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ABSTRACT
We present a novel approach to derive robust speech representa-
tions for automatic speech recognition (ASR) systems. The pro-
posed method uses an unsupervised data-driven modulation filter
learning approach that preserves the key modulations of speech sig-
nal in spectro-temporal domain. This is achieved by a deep gener-
ative modeling framework to learn modulation filters using convo-
lutional variational autoencoder (CVAE). A skip connection based
CVAE enables the learning of multiple irredundant modulation fil-
ters in the time and frequency modulation domain using temporal
and spectral trajectories of input spectrograms. The learnt filters are
used to process the spectrogram features for ASR training. The ASR
experiments are performed on Aurora-4 (additive noise with channel
artifact) and CHiME-3 (additive noise with reverberation) databases.
The results show significant improvements for the proposed CVAE
model over the baseline features as well as other robust front-ends
(average relative improvements of 9% in word error rate over base-
line features on Aurora-4 database and 23% on CHiME-3 database).
In addition, the performance of the proposed features is highly ben-
eficial for semi-supervised training of ASR when reduced amounts
of labeled training data are available (average relative improvements
of 29% over baseline features on Aurora-4 database with 30% of the
labeled training data).

Index Terms— Unsupervised filter learning, Convolutional
variational autoencoder, skip connections, modulation filtering, ro-
bust speech recognition.

1. INTRODUCTION

The performance degradation of speech applications such as voice
search or conversational-bots in noisy and reverberant environment
demands the need for improved robustness in automatic speech
recognition (ASR) systems. While several advancements have been
made in the acoustic modeling for ASR, the presence of extrin-
sic noise sources and reverberations continue to pose challenge
to the ASR system deployment [1]. The noise robustness can be
partly addressed by multi-condition training (utilizing noisy training
data from multiple environments) [2]. In spite of this training, the
performance difference between multi-condition train-test and the
clean train-test of ASR is pronounced, which warrants the need for
attaining noise robustness either at speech representation stage or
the training stage. This work focuses on the robust representation
learning using unsupervised generative modeling method.

Modulation filtering is an approach to robust feature extraction
that is based on enhancing the key dynamics of the speech signal in
the spectro-temporal domain, while suppressing speech modulations
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that are susceptible to noise/reverberation. This is partly motivated
from the remarkable robustness seen in the human auditory system
to many of the environmental artifacts [3, 4]. Several works in the
past have incorporated the knowledge of spectro-temporal modula-
tion filtering for ASR. One of the earliest use of temporal modu-
lations (rate) was the RASTA filtering approach [5]. The spectro-
temporal modulation (rate-scale) filters for feature extraction, for ex-
ample, Gabor filtering [6, 7], have shown further improvements for
ASR. A data-driven approach for parameter selection of Gabor filter
set has been studied in [8]. The linear discriminant analysis (LDA)
has also been explored to learn the temporal modulation filters in a
supervised manner [9,10]. Recently, we have also analyzed unsuper-
vised rate-scale filtering using generative modeling approaches [11]
where a two-stage filter learning approach with restricted Boltzmann
architecture is used.

In this work, we propose a new approach to learn temporal and
spectral modulation filters from a variational modeling perspective.
In particular, convolutional variational autoencoder (CVAE) is used
to learn multiple modulation filters from the input spectrogram [12].
To learn multiple irredundant modulation filters, we propose a skip
connection based network architecture [13]. The ‘skip’ architecture
in the encoder of CVAE is employed to serve two purposes: to find
residual of the input with some filtered representation (which has
already been learnt), and to combine the two different filtered repre-
sentations to be fed to the rest of the network for joint minimization
of the loss function. The kernels of the two convolutional layers of
the encoder are interpreted as modulation filters, that captures mod-
ulations derived from large amount of unsupervised speech spec-
trogram data, and can provide important cues regarding the useful
spectral and temporal modulations of speech. The learnt filters are
then used to derive robust spectrogram representations for ASR. The
ASR experiments are performed on Aurora-4 (additive noise with
channel artifact) and CHiME-3 challenge (additive noise with rever-
beration) databases. The proposed filter learning approach provides
significant improvements in terms of WER over various other noise
robust front-ends.

