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Abstract

Many paralinguistic applications of speech demand the extraction of information
about the speaker characteristics from as little speech data as possible. In this
work, we explore the estimation of multiple physical parameters of the speaker
from the short duration of speech in a multilingual setting. We explore differ-
ent feature streams for age and body build estimation derived from the speech
spectrum at different resolutions, namely - short-term log-mel spectrogram, for-
mant features and harmonic features of the speech. The statistics of these features
over the speech recording are used to learn a support vector regression model
for speaker age and body build estimation. The experiments performed on the
TIMIT dataset show that each of the individual features is able to achieve results
that outperform previously published results in height and age estimation. Fur-
thermore, the estimation errors from these different feature streams are comple-
mentary, which allows the combination of estimates from these feature streams
to further improve the results. The combined system from short audio snippets
achieves a performance of 5.2 cm, and 4.8 cm in Mean Absolute Error (MAE) for
male and female respectively for height estimation. Similarly in age estimation
the MAE is of 5.2 years, and 5.6 years for male, and female speakers respectively.
We also extend the same physical parameter estimation to other body build pa-
rameters like shoulder width, waist size and weight along with height on a dataset
we collected for speaker profiling. The duration analysis of the proposed scheme
shows that the state of the art results can be achieved using only around 1 — 2 sec-
onds of speech data. To the best of our knowledge, this is the first attempt to use
a common set of features for estimating the different physical traits of a speaker.
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1. Introduction

Apart from the textual message, human speech contains information about
speaker identity, emotion, gender, accent etc. The extraction of speaker traits (pa-
rameters) from the speech data could further aid in speaker identification systems
as well as in speaker clustering and diarization systems. The main challenge in
estimating any such information is the separation of linguistic content and speaker
traits.

In this paper, we try to address the problem of estimating physical parame-
ters from the short duration of speech in a multilingual setting. This involves in
predicting speaker meta information such as age and parameters of body build
like height, weight, shoulder size and waist size. The motivation for height esti-
mation range from biological understanding of the anatomy and its relationship to
the speech properties to development of potential engineering systems for biomet-
ric applications [1, 2, 3]. While the current performance may not be applicable
directly for developing robust solutions, the potential to augment speech based
features as additional information has shown to improve other biometric method-
ologies based on finger printing [4]. In case of age estimation, researches have
focused to identify the age group of a speaker (children, youth, adult and senior)
from speech for most of the commercial applications (targeted advertisements,
caller-agent pairing in call-centers etc) besides other applications like surveil-
lance, forensics to narrow down on suspects from hoax/threat calls etc [1, 2, 5].

Speaker profiling is a challenging application area [6]. In many cases, there is
no control over the amount of available speech data from the target speaker. There-
fore, such systems are required to provide accurate predictions using a minimum
amount of speech data. For example, DARPA RATS program targeted develop-
ment of speaker and language recognition technology with as little as 3 seconds (s)
of speech [7]. Thus, development of speaker profiling methods in short duration
audio is important.

1.1. Physiological cues in speech

Literature shows that the physical dimensions of the speech production system
are affected by the body build of a person. In general, a tall, well-built individual
has lengthy vocal tract and large vocal folds [8]. The previous studies on the
predicted height and weight of a person and their correlations with the acoustic
features like fundamental frequency (Fj), vocal tract length (VTL) have generated
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mixed results [9, 10, 11]. The correlation values of 0.53 (male) and 0.57 (female)
are reported between actual and perceived height values [10]. The previous studies
have also reported that VTL estimated from the speech has only a weak correlation
with body height [12, 13]. The only exception is a study [14] involving people
in the age group of 2.8 years to 25 years. This study reported the correlations
between actual vocal tract length and height using magnetic resonance imaging
(MRI). It shows that there is a strong correlation between vocal tract length and
height of the speaker for the subjects considered(0.88 for children, 0.83 for female
and 0.86 for male) [14]. It is also worthwhile noting that the sample size in this
study for adult subjects (17 to 25 years) was quite small (six female and 13 male).

One of the speech cues associated with the body size dimension of the speaker
is formant frequencies. They are weakly related to the body size dimensions such
as height and weight, and chest circumference [15, 16, 17]. The voice character-
istics of speech such as speech rate, sound pressure level, fundamental frequency,
etc. are affected by the speaker’s age [18, 19, 20]. Other speech characteristics
like harmonics [21], jitter (micro variations in fundamental frequency), shim-
mer (micro-variations of amplitude in frequency) occurs from age-related glottis
deterioration [22, 23] of the speaker. These features contain information about
speaker age.

Previous attempts [8, 10] in predicting the weight of a speaker, found a sig-
nificant correlation to exist between weight and vocal fold traits like dimensions
and mass. Fj is significantly influenced by the obese and overweight people than
normal persons. The obese and overweight people have lower F{ values than the
normal people [24]. A few studies show that the listeners are able to perceive the
weight (correlation of 0.724 for male and 0.627 for female speakers) and body
build [10, 25, 26]. Another study reports the correlation between log VTL and
log weight as 0.862, 0.875 and 0.903 for children, females and males respec-
tively [14]. While a weak correlation exists between the weight of the speaker
and the formant structure [15, 27], the speaking rate was found to be a useful
feature used by human listeners in weight attribute estimation [10].

While the past studies generate mixed results about the information present in
speech relating to speaker height, body dimensions and age, engineering appli-
cations to extract these physical traits from speech have shown practically useful
results (for example [28, 29]). However, in the existing literature, most of the
significant results have focused on the estimation of height and age from long
speech segments of few minutes ([29]) or by using hand labeled phoneme level
features [28]. The prior work on short duration speech shows that dealing with
utterances of bsec. length is challenging yielding significantly worse results mak-

3



73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

ing the systems inoperable for realistic applications [30]. In this work, we ad-
dress the problem of reliably extracting height/age information from short du-
ration speech 2 — 3sec. segments without using any phonetic information. We
also extend the work to estimating more physical parameters (shoulder size, waist
size, and weight). The main novelty of the proposed work lies in developing a
unified framework for height/age and other physical parameter estimation. This
is achieved using features that extract spectral structure of speech signal in terms
of format frequencies (peak locations in wide-band spectrum estimated using an
autoregressive model) and harmonic frequency locations.

