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Abstract
In this paper, a hybrid i-vector neural network framework (i-
BLSTM) which models the sequence information present in a
series of short segment i-vectors for the task of spoken lan-
guage recognition (LRE) is proposed. A sequence of short
segment i-vectors are extracted for every speech utterance and
are then modeled using a bidirectional long short-term memory
(BLSTM) recurrent neural network (RNN). Attention mech-
anism inside the neural network relevantly weights segments
of the speech utterance and the model learns to give higher
weights to parts of speech data which are more helpful to the
classification task. The proposed framework performs better
in short duration and noisy environments when compared with
the conventional i-vector system. Experiments are performed
on clean, noisy and multi-speaker speech data from NIST LRE
2017 and RATS language recognition corpus. In these experi-
ments, the proposed approach yields significant improvements
(relative improvements of 7.6 - 13% in terms of accuracy for
noisy conditions) over the conventional i-vector based language
recognition approach and also over an end-to-end LSTM-RNN
based approach.
Index Terms: Spoken language recognition, short segment i-
vectors, LSTM, attention

1. Introduction
The task of spoken language recognition has gained consider-
able interest in many applications in the recent years [1, 2, 3].
Even with the advancements in speech signal modeling meth-
ods like the factor analysis [4] which gave a significant boost to
the performance of language identification (LID) systems, the
primary challenge is with the utterances of short duration and
when the task involves recognizing multiple dialects of same
language family. The performance of the system is further de-
graded in the presence of noise and other artifacts as shown in
the robust automatic transcription of speech (RATS) databases
[3, 5, 6]. In this paper, we propose a short segment sequence
modeling framework to address some of these challenges in LID
system development.

The fixed dimensional embeddings known as i-vectors for a
variable length speech utterances using a background model [7]
for LID was introduced in [8]. The i-vectors are extracted from
utterance level adaptations of a background model which can
be a Gaussian mixture model (GMM) [9] or a DNN model [10].
They capture long term information contained in the speech ut-
terance like the speaker and language. Once extracted, the i-
vectors from the training data are used to train classifiers like
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the support vector machines (SVMs) to perform the task of lan-
guage identification [11, 12].

One of the main drawbacks of the i-vector representations
[8] and the recently proposed x-vector representations [10] is
the global summarization of the audio signal. For tasks like di-
alect identification from short duration audio snippets, the infor-
mation discerning the dialect/language may lie only in a small
region of the audio signal (few words in the whole utterance).
Also, in the presence of noise and other artifacts, some regions
of audio may be more reliable than the rest. In these scenarios,
the global summarization of the signal may suppress the key in-
formation in short audio snippets. We hypothesize that there is
a need to model the relevant regions of the audio signal rather
than the long-term summary of the signal for the task of LID.

Attention based approach in neural network modeling pro-
posed in [13] for machine translation and [14] for image cap-
tioning has shown to provide relative importance to differ-
ent temporal regions of the input sequence for sequence-to-
sequence mapping tasks. Attention modeling approaches for
speech recognition with variable length speech utterances were
initially investigated for phoneme recognition in [15]. Recently,
the attention based models have also been applied for end-to-
end speech recognition [16, 17] and language recognition tasks
[18]. For emotion recognition from speech, attention based
models have been explored in [19, 20]. However, the state-of-
art language recognition systems using large scale NIST lan-
guage recognition evaluation (LRE) challenges, continue to use
the i-vector based approaches with support vector machine clas-
sifier [21]. We propose a model which performs a relevance
based sequence modeling of the speech temporal sequence with
short segment i-vectors for language recognition tasks using
deep bidirectional long short term memory(BLSTM) neural net-
works. We refer to this as the i-BLSTM model throughout the
rest of the paper.