The rest of the paper is organized as follows. The theory of
variational modeling in autoencoder networks is described in Sec. 2.
The use of convolutional variational autoencoder for filter learning
from speech signal is discussed in Sec. 3. Sec. 4 describes various
ASR experiments and results, followed by summary in Sec. 5.

2. VARIATIONAL AUTOENCODER (VAE)

The VAE differs from a standard AE where the VAE model assumes
that the samples of latent representation can be drawn from a stan-
dard normal distribution, i.e N (0, I) [12]. The encoder estimates
the parameters of the latent data distribution that approximates the
posterior distribution of the latent vector given the data. The de-
coder then samples from the approximate distribution and attempts
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Fig. 1. Block schematic (bottom-up) of rate filter learning with
CVAE using skip connections in Encoder for residual learning. Here
FC denotes fully connected layer, Conv denotes convolution layer.

to reconstruct the original data back. Both the encoder and decoder
parameters can be trained using a deep learning framework. If we
assume an observation vector x, a latent vector z and a set of pa-
rameters θ for the decoder network, the aim of the VAE network is
to maximize the probability of each x in the training set under the
generative process, according to

pθ(x) =

∫
pθ(x|z)p(z)dz. (1)

The model involves two steps: (1) z is generated from prior dis-
tribution p(z); (2) a value x is generated from conditional distribu-
tion pθ(x|z). However, in the assumed generative model with a de-
coder neural network, the function pθ(x) is not always differentiable
w.r.t. θ due to the intractable integral in Eq. 1; therefore θ cannot be
optimized directly. The VAE framework resolves this problem based
on a variational lower bound method [12]. A new function qφ(z|x)
(probabilistic encoder with encoder parameters φ) is introduced that
can take value of x and give a distribution over z values. In other
words, the function qφ(z|x) approximates the true posterior distri-
bution pθ(z|x). The encoder and decoder parameters, φ and θ, re-
spectively, are trained by maximizing the ‘variational’ lower bound
L(θ, φ;x) of the marginal likelihood log pθ(x), given as

L(θ, φ;x) = −DKL[qφ(z|x)||p(z)] + Ez|x∼qφ [log pθ(x|z)] (2)

Thus, maximizing L inherently maximizes the data likelihood.
The negative of the first term in Eq. 2 is termed as ‘latent loss’
which is the KL divergence of qφ(z|x) with unit Gaussian distribu-
tion p(z). The second term in Eq. 2 with Gaussian assumptions
on pθ(x|z), reduces to the negative of mean square error (MSE)
loss. In the implementation of VAE, the distribution pθ(x|z) is as-
sumed to be Gaussian. In addition, the distribution qφ(z|x) is also
assumed to be Gaussian. However, the error through a layer that
samples z from qφ(z|x) needs to be back-propagated, which is a

Table 1. The architecture of the CVAE model used for rate and scale
filter learning.

Number of layers - encoder Conv: 2, FC: 2
Number of layers - decoder FC: 2

Number of kernels, kernel size in Conv 1, 1× 5
Activation function tanh

Mini-batch size 30000
Learning rate, Optimization 0.0001, Adam [14]

Number of nodes in FC - rate / scale 150 / 40
Latent Vector z Dimension - rate / scale 120 / 28

non-continuous operation and has no gradient. Hence, a “reparame-
terization trick” solution is used to move the sampling to an input
layer. Given the parameters of the encoder network, µφ(x) and
σ2
φ(x) which are the mean and variance parameters of qφ(z|x) -

we can sample from N (µφ(x), diag(σ
2
φ(x))) by first sampling

ε ∼ N (0, I), then computing z = µφ(x) + diag(σφ(x))ε. This
operation is shown schematically in Figure 1. A similar architecture
is used on spectral slices of the spectrogram for scale filter learning.

3. CONVOLUTIONAL VAE AND FILTER LEARNING

The block diagram of the VAE model used for filter learning is
shown in Figure 1. The use of CVAE is motivated by the goal of
learning modulation filters in an unsupervised manner. The ker-
nels (convolutional filters of the two ‘Conv’ layers in Encoder) of
the deep CVAE trained using spectrogram input are interpreted as
the modulation filters learned from the data that characterize the
key modulations required to generate speech. We train the CVAE
in multi-condition fashion with a small number of filters (we use
one filter in each convolutional layer). This way, the model is con-
strained to primarily learn the speech distribution while ignoring the
noise distribution.