1.2. Organization of the Paper

The rest of the paper is organized as follows. Section 2 describes about the
speaker profiling literature, motivation to carry out this work and contributions
of the paper. Section 3 briefs about datasets, features extracted and regression
technique used to estimate the physical parameters using speech data. Section 4
describes about the experiments conducted to estimate height and age of a speaker
in monolingual setting using TIMIT dataset. Also this section discuss about the
experiments performed on multiple physical parameters on multilingual setting
using AFDS dataset in Section 4.3. A duration analysis is performed to know the
minimum amount of speech data required for estimating physical parameters and
this is explained in Section 4.4. Finally, conclusions are presented in Section 5.

2. Speaker Profiling Literature

While there is information about height/age in the speech signal, the extrac-
tion of these parameters is challenging, as these parameters are also affected by
numerous other factors such as the content being spoken, emotion and mood of
the speaker, gender of the speaker etc. These factors degrade the performance of
the height and age estimation methods.

2.1. Height Estimation

The height of a speaker can be estimated by standard sound specific features
such as formants, F{, sub-glottal resonances (SGR), short term spectral features
and accumulated statistical features of the speech features across the sentence as
a input to system.

The researchers predict the height of a speaker using the speech based fea-
tures by using the short term features — Mel Frequency Cepstral Coefficients
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(MFCC) [31, 32], Linear Prediction Coefficients(LPC) [31], formant frequen-
cies [31, 33, 28], sub-glottal resonances [34, 35] and fundamental frequency [31].
Phone specific (vowels like /iy/,/ae/,/ey/,/ih/,/eh/ etc.) short term features like
(MFCC, LPC) and formants shows a correlation of around 0.75 and for Fj it is
0.59 in estimating the height [31]. In an alternate approach [36], the sub-glottal
resonances are used for height estimation. SGRs are the resonance frequencies
of sub-glottal (below the glottis) input impedance measurements from the top of
the trachea. The SGRs are measured using the bark scale difference of the for-
mants [35]. These resonances are shown to be correlated with the height infor-
mation, and a simple polynomial relation can then be employed to estimate the
height. Using the SGRs, the overall mean absolute error (MAE) of 5.4 cm, root
mean square error (RMSE) of 6.8 cm at the sentence level and 5.3 cm, 6.6 cm of
MAE and RMSE respectively at speaker level on TIMIT data.

A few other studies use the vowel regions (/aa/,/ae/,/ao/,/iy/) to predict the
height of a person by formant track regression [28, 33]. This method obtained the
MAE is reduced to 6.36cm for male and 6.8cm for female speakers by considering
a subset of speakers and selected sentences from TIMIT dataset. By fusing the
formant track regression with height distribution based classification, the MAE is
5.37cm and 5.49cm for male and female speakers respectively. Later line spectral
frequencies were added to the feature set resulting in a lower MAE 4.93cm and
4.76cm for male and female speakers respectively. However, these approaches
require speech transcription and phone level alignment.

Another set of approaches that do not depend on the speech transcriptions use
accumulated statistics of the short term speech features as input. These features
are typically used on a regression scheme (Support Vector Regression (SVR), Ar-
tificial Neural Networks (ANN), etc.) in predicting the height of a person. For
example, various statistics like mean, median, percentiles etc. are extracted from
the short-term spectral features for automatic height estimation [37, 38]. Here a
set of features are selected from a large pool of statistical features. A feature selec-
tion algorithm precedes the support vector regression which provides the estimate
of the height and obtains MAE of 5.3cm and RMSE of 6.8cm on TIMIT dataset. A
similar approach uses i-vectors (dimension reduced version of background Gaus-
sian Mixture Model (GMM) statistics) followed by regression schemes (SVR,
ANN, etc.) to estimate the height of a speaker [3, 39].

In another approach, the height is divided into different bins and the height
class of the speaker is estimated [32, 40]. For example the MFCC features are
modeled using a background GMM to estimate the height class of a speaker (i.e.,
for a given utterance the height class is estimated). This approach using the TIMIT
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dataset reports results with a RMSE of 6.4 cm and 5.7cm for male and female
speakers respectively [40].

Singh et al. [41] reports that the MAE performance of the default predictor
(average value of that parameter over the training set) is often better than the
results in literature such as [33, 37, 38]. This study focuses on a bag of words
representation instead of GMMs. The short term spectral features at multiple
temporal resolutions are used to form a bag of words representation. For the
TIMIT dataset, the MAE is 5.0 cm and RMSE is of 6.7 cm for male speakers and
for female speakers the MAE is 5.0 cm and 6.1 cm RMSE. This study uses the
short durations of speech data to estimate the height of a speaker [41].

2.2. Age Estimation

The accumulated statistics of the prosodic features and short term features can
be used to estimate the age of the speaker. A popular approach uses prosodic
features such as jitter / shimmer, harmonics to noise ratio, fundamental frequency
[18, 22, 23]. These feature statistics are used by machine learning models like
Artificial Neural Networks (ANN - Multilayer Perceptron), Support Vector Ma-
chines (SVM), k-Nearest Neighbor (KNN) etc. to classify the age group of a
speaker. By considering both male and female genders the age class accuracy is
94.61% using an ANN model in proprietary dataset [18]. There have also been
attempts to combine information from various levels such as short-term spec-
trum, prosodic features etc. These features are preceded by background GMM,
SVM etc. for the age estimation [21, 23]. With Interspeech2010 Para linguistic
challenge dataset, the unweighted accuracy was 52% and weighted accuracy was
49.5% for the age classification problem [21]. However, these efforts do not es-
timate the age, but only classify the input speaker as belonging to one of the age
groups (e.g., kid, young adult, adult, etc.).

