectrogram representation with posteriogramrepresentation for a portion of Arabic and Pashto recording
processed with Arabic CNN.
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Figure 4: Scatter plot of first two dimensions of PCA projection for MLP hidden layer activations. The plot on the left uses acoustic
features alone and the one on the right uses acoustic features with bottleneck features from ALV CNN.

with sharp activations indicates a good knowledge of the under-
lying phonetic content which could be useful for any applica-
tion based on the posterior features. The posterior representa-
tion of ALV data is sharper and less noisy as the CNN is trained
with ALV phonemes. Although the posteriogram for PUS data
is noisy, there exists regions of the signal which generate sharp
posteriors particularly for voiced regions. As seen in this figure,
the information provided by the spectrogram and posteriogram
streams are quite complimentary. The BN features used for LID
experiments are a linear transformation of the posterior outputs
except for a softmax operation.

For LID experiments, we concatenate the acoustic features
with BN features and train the GMM based ivector model. In
Fig. 4, we plot the first two principal components of the MLP
hidden layer representation obtained using 30s recordings. The
left panel shows a scatter plot for the LID system which uses
acoustic features alone (in this case, power normalized cepstral
coefficients [14]) and the right panel shows the same plot where
the system was trained using a concatenation of acoustic and
BN features. The scatter plot of the two significant PCA dimen-
sions reveals that the fusion of acoustic and CNN-BN features
improves the separation between the language classes consider-
ably. This is desirable for improving the LID performance as
the reduced overlap among language classes would result in a
smaller number of false alarms for any given threshold.

5. Experiments

The development and test data for the LID experiments use
the LDC releases of the Phase-I RATS LID development [1].
This consists of speech recordings from previous NIST-LRE
clean recordings as well as other RATS clean recordings passed
through eight (A-H) noisy communication channels. The train-
ing data contains about270 hours of audio recorded over each
radio channel. The five target languages are Arabic, Farsi, Dari,
Pashto and Urdu. In addition to this, the database consists
of several other imposter languages. In our experiments, the
GMM-UBM is trained using43, 607 recordings from the eight
channels. The utterance level GMM statistics are used to train
a factor analysis based ivector projection [12]. This model is
trained with33, 672 recordings of120sec duration. The ivec-
tors are used in a backend consisting of MLP hidden layer pro-
jection followed by a SVM training with the12th order polyno-
mial kernel (Sec. 3). We use250k recordings of all durations
for the MLP training and82, 398 recordings for SVM training.
The test data consists of two subsets -52, 789 recordings from
the eight noisy channels and four durations (120s,30s,10s and
3s) called the EVAL set as well as9, 899 recordings from the
DEV set.

In the initial set of experiments reported in Table 1, we
use acoustic features based on power normalized cepstral co-
efficients (PNCC) [14]. The PNCC features are used to train
the LID system (Sec. 3) with 250 dimensional (optimized for



Figure 5: Performance of various of acoustic features with and withoutBN features for various speech segment durations of DEV set.

Table 1: Performance (EER %) of the LID system on the EVAL test set (DEV set in parentheses) for PNCC features with CNN features
from ALV, FAS.

Feat. 120s 30s 10s 3s
PNCC 1.3 (3.1) 2.9 (5.2) 6.7 (8.5) 14.2 (15.6)

BN-ALV 1.3 (3.0) 2.3 (5.5) 5.9 (8.5) 15.3 (16.2)
BN-FAS 1.1 (2.6) 2.3 (4.8) 6.0 (8.3) 15.0 (15.0)

PNCC + BN-ALV 0.8 (2.7) 2.0 (4.3) 4.9 (6.6) 12.2 (11.7)
PNCC + BN-FAS 0.8 (2.8) 2.4 (3.6) 5.4 (6.6) 12.7 (11.1)

Table 2: Performance (EER %) of the LID systems on the DEV
set using PNCC features with CNN features from ALV, FAS
fused at various levels - feature, ivector and score.

Cond. 120s 30s 10s 3s
PNCC + ALV-BN Fusion

Feat. 2.7 4.3 6.6 11.7
ivec 2.3 3.7 6.8 13.4

Score 2.6 3.8 6.4 12.5
PNCC + FAS-BN Fusion

Feat. 2.8 3.6 6.6 11.1
ivec 2.3 4.0 6.1 12.8

Score 2.4 3.7 6.1 12.3

best performance [2]) ivectors followed by the SVM classifier.
We experiment with the addition of CNN BN features gener-
ated from ALV-CNN as well as FAS-CNN to train the LID sys-
tem with 300 dimensional ivectors. We also experiment with
the use of BN features alone without any acoustic features with
200 dimensional ivectors. As seen in Table 1, the performance
of the BN-FAS features are moderately better than the perfor-
mance of the PNCC features. The use of BN features in addi-
tion with PNCC features provides significant improvement in
performance for LID system for various test segment durations
as well as the choice of test set. The BN features provide about
21% relative improvement in the EVAL set and about25% in
the DEV set.

The impact of BN features for various acoustic features
is shown in Fig. 5. Here, we use a variety of feature pro-
cessing techniques like mel frequency cepstral coefficients
(MFCC) [15], frequency domain linear prediction (FDLP) [16],
Gammatone [17] and cortical [18] features. In these experi-
ments, the ALV-CNN based BN features are used and the re-

sults are reported on the DEV set for different speech segment
durations. As seen in Fig. 5, the performance of all these fea-
tures are improved by the use of BN features. The relative im-
provements are consistent even for short speech segment dura-
tions. These results illustrate that the bottleneck features based
on CNN are both informative as well as complimentary to any
choice of acoustic features for the LID task.

The results presented till now use the BN features in con-
catenation with the acoustic features. The final set of exper-
iments, reported in Table 2, investigate the other methods of
fusing the two streams, namely ivector fusion, where the ivec-
tors from the two systems are used to jointly train the back-
end classifier as well as score fusion, where the scores from the
two LID systems (acoustic and BN) are linearly combined with
equal weighting. The feature fusion provides the best results
although the ivector fusion provides good results for the 120s
duration.

6. Summary
We have presented the application of convolutional neural net-
work based phoneme recognition features for the LID task on
the highly distorted radio channel data. The CNN BN fea-
tures provide robust representations which are quite useful for
the LID task by themselves. When the BN features are used
in conjunction with acoustic features, significant improvements
are obtained. These results are consistent for a variety of acous-
tic feature representations as well as the use of different target
languages in CNN training. These experiments encourage us to
pursue the use of multi-lingual CNNs in the future.
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