As outlined in Figure 1, the input to CVAE are the 1-D temporal
(spectral) trajectories of log mel spectrograms for rate (scale) filter
learning. The mel spectrogram is computed using short-time Fourier
transform of speech signal with 25 ms frame length shifted by 10
ms, and the frequency axis is warped to 40 mel-bands. For rate filter
learning, the dimension of the 1-D trajectory as the input to CVAE is
1 × 150 (equivalent to 1.5 s of speech), and for scale filter learning
it is 1 × 40 (corresponding to all 40 mel bands). Table 1 gives the
details of the CVAE architecture used in this work. The first layer
of the ‘encoder’ is a convolutional layer with number of kernels = 1
and kernel size as 1 × 5. Let the output of this layer be h1, where
h1 = x ∗ r1 for rate filter learning and h1 = x ∗ s1 for scale filter
learning. In order to learn multiple irredundant filters, we remove
the contribution of the learnt kernel from the input x using skip con-
nection and feed the tanh of the residual (x − h1) to the next con-
volutional layer. The next layer (also having one kernel) then learns
the modulation characteristics from the residual and generates output
h2 = (x−h1)∗r2 for rate filter learning and h2 = (x−h1)∗s2 for
scale filter learning. We add the two filtered (hidden) representations
and the non-linear activations tanh(h1 + h2) is fed to FC layers of
the encoder. The latent vector z is calculated from the encoder out-
put as discussed in Section 2. The decoder then reconstructs the 1-D
trajectory from the z [15].

3.1. Filter Characteristics

The filters r1, r2 (s1, s2) are iteratively updated using the gradients
of the total loss function. The CVAE is trained using multi condi-
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Fig. 2. Frequency modulation characteristics of the two rate (r1, r2)
and scale filters (s1, s2) learned from the CVAE model with skip
connections using the Aurora-4 dataset. The RASTA filter is also
shown in the r1 plot for reference.

tion data of different databases separately. We begin with random
initialization of the filters and the weights and allow the CVAE to
learn modulation filter characteristics from data. Figure 2 shows the
normalized magnitude frequency response of the filters learned us-
ing Aurora-4 database (details of the Aurora-4 dataset are given in
Sec. 4). The x axes for the rate and scale filters are rate frequencies
(measured in Hz) and scale frequencies (measured in cycles/mel) re-
spectively.

In our analysis, we find that the two rate filters learned from
the input mel spectrogram have invariably band-pass and band-stop
characteristics. The scale filters jointly span the entire spectral mod-
ulation space. We hypothesize that the filters will learn the com-
mon underlying representation of all types of input noisy speech,
which would be dominated by clean speech. The first row of Fig. 2
also shows the comparison with the RASTA filter [5]. As seen here,
the learnt data driven rate filter resembles the perceptual knowledge
driven RASTA filter. Also, it is interesting to note that the range
of modulations captured by r1, r2 and s1, s2 are quite similar to the
modulation filters found in human perceptual studies [3].

3.2. Comparison with prior work

The previous work in this direction to learn irredundant 1-D and 2-
D modulation filters in an unsupervised manner is reported in [11,
16, 17]. In the previous work, the filter learning is performed by
learning one filter at a time using convolutional restricted Boltzmann
machine (CRBM). The residual is computed externally and is fed to
the network for the learning of second filter. Thus, the filters are not
jointly optimized. The proposed method in this paper uses a single
filter learning framework with CVAE model and skip connections.

3.3. Feature extraction for ASR

The features for ASR are derived by filtering the log mel spectro-
gram using filters learned from the proposed approach. In this work,
we select the rate filter with bandpass characteristic as it has been
observed earlier to be crucial for ASR performance [5, 11], while
both the scale filters are used for ASR. The log mel spectrograms are
filtered using filters (r1, s1) and (r1, s2) separately and are concate-
nated to derive features for ASR. This is motivated from the neuro-
physiological evidences suggesting the processing of speech signals
along parallel pathways that encode complementary information in
the signal [18,19]. For ASR training, the features are mean-variance
normalized at the utterance level before the acoustic model training.

Table 2. Word error rate (%) in Aurora-4 database for multi condi-
tion training condition with various feature extraction schemes and
the proposed CVAE modulation filtering approach.