The statistical approaches adapted by researchers for age-group classifica-
tion are Gaussian Mixture Model (GMM) Universal Background Model (UBM)
[22, 42, 43], support vector machines [44, 45, 46], ANN [39]. These are followed
by the statistical representation of short term features like MFCC, LPC, Percep-
tual Linear Prediction (PLP) coefficients, Temporal Patterns (TRAPS) [43] etc.
In another approach, the age of a speaker is estimated by using a bag of words
representation in place of background GMM from short-term cepstral features. In
this work, short duration of speech data was considered and obtained MAE of 5.5
years & RMSE of 7.8 years for male, and for female speakers, MAE is 6.5 years
& RMSE is 8.9 years on TIMIT dataset [41].
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Using the UBM based approach, the short-term features are represented as su-
pervectors/i-vectors and these are used as input features to a classifier [45, 29,
47]. Using NIST SREO8 and SRE10 data, the fusion of different short term fea-
tures and i-vectors results in MAE of 4.7 years for male with correlation of 0.89,
female MAE is 4.7 years with correlation of 0.91 [29]. A more recent approach
using the deep neural networks on the short utterances of telephone speech us-
ing long short term memory (LSTM) recurrent neural networks(RNN) [48] MAE
and and correlation of male and female speakers are 8.72y, 0.37,and 7.95y, 0.54
respectively when 3s of speech is considered. An end to end deep neural network
architecture using the x-vectors has also reported recently. Using only x-vectors
on end to end system the MAE, correlations for 5s chunks of speech data are
5.78y, 0.74 for male, 4.23y, 0.87 for female respectively [30]. Table 1 shows the
summary of the prior works methods and features for height and age estimation
tasks.

2.3. Other Physical Characteristics

There are very few studies to estimate the other parameters like weight, shoul-
der size, chest circumference, shoulder to hip ratio, smoking habits, etc.,

The body size parameters like weight, neck etc. are predicted using F{, and
formants of all the vowels. The correlation between F{ and first four formants with
weight is 0.3 for male speakers [15]. Another study [16] shows the correlations of

average fundamental frequency with shoulder circumference (r = —0.29), chest
circumference (r = —0.28), shoulder-hip ratio (r = —0.49) and weight with
formants is (r = —0.43).

Using the i-vector frame work weight is estimated and obtained the corre-
lation of 0.56 for male and 0.41 for female speakers. The smoking habits are
also predicted by using the i-vector framework with a log-likelihood ratio cost of

0.81 [39].

2.4. Limitations of Prior work

Majority of the speaker profiling works of the past concentrate on estimating
only one physical parameter — either age or height. The best results in height
estimation are obtained by using features that are phoneme specific [28, 31, 33].
This comes with the constraint on the system to have accurate transcription of
the speech utterances with phone level alignment. The approaches involving SGR
features [34, 35, 36, 40] require a separate dataset to learn the relationship between
speech formants and the sub-glottal resonances. Other literature, often report the
results on longer speech utterances using NIST recordings (> 10s) [3, 29, 30,

7
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Table 1: Summary of prior work in age and height estimation.

Literature summary on Age

Reference Motivation Features Model

[18, 22, 23, Target advertisements Pitch, jitter, shimmer, ANN/SVM/GMM

42] MEFCC, LPC, etc. and fusion

[29, 45,47] Forensics, target adver- i-vectors SVM /SVR
tisements

[30, 48] Forensics, target adver- i-vectors/ x-vectors DNN
tisements, commercial
applications

[21,43,46] Target advertisements MEFECC, Prosodic SVM/GMM .

features, = Formants,
Pitch, PLPs, TRAPs
Literature summary on Height

[3] Forensics,  biometric i-vectors LSSVR/ANN
applications

[37, 38] Forensics,  biometric OpenSmile SVR
applications

[28, 32,33] Forensic, biometric ap- LSFFormants, MFCC Linear Regres-
plications sion, GMM

[34, 35, 36, Relation between SGR SGR GMM, poly-

40] and height nomial regres-

sion
Literature summary on Height and Age

[39] Forensics, target adver- i-vectors LSSVR/ANN
tisements

[41] Forensics, target adver- Short term spectral Random For-
tisements features est

45, 47, 48] and does not address speaker profiling from short utterances. Even
for the i-vector based systems, the i-vectors may not be well estimated for short
utterances [29, 45, 47]. Also often gender specific speaker profiling results are
not reported [31, 38] and it was later reported that the gender-wise results of these
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methods are inferior to default predictor based on the mean of the training data
performance genderwise [41]. So far the only work that addressed both height and
age estimation from short duration speech is Singh et.al. [41]. However, the prior
work on short duration speech shows that dealing with utterances of < 5sec. of
speech in physical parameter estimation is challenging. To the best of the authors’
knowledge, literature does not address the physical parameter estimation from
short duration multilingual speech data.

2.5. Contributions from This Work

In this work, we attempt to address the main two challenges for physical trait
estimation, one is short duration of utterances and second is the multilingual na-
ture of the data. The goal is to come up with a common feature input for all phys-
ical parameter prediction systems. The proposed features do not require phone
level transcriptions. We consider different characteristics of the speech signal —
short-term spectral features, fundamental frequency, formant frequency locations
and narrow-band speech harmonics. With many experimental results, we show
that the proposed approach of using spectral features is useful in the prediction of
height/age and other physical attributes of the speaker.

To the best of our knowledge, this paper presents the first work of its kind
to illustrate the estimation of physical parameters from short durations of speech
signal in a multilingual setup. We perform height and age estimation experiments
in the TIMIT database [49] where the speech recordings are 2 — 3 seconds du-
ration. The combination of these features attain the MAE of 5.2years (male) and
5.6years (female) in age estimation and in case of height estimation the MAE is
of 5.2cm for males and 4.8cm for female speakers. In these experiments, the com-
bination of proposed features shows significant improvements over the previously
published results on the same dataset [35, 41]. We extend the same approach to
multilingual setting to predict multiple physical parameters like shoulder width,
waist size, weight along with height on a dataset. Finally, we investigate the mini-
mum amount of speech required to perform physical parameter estimation on both
TIMIT and AFDS datasets.

3. Methodology

In this work, we use two datasets for our experiments and analysis. One is
the standard TIMIT dataset [49], and the second one is a multilingual dataset,
Audio Forensic Dataset (AFDS) [50], collected for this purpose. We extract three
different features which doesn’t require the phoneme level transcriptions for short

9
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Table 2: Statistics of each parameter in the TIMIT dataset [49]

Physical Minimum Maximum Mean Standard
Characteristic Deviation

Male Speakers

Height (cm) 157.48 203.20 179.73 7.09
Age (y) 20.63 75.77  30.52 7.57
Female Speakers
Height (cm) 144.78 182.88 165.80 6.71
Age () 21.08 67.35 30.03 8.70
Male and Female Speakers
Height (cm) 144.78 203.20 175.50 9.47
Age (y) 20.63 75.77  30.37 7.98

speech segments. The utterance level statistics of the extracted features is given
to a support vector regression to estimate the physical parameters.