The rest of the paper is organized as follows. In Section
2 we describe the proposed i-BLSTM model. Section 3 pro-
vides the details of experimental setup used for the LRE2017
and RATS datasets as well as the details of the state-of-the-art
baseline i-vector model and the end-to-end LSTM based neural
network approach to language recognition. The results of exper-
iments for the two datasets and for various noisy environments
are reported in Section 4 which is followed by a discussion on
the i-BLSTM model in Section 5. In Section 6, we summarize
the important contributions of this paper.

2. The hybrid i-BLSTM Model
The proposed i-BLSTM model is shown in Fig.1. The short-
segment i-vectors, extracted every 200 msec from overlapping
windows of 1000 msec duration (100 frames of acoustic fea-
tures f1,f2,... extracted with 10 msec shift) are modeled using



Figure 1: Proposed i-BLSTM model for language recognition.

bidirectional LSTM (BLSTM) [22] layers and attention module
[13]. There are two BLSTM layers and the first BLSTM layer
is fed with a variable length sequence of 500 dimensional short
segment i-vectors. Both the forward and backward layers of the
two BLSTM layers contain 256 cells each. Outputs from the
forward and backward layers of BLSTM are concatenated be-
fore passing them onto the next layer and the output from the
final BLSTM layer is fed to the attention module. The attention
mechanism [13] shown in Fig. 2 provides an efficient way to ag-
gregate the output sequence of final BLSTM layer. The model
implements the following set of equations,

ut = tanh(Weht + be) (1)

at =
exp(uT

t ue)∑
t exp(uT

t ue)
(2)

e =
∑
t

atht (3)

The weights We and bias be of the attention module along
with the vector ue are learned in training. Normalized weights
at are computed based on the similarity of the vectors ut and
ue, which are then used to output a fixed dimension embedding
e of the input sequence. The embedding e is then mapped to the
language targets through a layer of fully connected network and
a softmax output layer.

e

h
 1

h
 2

h
 3

h
 T

   eW  ,  b      e 

u
 e

a
 1

 2
a

a
 3

a
 T

Network
Attention 

Figure 2: Attention modeling in the proposed model

3. Experimental Setup
3.1. Dataset

3.1.1. LRE2017 Dataset

LRE2017 setup has separate datasets for training, develop-
ment and evaluation. All the models were trained on the
LDC2017E22 training dataset and development dataset was
used as a validation set for tuning the models. There are five
major language clusters (Arabic, Chinese, English, Slavic and
Iberian) with 14 target dialects. A total of 2069 hours spread
across 16205 files is available for training. The development
dataset consists of 3661 files which contain 253 hours of au-
dio and the evaluation dataset consists of 25451 files with 1065
hours of audio. The development and evaluation datasets are
further partitioned into utterances of 3 sec, 10 sec or 30 sec
duration and the audio extracted from video data consisting of
1000 sec recordings.

Further, we have added five different types of noise (Bab-
ble, Restaurant, Airport, Street, Subway) at various signal-to-
noise ratios (0, 5, 10, 15 and 20 dB) to the LRE2017 evaluation
dataset. The models were then evaluated on this noisy dataset
to compare their relative robustness towards noise. Either the
entire audio or only the initial half(to simulate non-stationary
noise effects) is corrupted with noise. Also, to evaluate multi-
speaker conditions, same language utterances from 2 differ-
ent speakers of the LRE2017 evaluation dataset were merged.
These scenarios were created to simulate the practical condi-
tions where the audio can be corrupted with noise (stationary
and non-stationary) and may contain multiple people speaking
the same language. The proposed model and the i-vector base-
line were also evaluated for their sensitivity towards absence of
any speech activity detection (SAD) information.

3.1.2. RATS Dataset

The DARPA Robust Automatic Transcription of Speech
(RATS) [3] program targets the development of speech systems
operating on highly distorted speech recorded over ”degraded”
radio channels. The data used here consists of recordings ob-
tained from re-transmitting a clean signal over eight different
radio channel types, where each channel introduces a unique
degradation mode specific to the device and modulation char-
acteristics [3]. For the language identification (LID) task, the
performance is degraded due to the short segment duration of
the speech recordings in addition to the significant amount of
channel noise [23].