Cond MFB PFB ETS RAS LDA MHE CVAE
A. Clean with same Mic

Clean 4.2 4.1 4.5 4.6 4.7 4.0 3.4
B: Noisy with same Mic

Airport 7.5 7.9 8.0 8.1 10.1 8.2 6.8
Babble 7.7 7.9 7.9 8.7 9.9 8.6 7.0
Car 4.7 4.9 5.6 5.0 5.8 4.9 4.4
Rest. 9.8 10.2 11.0 11.0 12.6 11.1 8.9
Street 8.6 8.8 10.0 9.0 10.6 8.8 7.9
Train 8.7 8.3 9.3 9.1 10.6 8.4 8.3
Avg. 7.8 8.0 8.6 8.5 9.9 8.3 7.2

C: Clean with diff. Mic
Clean 8.4 7.8 8.0 9.7 10.0 8.1 7.2

D: Noisy with diff. Mic
Airport 19.7 20.9 18.5 20.1 22.3 20.8 17.7
Babble 20.3 20.9 19.3 20.0 22.5 21.3 18.3
Car 11.8 13.1 14.1 12.5 14.5 12.8 10.3
Rest. 21.7 23.7 21.8 23.1 25.2 23.1 19.7
Street 19.1 20.0 19.4 18.9 21.2 20.5 17.2
Train 18.3 19.6 19.6 19.9 21.6 18.9 17.6
Avg. 18.5 19.7 18.8 19.1 21.2 19.6 16.8

Avg. of all conditions
Avg. 12.1 12.7 12.6 12.8 14.4 12.8 11.0

4. EXPERIMENTS AND RESULTS

4.1. Kaldi ASR framework

The speech recognition Kaldi toolkit [20] is used for building the
ASR. For the ASR experiments on Aurora-4 and CHiME-3 Chal-
lenge, we use a deep neural network (DNN) with 6 hidden layers
having 21 frames of input temporal context. The baseline model
does not incorporate any modulation filtering. The DNNs with sig-
moid nonlinearity are layer wise pre-trained with a deep belief net-
work. Then, the models are discriminatively trained using the train-
ing data with cross entropy loss. A hidden Markov model - Gaussian
mixture model (HMM-GMM) system is used to generate the align-
ments for training the DNN based model and a tri-gram language
model is used in the ASR decoding. The performance of the ASR
system is analyzed using word-error-rate (WER).

We compare the ASR performance of the proposed modula-
tion filtering approach (CVAE) with traditional mel filter bank en-
ergy (MFB) features, power normalized filter bank energy (PFB)
features [21], advanced ETSI front-end (ETS) [22], RASTA fea-
tures (RAS) [5], LDA based features (LDA) [9], and MHEC features
(MHE) [23]. In particular, the RASTA features (RAS) and LDA fea-
tures are included as they both perform modulation filtering in the
temporal domain using a knowledge driven filter and a supervised
data driven filter, respectively.

4.2. Aurora-4 ASR

The Wall Street Journal (WSJ) Aurora-4 corpus consists of contin-
uous read speech recordings of 5000 words corpus, recorded under
clean and noisy conditions (street, train, car, babble, restaurant, and
airport noises at 10− 20 dB SNR). The training data has 7138 multi
condition recordings from 84 speakers. The validation data has 1206
recordings for multi condition setup. The test data has 330 record-
ings (8 speakers) for each of the 14 test conditions (clean and noisy).



Table 3. Word error rate (%) in CHiME-3 Challenge database for
multi-condition training (real+simulated) with test data from simu-
lated and real noisy environments.

Test Cond MFB PFB RAS MHE CVAE
Sim dev 14.3 13.7 14.6 14.4 12.2
Real dev 11.6 12.0 11.8 12.0 9.6
Avg. 13.0 12.9 13.2 13.2 10.9
Sim eval 25.5 25.1 23.1 26.4 19.1
Real eval 22.6 23.0 21.6 22.9 17.9
Avg. 24.1 24.1 22.4 24.7 18.5

Table 4. WER (%) for each noise condition in CHiME-3 dataset
with the baseline features and the proposed feature extraction.