3.1. Datasets

The TIMIT dataset has 630 speakers, each speaker has contributed 10 record-
ings. Each of the ten recordings per speaker is considered as a separate input
data sample. For training set, we have 462 speakers ( 326 male and 136 female
speakers) and for testing 168 (56 female and 112 male speakers). The statistics
of the dataset is given in Table 2. The training and validation splits has 4610 ut-
terances which includes 3260 utterances from male speakers and 1360 utterances
from female speakers. The test split has 1120 utterances from male speakers and
560 utterances from the female speakers. Each input utterance had 1 — 3 seconds
of speech data for height and age prediction.

The second one is a dataset, collected from diverse dialects of individuals
across India for this study. This dataset was named as Audio Forensic Dataset
(AFDS) [50]. This dataset contains the speaker details like height, weight, shoul-
der width, waist size along with the speech utterances. Speech is recorded at
a sampling frequency of 16 kHz. Each speaker provided around 2 minutes of
speech data in three sessions, with each session lasting around 40 seconds. This

10
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Table 3: Statistics of each parameter in the AFDS dataset [50]

Physical Minimum Maximum Mean Standard
Characteristic Deviation
Male Speakers
Height (cm) 156 188 171.0 6.7
Shoulder width (cm) 40 53  45.0 2.5
Waist size (cm) 68 112 86.0 7.6
Weight (kg) 45 107  67.9 11.1
Female Speakers
Height (cm) 147 169 157.6 5.1
Shoulder width (cm) 30 45 384 2.6
Waist size (cm) 64 97 80.4 7.0
Weight (kg) 39 77 52.7 6.9
Male and Female Speakers
Height (cm) 147 188 168.0 8.5
Shoulder width (cm) 30 53 435 3.7
Waist size (cm) 64 112 84.7 7.8
Weight (kg) 39 107 64.5 12.1

dataset is linguistically diverse with people having 12 different native languages.
Each speaker is asked to read news articles in their native language as well as in
English. This speech corpus contains 207 speakers including 161 males and 46
females. The speakers are in the age group of 18-37 years. The height, shoulder
width and waist size are measured in centimeters (cm) and weight in kilograms
(kg). The statistics of the dataset are tabulated in Table 3.

For evaluation purpose, the dataset is divided into training and testing datasets.
Training data has 137 speakers (951 utterances) consisting of 104 males (727 ut-
terances) and 33 females (224 utterances). Testing data has 70 speakers (538 ut-
terances) consisting of 57 males (434 utterances) and 13 females (104 utterances).
Train and test splits includes both English and native language. Both the training
and testing splits contain speakers across the 12 different languages. There is no
overlap of speakers in both the datasets of training and test splits.

11
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3.2. Feature Extraction

In this paper, we try to come up with a common set of features that can be
used for the physical parameters estimation. We explore different features which
uncover the underlying the spectral structure of the speech signal to estimate the
physical parameters. The short-term mel spectrogram captures the gross level
spectral characteristics used in predicting height and age of a speaker [3, 5, 23, 31,
39]. The fundamental and formant frequencies contain information about physical
parameters of a speaker [15, 28, 35]. The narrowband spectral harmonics capture
the fine spectral structure on a coarse temporal scale. The log harmonics are used
in estimating the age and gender of a speaker [21]. We use both frequency and
amplitude of the spectral peaks as harmonic features (to capture jitter and shimmer
characteristics of speech).

3.2.1. Feature Extraction Using Mel Filter bank Features & UBM

Mel Filter Cepstral Coefficients (MFCC): The MFCC features are the most
commonly representations used in speaker recognition. The MFCC features are
have some information relating to the vocal tract length [22, 31]. In the past, the
MEFCC features and their statistics have been employed followed by the regression
scheme for height and age estimation [21, 37, 38, 39]. In our work, we extract 20
mel frequency cepstral coefficients (using a window length of 25 ms with a shift
of 10 ms) along with delta and double delta features (yielding 60 MFCC features).

Mel Filter bank features: In our work, we use the logarithm of the mel spectral
energy in short-term windows (25ms with a shift of 10ms) of the speech signal.
The mel filter bank features are the short energy features computed prior to the
Discrete Cosine Transform (DCT) in the MFCC feature computation. We extract
40 mel filter bank features. The short spectral features contain the phonetic infor-
mation as well as the speaker information. We adopt a supervector [51] approach
which can summarize the gross spectral changes in order to normalize the effect
of phonetic information in the short-term spectral representation.

Statistical Representation:

In order to form a background UBM model, a Gaussian Mixture Model is es-
timated from short-term spectral features. Let x; and y; be input MFCC feature
(i.e, x; € R%) and mel-filter bank feature (i.e, y; € R*°) corresponding to frame 7
respectively. Let X = {x,Xa, ..., X7} represents the input MFCC feature vectors
and Y = {y1,Yyo,...,yr} represent mel filter bank features for an input utter-
ance with 7" frames. The diagonal covariance GMM -UBM is trained on MFCC
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features. The GMM probability density is :
M
fopn(x) = wN(x; 15, C;) (D
j=1

where x, denotes input feature vector (MFCC) and p;, C; represent the mean
and the diagonal covariance matrix of the j* GMM component with weight w,
respectively. The frame level first order statistics for a given frame ¢ and each
GMM component j is computed as:

£/ = yp(jlx), e
where the a-posteriori probabilities of a GMM component j is given by:

p(jxi) = :
Z;Vil ij(Xi7 K, Cj)

3)

We then concatenate all £/ for all GMM components to obtain a super vector
F, = [f} /2 ..., f],..., fM] which represents the utterance. The first order

statistics for a given utterance is:

F:EZFi (4)

Intuitively, if each GMM component j corresponds to a different sound class, the
average of fji over the frames ¢ would represent the short-term spectral average of
frames that belong to that sound class. These features are used in support vector
regression to estimate the physical parameter.

3.2.2. Extraction of Fundamental and Formant Frequency Features

We compute the fundamental frequency from a wideband analysis of speech
signal (temporal window size of 20ms with a shift of 10ms). The estimation is
performed with the PEFAC algorithm [52] which combines noise rejection and
normalization while ensuring temporal continuity in the estimates using dynamic
programming. For physical parameter estimation, we use the statistics (mean,
standard deviation and percentiles) of the time varying fundamental frequency
computed over the given speech recording. The formant frequencies are estimated
by picking the peaks of an auto regressive (AR) model of the power spectrum. The

13



344

345

346

347

348

349

350

351

352

353

354

355

356

358

210 ) +  Female (r=-0.12) 210 - Female (r=-0.01)
200 - © Male (r=-0.06) 200 . + Male (r=0.17)
[—

2000

500 1000 1500 2000
F,-F, (H2)

3500

Figure 1: Scatter plot of fundamental and formant frequency estimates with the speaker height
for TIMIT training set. Value in the brackets shows the correlation (r) between formants and
corresponding physical parameter (height) for male and female speakers. The best fit line is also
shown for both male and female speakers separately.

peaks of the wide-band (window length of 20ms with a shift of 10ms) spectrum
can approximately represent the formant structure. We use an AR model of order
18 to extract peak locations results in nine peak locations. The first four peak
locations are used to capture formant frequencies (denoted as F}, Fs, F3 and F)).
The first four formant frequencies (F}, £y, F5, Fy) are extracted from the speech
signal. We analyze the correlation between the fundamental frequency (Fj) and
the other formant frequencies with the height values. The studies have shown Fj
is inversely proportional to height of a speaker (indicating that the speakers with
more height values have low fundamental frequency and vice-versa for speakers
with lesser height values) [10, 16, 17]. The fundamental frequency (Fy), has a
weak correlation with height (r = —0.12) for female speakers. Similarly, for
male speakers F, showed a weak correlation with height value (r = —0.17).
The correlations of male height vs Fy (r = —0.06) and female height vs F,
(r = —0.01) are relatively modest. Literature has reported weak correlations
between body build of the speaker and different functions of formant frequen-
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Figure 2: Spectrogram for vowel /AE/ and corresponding trajectories of first 10 peaks locations in
a narrow-band spectrogram estimated using an AR model.

cies such as dispersion[53], average formant position[54], formant spacing [55],
difference between Fj and formants [15]. For example, we find the correlations
between difference of Fj and formants (F) — Fy, Fy — Fy, F3 — Fy, Fy — Fp ),
Fig.1 depicts some of the results for the training portion of TIMIT dataset. It
is observed that, F5, — Fy and F; — F{, have weak positive correlation for male
speakers (r = 0.18 and » = 0.13 respectively) and weak correlations for female
speakers with height values [15].

Speaker identification systems have used mean value of pitch, range of pitch
etc., as utterance level features [56]. In this work, we use a similar approach
where each sentence is represented using statistics of the log fundamental fre-
quency and log formant frequencies across the utterance. We use percentiles of
log-peak locations in the short-term spectrum of speech (computed over time).
The peak locations in the spectrum include the fundamental frequency and for-
mant frequencies. In addition to the percentiles, the statistics of peak locations
(in log-frequency scale) like the mean and standard deviation are used to estimate
the physical parameters like height/age. These statistics can implicitly capture the
average value, range and variance of fundamental frequency and formants.

3.2.3. Extraction of Harmonic Features
In addition to the conventional mel frequency spectrum and formants, we also
experimented with the use of harmonic structure of the speech signal. The har-
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monics are formed as a result of vocal fold vibration during voiced speech. It has
been shown that variations in frequency (jitter) and amplitude (shimmer) contain
useful information about age as well [22].
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Figure 3: Scatter plot of Harmonic percentiles (25 and 50) vs physical parameter (height and age)
for male and female speakers of TIMIT training data. Correlation (r) value between harmonic
percentile and physical parameters (height and Age) is given in brackets for male and female
speakers. The best fit line is also shown for both male and female speakers separately.

Using an AR model (order 80 with a window length of 60ms and a shift 10ms)
of the spectrum, the peak locations (locations of the poles of the AR model) are
identified. The logarithm of the frequency and amplitude of spectral peaks are
computed at each frame. Each sentence is represented by the percentiles of log
frequency and log amplitude values of spectral peaks over the utterance. The
percentiles of harmonic frequencies represents the mean range and jitter in the
harmonics. Similarly, the statistics on amplitude can contain shimmer in addition
to average and range values. The collection of these statistics is referred to as
“harmonic features” in this work. Fig.2 shows a short term spectrogram of the
speech along with estimated harmonics.

The scatter plot for first harmonic frequency percentiles (25 and 50) on TIMIT
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training data are shown in Fig.3 for both male and female speakers. It is observed
that there is a weak negative correlation in case of height and age for percentiles
25 and 50 for both male and female speakers. We also observe that the log mag-
nitude statistics (percentiles) of the first two harmonic frequencies show a weak
negative correlation with both age and height for both male and female speakers.
These statistical harmonic features are used as input for support vector regression
algorithm. The frequency location features capture jitter features and amplitude
features captures shimmer features.

3.3. Prediction Using Support Vector Regression

We use a standard support vector regression (SVR) [57] as the model for pre-
dicting the target of each physical parameter values given the input features. Let
us denote the set of pair of input features along with target values as {(y1,t1),
(y2.t2), - .- (Ymstm)}. The function f(y) = wTy + b corresponds to the linear
SVR to learn and performs the following optimization:

T

min —w" w subject to

(&)
|wrhy; +b—t;] <e

where b is the bias term and the “fit” function is controlled by the parameter €. The
maximum deviation from the target values is e. The SVR optimization function
aims to reduce the deviation from the target values by the parameter e. We have
also explored both linear and nonlinear kernels in this paper. In case of multiple
features, we average the individual SVR outputs.

4. Experiments and Results

We perform height and age estimation experiments on TIMIT dataset. We use
the standard train and test split in TIMIT. The algorithms are benchmarked using
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) metrics.

)

1 .
RMSE = \/NZ(vaed i l,grue)Q

and z!"¢ are the predicted and target values for the i'" test utterance.

i

1
MAE = N Z |I§Ted o xz?rue|

(6)

pred
%

where =
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4.1. Results with Individual Features

In order to understand the effect of each feature separately, we evaluated the
individual performance of the features. All hyper parameters of the system (e.g.,
kernel choice for SVR) and the order of the models were fixed based on the vali-
dation dataset performance.