Dev Data

Cond. Sim Real
MFB CVAE MFB CVAE

BUS 12.6 10.6 14.2 11.5
CAF 17.0 15.7 11.4 9.8
PED 12.0 9.9 8.5 7.0
STR 15.7 12.5 12.3 10.3

Eval Data

Cond. Sim Real
MFB CVAE MFB CVAE

BUS 18.3 13.3 29.2 22.8
CAF 26.3 20.5 23.7 18.0
PED 29.1 20.6 21.1 16.8
STR 28.3 22.1 16.4 13.9

The test data is classified into four groups, A - clean data, B - noisy
data, C - clean data with channel distortion, and D - noisy data with
channel distortion.

The results of various ASR experiments on Aurora-4 dataset is
shown in Table. 2. The ASR results have also been separately re-
ported for different noisy conditions (conditions A,B,C,D). As seen
in this Table, most of the noise robust front-ends do not improve
over the baseline mel-filter bank (MFB) performance, as the acous-
tic models are trained using multi-condition noisy training data. The
proposed features provide significant improvements in ASR perfor-
mance over the baseline system (average relative improvements of
9%). Furthermore, the improvements in ASR performance are con-
sistently seen across all the noisy conditions of Aurora-4 dataset.

4.3. CHiME-3 ASR

The CHiME-3 corpus for ASR contains multi-microphone tablet de-
vice recordings from everyday environments, released as a part of
3rd CHiME challenge [24]. Four varied environments are present,
cafe (CAF), street junction (STR), public transport (BUS) and pedes-
trian area (PED). For each environment, two types of noisy speech
data are present, real and simulated. The real data consists of 6-
channel recordings of sentences from the WSJ0 corpus spoken in
the environments listed above. The simulated data was constructed
by artificially mixing clean utterances with environment noises. The
training data has 1600 (real) noisy recordings and 7138 simulated
noisy utterances. We use the beamformed audio for filter learning
using CVAE, and for ASR training and testing. The development
( dev) and evaluation ( eval) data consists of the 410 and 330 ut-
terances respectively. For each set, the sentences are read by four
different talkers in the four CHiME-3 environments. This results in
1640 (410×4) and 1320 (330×4) real development and evaluation
utterances in total. Identically-sized, simulated dev and eval sets are
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Fig. 3. ASR performance in terms of WER (%) in Aurora-4 database
(average of 14 test conditions) for multi condition training using
lesser amount of labeled training data (70%, 50%, 30%).

made by mixing recordings captured in the recording booth with the
environmental noise recordings.

The results for the CHiME-3 dataset are reported in Table 3.
The proposed approach to feature extraction provides significant im-
provements over the baseline system as well as the other noise robust
front-ends considered here. On the average, the proposed approach
provides relative improvements of 16% in the development set and
23% in the evaluation set. The detailed results on different noises
in CHiME-3 are reported in Table 4. For all the noise conditions
in CHiME-3 in simulated and real environments, the proposed ap-
proach shows significant improvements over the baseline MFB fea-
tures. In the evaluation dataset, the relative improvements over the
baseline features for most of the noise conditions are above 22%.

4.4. Semi-supervised training

The semi-supervised ASR requires modeling speech without labels
and then utilizing minimal supervision for ASR training. In many
real-world scenarios, collection of noisy data may be relatively easy
while the labeling process may be quite cumbersome and expen-
sive. For semi-supervised ASR training, the Aurora-4 training set
up is used with 70, 50 and 30% of the labeled training data. The
modulation filters are learnt using full unsupervised training data.
The performance comparison of ASR with semi-supervised train-
ing is shown in Figure 3 only for MFB features (as MFB features
performed relatively better than other features in Table 2) and the
proposed CVAE feature scheme (average WER of all 14 test data
conditions). These results indicate that the proposed features are
much more resilient to reduced amounts of labeled training data as
compared to the baseline system. These features perform signifi-
cantly better than MFB features (relative improvement of 29% over
the baseline for the case with 30% labelled training data).

5. SUMMARY

The major contributions from this work are as follows:
• Proposal of an unsupervised data-driven approach to learn

spectral and temporal modulation filters with a random ini-
tialization.

• Obtaining multiple irredundant data-driven filters using skip
connection approach in deep variational network.

• Robustness in noisy and reverberant conditions using the pro-
posed modulation filtering scheme.

• Improved resilience to reduced amounts of labeled training
data for the proposed features.
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