We first perform a speech activity detection [58] and then extract the speech
features. In order to extract the first order statistics (Fstats), we first train a 256
component GMM with 60 dimension MFCC features (x;). The Fstats are com-
puted with 40 dimensional mel filter bank features (y;) using the Eq. 4. This gives
40 * 256 = 10240 dimensional vector. The Fstats are fed to a support vector re-
gression model to predict the physical parameters. A linear kernel is used for the
support vector regression.

Fundamental frequency and formant features are extracted by picking the res-
onant frequencies of an all-pole model. A 18" order (fixed based on validation
set) model is used with a 20ms length window with 10ms shift. The 5, 25",
50", 75! and 95" percentile values across the entire utterance are employed as
features. A linear kernel is used in the SVR.

A similar approach was followed in case of harmonic features. Thirty har-
monics were extracted from an 80 order all-pole model, computed over a longer
time window (length 60ms and shift 10ms). The same set of percentiles are com-
puted and used as input to a SVR with a third degree polynomial kernel (the order,
window size and kernel are fixed based on the validation dataset). We separately
evaluate the performance of harmonic frequencies, amplitudes as well as both to-
gether.

For comparison purposes, we also compute the Training data Mean Predictor
(TMP). This just corresponds to providing the sample mean of the training data
targets (physical parameters) as the estimate for any input, i.e., without using any
evidence from the test speech. Fig.4 illustrates the performance of each feature as
well as the TMP. In addition to the Fstats, and formants features, the figure also
illustrates the effect of estimated harmonic frequency locations (F-loc) and cor-
responding amplitudes (Amp) as well as their combination (‘harmonic’ features).
Both formants and Fstats have shown minimal improvement over TMP for both
the genders in estimating the height of a speaker. The harmonic features show
improvements only for female height and age estimation. In both these cases,
the combination of harmonic features performs better than using either frequency
locations or amplitudes. The performance improvement over TMP MAE is of
2.71% when Fstats are used for predicting height of male speakers. Similarly, for
female speakers the improvement in MAE is of 4.01%, 3.23% , and 3.13% when
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Figure 4: Mean absolute error comparison with training mean predictor (TMP) and prediction of
different systems using first order statistics(Fstats), formants (Fmnts), harmonic frequency loca-
tions (F-loc), amplitude (Amp) and harmonic features (harmonic frequency locations & amplitude
features together: harm) for height (left side) and age (right side) estimation using the TIMIT
dataset.

formants, Fstats and harmonics are used respectively. For in predicting the age,
all the features have shown a better performance when compared with TMP MAE
for both the genders. For the male speakers, the improvement in MAE is of 6.8%,
3.82% and 7.7% for formants, harmonics and Fstats respectively. Similarly, for
female speakers the improvement in MAE is of 7.71% 10.85% and 7.38% when
formants, harmonics and Fstats respectively.

4.2. Results with Feature Combination

In our analysis, we found that the different feature sets produce different height
and age estimation errors for a large number of validation speakers. With this
knowledge, we attempt a simple averaging of the individual regression outputs
to improve the final height and age estimates. We have made three different sets
of feature combinations of Fstats and formant features with either harmonic fre-
quency location (Comb -1) or amplitude (Comb -2) or harmonic features (both
frequency and amplitude features: Comb -3). All our analyses use the standard
TIMIT train and test splits. Table 4 reports the results along with the recent base-
line which uses the standard train and test splits of TIMIT dataset [41].

The relative improvement of height prediction MAE for Comb-3 w.r.t TMP
is 1.89% and 8.33% for male and female speakers respectively. Similarly, the
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Table 4: Comparison of the proposed feature combinations — Comb -1 (Fstats 4+ formant + fre-
quency locations), Comb -2 (Fstats + formant + amplitude), Comb -3 (Fstats + formant + har-
monic features (amplitude + frequency locations)) with state-of-the-art results on TIMIT dataset.

Height (cm) Estimation
Male Female All

MAE RMSE MAE RMSE MAE RMSE

T™P 53 7.0 5.2 6.5 7.4 9.0
[38] - - - - 5.3 6.8
[35] 5.6 6.9 5.0 6.4 5.4 6.8
[41] 5.0 6.7 5.0 6.1 - -

Comb-1 5.2 6.8 5.0 6.3 5.2 6.8
Comb-2 5.2 6.9 4.8 6.2 5.2 6.7
Comb-3 5.2 6.8 4.8 6.1 5.2 6.7

Age(y) Estimation
Male Female All

MAE RMSE MAE RMSE MAE RMSE
T™P 5.7 8.1 6.4 9.2 59 8.4
[41] 5.5 7.8 6.5 8.9 - -
Comb-1 5.3 8.2 5.8 9.2 5.5 8.7
Comb-2 53 8.2 5.6 8.8 54 8.6
Comb-3 5.2 8.1 5.6 8.7 54 8.5
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relative improvement of age prediction MAE is 8.77%, and 14.29% for male
and female speakers respectively. In case of RMSE, the relative improvement
in height prediction of Comb-3 w.r.t to TMP is 2.94% and 6.15% for male and fe-
male speakers respectively. Similarly, for age prediction there is an 5.75% relative
improvement for female speakers and no improvement for the male speakers.

We performed a paired t-test comparing the absolute errors from proposed
system (Comb -3) and the default predictor (TMP) in a gender-wise manner. For
both the tasks of height and age estimation, the proposed system is significantly
different from the TMP (p < 0.05) across both the gender cases.
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Figure 5: Histogram of TIMIT dataset gender specific Training data and Test data — height and
Age.

In case of height estimation, we also compare with three other baselines. The
error metrics MAE and RMSE of the proposed systems as well as the baseline
results are presented in Table 4. In case of female speakers both MAE and RMSE
performances of Comb -3 are better than the baseline for height estimation. In or-
der to gain further insight into the proposed height estimation system, we analyze
the performance of height and age estimation of the data in different subgroups of
Comb -3.

Table 5 lists various subgroups along with the height estimation performance
and number of training speakers in each subgroup. It can be seen that large errors
occur for speakers in the sub groups which are at the two extreme height values
(row 3 & 6 for male speakers and 2 & 5 for female speakers) in Table 5. This
may be due to the small amount of training data available for these groups. The
gender specific histogram of speaker heights for both training and testing datasets
are depicted in Fig.5a. We also observe that there is a mismatch in train and
test height histograms. Such mismatches could have also resulted large error in
extreme values of height.
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Table 5: Height (h) estimation errors (MAE and RMSE in centimeters(cm) )across different height
subgroups using TIMIT test data

Male Female

SI. # Train # Train
No. Range Spkrs MAE RMSE | Spkrs MAE RMSE
1. | 145 < h < 150 0 - - 2 - -

2. 1150 < h < 160 2 - - 20 9.3 9.6
3. 1160 < h < 170 15 11.9 12.2 75 2.5 3.0
4. 1170 < h < 180 137 4.7 5.7 35 6.4 7.1
5. 1180 < h <190 140 2.9 3.7 3 14.9 14.9
6. | 190 < h <203 32 12.5 13.1 0 - -

Table 6: Age (a) estimation error (MAE and RMSE in years) across different age subgroups using

TIMIT test data
‘ ‘ Male ‘ Female

SI1. # Train # Train
No. Range Spkrs MAE RMSE | Spkrs MAE RMSE
1. |20<a< 25 67 4.6 4.8 47 2.7 3.0
2. 125<a<30 132 1.8 2.1 46 2.0 2.4
3. 130<a<35 66 2.9 3.4 14 477 5.2
4. |35 <a<40 28 7.8 8.1 9 8.8 8.9
5. 140 <a< 45 13 13.0 13.1 9 13.0 13.1
6. |45 <a<bb 16 22.2 22.4 7 24.9 25.0
7. 155 <a<65 3 35.5 35.5 3 21.9 21.9
8. 165<a<76 1 - - 0 35.0 35.1

498

In case of age estimation, the only work that has reported results on short seg-

a9 ments in TIMIT is by Singh et al. [41]. Comparison of this baseline with our
soo results and TMP is presented in Table 4. Note that in case of female speakers the
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baseline had a higher MAE as compared to TMP. The proposed systems outper-
forms the baseline results and TMP in terms of MAE for male and female speak-
ers. However, RMSE value is at par with TMP in case of Comb -3 male speakers
and better than state of the art in female speakers in all the feature combinations.
We analyzed the performance of Comb -3 for age estimation system by dividing
the data into different subgroups as shown in Table 6. The RMSE is high over
the TMP is due the presence of last three age groups (from 45 years to 75 years)
in both the genders (refer Table 6). All these age groups have very few training
speakers. Therefore, the RMSE error in these three groups are large (greater than
22y) and is dominates the overall RMSE performance. The histogram of gender
specific speaker age in both training and testing datasets are depicted in Fig.5b. It
can be seen that there are very few number of speakers above 45 years in training.
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Figure 6: Mean absolute error of male speakers compared with training mean predictor (TMP)
and prediction of different features i.e, first order statistics(Fstats), formants (Fmnts), harmonic
frequency locations (F-loc), amplitude (Amp) and harmonic features (harmonic frequency loca-
tions & amplitude features together: harm) of physical parameters (Height, Shoulder width, Waist
and Weight) using AFDS.
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4.3. Extension to other physical parameters

We extend the same approach followed to estimate height and age to more
physical parameters in a multilingual setting using the AFDS dataset as described
in Section 3.1. We have analyzed the correlation of height with other parameters
like shoulder size, waist size and weight on AFDS dataset. In the case of height
the correlation values are small (0.2, 0.3 and 0.4 for shoulder size, waist size
and weight respectively) for male speakers. The correlation values with age was
negligible. Thus, these are parameters that cannot be predicted from height or age.
We do not report results on only female data since, the number of female speakers
is small.

In this regard, we use the same feature set (i.e, fundamental frequency, for-
mants, harmonic features, and first order statistics of the speech signal) as ex-
plained in Section 3.2. In order to compute the first order statistics on AFDS, we
have extracted 20 MFCCs along with deltas and double deltas and 40 filter bank
features. We have used the GMM UBM learned from training data of TIMIT
dataset itself, as the number of training utterances are less in AFDS. The Fstats
are computed on AFDS using the Eq.4 (refer to Section 3.2.1).

The fundamental frequency, formants and harmonic features are extracted
from the AFDS speech data along with its percentiles as explained in Section 3.2.2
and Section 3.2.3. These statistical features are fed to the support vector regres-
sion for the physical parameter estimation. The mean absolute error of each fea-
ture is compared with the training data mean predictor of each physical parameter
(height, shoulder size, waist size and weight) is shown in Fig.6. The Fstats and
formants shows better MAE performance for all the physical parameters. The
harmonic features are better than TMP in case of height estimation.

Simple averaging is then performed on the predicted test targets obtained
from formant features, Fstats and harmonics features (refer to Section 4.2) . The
comparison of combination results and training data mean predictor are listed in
Table 7. The table also lists an earlier algorithm developed by the authors as
the baseline [50]. All the results use the same train and test split described in
Section 3.1 (same splits are used in our previous work [50]). The baseline per-
forms support vector regression of a bag of words representation extracted from
the short-term spectrum of the speech. The performance metrics both MAE and
RMSE on Comb -3 are better than the baseline for all speakers (both male and
female speakers) except in MAE of weight estimation. With Comb -3, there is a
substantial improvement of MAE and RMSE in all the physical parameters when
compared with the TMP when only male speakers are considered. For further
analysis we use Comb -3 set of features.
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Table 7: Comparison of the proposed feature combinations — Comb -1 (Fstats + formant + fre-
quency locations), Comb -2 (Fstats + formant 4+ amplitude), Comb -3 (Fstats + formant + har-
monic features (amplitude + frequency locations)) with baseline results of AFDS

Multiple Physical parameter Estimation — All (Male + Female)

T™MP Baseline[50] Comb-1 Comb-2 Comb-3
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Height(cm) 6.8 82 5.2 6.6 51 63 50 61 50 6.1
Shoulder(cm) 2.8 34 2.1 2.6 20 24 20 24 19 24
Waist(cm) 56 73 54 7.1 53 69 54 69 55 7.0
Weight(kg) 8.3 10.57 6.7 8.9 69 90 70 89 69 88
Multiple Physical parameter Estimation — Male
TMP Comb -1 Comb -2 Comb-3
MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Height(cm) 64 69 51 63 51 62 5.0 6.1
Shoulder(cm) 2.1 25 20 24 20 24 20 24
Waist(cm) 58 73 54 7.0 56 7.1 55 71
Weight(kg) 7.8 96 73 92 74 92 74 9.1
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Figure 7: MAE vs duration of utterance, for physical parameters’ (Height, Age) estimation from
TIMIT database. The horizontal dashed line represent training data mean predictor (TMP) bench-
mark.

4.4. Duration Analysis

In order to analyze the minimum amount of speech required for the task, we
try to evaluate the performance of the system at different utterance durations. We
initially use the standard TIMIT database and evaluated the system for different
time lengths of input speech ranging from 0.25s to full length. The mean absolute
errors for these different lengths of speech were compared with TMP with height
and age of a speaker and shown in Fig.7.

We performed a genderwise paired t-test comparing the absolute errors from
proposed system (Comb -3) and the default predictor (TMP) for different dura-
tions of speech data. We find that (with criterion of p < 0.05) the proposed
approach results in significant improvements in age estimation for all durations
considered (starting from 0.5sec.) for both the genders and the relative improve-
ment in MAE is 3.15% for males and 15.84% for female speakers. In the case
of height estimation, the proposed approach results in significant improvements
starting from 1.5 sec. duration of audio segments and the relative improvement in
MAE for male speakers is 2.87% and for female speakers is 5.58%. Also, as the
duration of the available speech increases, the MAE reduces as expected. Sub-
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Figure 8: MAE vs duration of utterance, for physical parameters’ (Height, Shoulder width, Waist
size and Weight) estimation from AFDS database. The horizontal dashed line represent training
data mean predictor (TMP) benchmark.

sequently, when sufficient amount of speech data is available, the mean absolute
error get saturated.

It can be noted that even with roughly 1s of speech data, when both male
and females speakers are considered, the model is able to obtain prediction error
MAE of 5.27cm at par with Ganchev et al. [38] in speaker height prediction.
As the available speech duration increases, this prediction error saturates around
5.2 cm when both genders are considered. Similarly for age prediction when
both male and female speakers are considered together, the minimum duration
of speech required to get the state-of-the-art prediction error (i.e, 5.5 years [38]
is 0.5s. Even with around 3s speech available, the prediction error is marginally
better (5.41 years). Gender wise results on duration analysis are also shown in
Fig.7. About, 2s of speech data is required to get a performance comparable to
the full length data.

We also extend the same duration analysis on other physical parameters (shoul-
der width, waist size and weight along with height) using the AFDS dataset. The
system performance is evaluated for different lengths of speech files ranging from
0.25s to full duration(around 40s). We observed that mean absolute errors of each
physical parameter for different durations’ of speech signal is less than the train-
ing data mean prediction error except shoulder size by only using 0.5s for male
speakers. From this, it is evident that the system is reliably able to predict the
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physical parameters from 0.5s duration of speech signal with prediction error less
than the training data mean. The duration of the speech at which the prediction
error saturates is around 2s when both genders data is considered together. The
mean absolute error for height is 5.1cm, shoulder width is 1.9cm, waist size is
5.4cm and for weight is 6.9 kg when we have 2s of speech data, where as when
the available speech data is 40s, we have 5.0 cm, 1.9cm, 5.5cm and 6.9kg for
height, shoulder width, waist size and weight respectively when both male and
female speakers are considered together. The variation of MAE with respect to
utterance duration for male speakers is shown in Fig.8. For male speakers also
the MAE saturates around 2s as like above mentioned case (both male + female
speakers). The change in MAE when full duration (40s) and 2s considered is
0.1cm in height, and there is no change in MAE for other physical parameters like
shoulder size, waist size and weight estimation.

4.5. Summary

In short, it can be seen that each of the physical parameter prediction error
is less than the TMP even with short speech segments (around 0.5 seconds). We
are able to achieve the state-of-the-art results with around 1 — 2 seconds for all
the physical parameters. The MAE of the proposed height estimation system on
TIMIT (5.2cm for male, 4.8cm for female) is similar to the best height estimation
results (5.0cm for male and 4.8cm for female) [28]. Note that this system [28]
requires speech transcription for computing the phoneme specific features. In
case of age estimation, the MAE of the proposed system (5.2 years for male and
5.6 years for female) is better than the state of the art result (MAE of 5.5 years
for male, 6.5 years for female) reported on TIMIT [41]. Also, we demonstrate
similar performances for other physical parameters in a multi-lingual setting. In
summary, we hypothesize that the proposed methods could be used for speaker
profiling where the duration of available speech data is limited.

5. Conclusions

In this work, we have explored the estimation of multiple physical parameters
from short duration speech segments. In addition to conventional short-term spec-
tral features, we also show that formant frequency features and harmonic structure
of speech could be used as input to these tasks. Each of the individual features
perform equally well on the test data and are able to achieve results that are com-
parable to state-of-the-art. Furthermore, these individual features are shown to be
complementary and a simple averaging improves the performance by achieving an

28



623

624

625

626

627

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

MAE of 5.2 cm for male and all (male and female) and 4.8 cm for female speakers
in height estimation. For age estimation, the MAE is 5.2 years, 5.6 years and 5.4
years for male, female and all speakers using the TIMIT dataset.

We have also presented the details of a new dataset where more speaker at-
tributes like height, shoulder width, waist size and weight are collected. Each
individual feature — first order statistics, formants, and harmonics — is able to
achieve a prediction error less than the training data mean predictor in terms of
MAE. The simple averaging of these predicted targets provides the best results
in these tasks as well. While the proposed features and modeling are simple, we
show that proposed approach is effective in various of speaker trait estimation
tasks and outperform previously published results in these domains. To the best
of authors knowledge, this is the first attempt to address the multilingual setting
for speaker profiling tasks using short durations of speech data.

The duration analysis reveals that the prediction error of each physical param-
eter of a speaker is less than the training data mean predictor with as little speech
as 0.5s. Also with around 1 — 2 seconds of data the MAE obtained is as good as
the state-of-the-art results which were achieved using full duration of audio sig-
nal (> 10s). This enables the system to be useful in speaker profiling, speaker
recognition tasks, targeted advertisements in commercial applications with short
audio recordings from the target speaker. The extension to noisy speech in con-
versational setting would be the next logical step to developing forensic speech
applications.
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