The training data for the RATS experiments consist of
20000 recordings (about 1600 hours of audio) from five tar-
get languages (Arabic, Pashto, Dari, Farsi and Urdu) as well
as from several other non-target languages. We have used 6
out of 8 given channels (channels B-G) for training and testing



Table 1: Performance of reference and the developed system on
the NIST LRE2017 evaluation dataset in terms of percentage
accuracy, Cavg and EER.

Dur./Model LDA-SVM [21] LSTM [28] i-BLSTM
Accuracy (%)

3 53.84 54.74 54.80
10 72.36 72.58 75.89
30 82.98 76.10 82.27

1000 56.23 42.86 54.07
overall 67.86 64.74 68.65

Cavg

3 0.53 0.55 0.50
10 0.27 0.35 0.26
30 0.13 0.28 0.18

1000 0.54 0.79 0.50
overall 0.37 0.48 0.36

EER (%)
3 13.40 15.39 15.47
10 6.47 8.70 6.32
30 3.50 7.25 3.67

1000 15.35 26.27 14.71
overall 9.26 14.38 9.65

purposes. All the models are trained as a 6 class classification
problem. The development and the evaluation data consists of
5663 and 14757 recordings respectively from the above 6 chan-
nels. We also evaluate the models on sampled 3, 10 and 30 sec
chunks of voiced data from the full length evaluation files.

3.2. Feature Extraction

The use of bottleneck features derived from a speech recogni-
tion acoustic model have recently shown consistent improve-
ments for language recognition [24, 25]. We extract 80 dimen-
sional bottleneck features (BNF) from a DNN trained for au-
tomatic speech recognition using Kaldi [26] framework. The
model to extract bottleneck features was trained using 39 (13+
∆+∆∆) dimensional MFCC features with 10 msec frame rate
over 25 msec windows on labeled speech data from Switch-
board SWB1 and Fisher corpora (∼2000 hours). The model
uses 7 hidden layers with ReLU activation and layer-wise batch
normalization. A speech activity detection (SAD) [27] algo-
rithm was applied on the original audio to remove the unvoiced
frames from the features extracted. Cepstral mean variance nor-
malization (CMVN) over each utterance followed by a sliding
window cepstral mean variance normalization (CMVN) over a
3 sec window was applied on the extracted features.

3.3. Baseline System

3.3.1. i-vector LDA-SVM

The i-vectors used in our experiments are features of fixed di-
mension extracted from a variable length sequence of bottle-
neck features (BNF) [7]. We follow the procedure described in
[8] for their extraction.

Once extracted, the i-vectors are length normalized and
their dimension reduced using linear discriminant analysis
(LDA). Finally a Support Vector Machine (SVM) is trained on
the i-vectors for language classification.

Table 2: Performance of the systems in terms of accuracy (%)
when evaluated on data corrupted partially and completely with
noise at various SNR levels.

SNR/Model LDA-SVM [21] LSTM [28] i-BLSTM
No noise 72.36 72.1 75.89

Partially Noisy
5dB 53.31 56.50 59.79
10dB 55.76 60.42 63.02
15dB 58.49 62.61 65.90
20dB 59.78 64.61 68.16

overall 56.83 61.03 64.22
Noisy

5dB 47.93 48.36 51.58
10dB 53.77 56.30 59.86
15dB 57.82 61.63 64.30
20dB 60.00 65.28 67.72

overall 54.88 57.89 60.87

3.3.2. LSTM

Long Short Term Memory Recurrent Neural Networks (LSTM-
RNN) based models were explored as end-to-end solutions for
language recognition in [28, 29]. In [28], experiments on NIST
datasets have shown that these models while better than the con-
ventional i-vector based models on short duration (3 sec) test
segments, fare poorly on longer duration test segments (10 sec,
30 sec). Their best performing LSTM model, which is a two
layer LSTM with 512 units in each layer followed by an output
softmax layer is implemented in this paper.

3.4. Performance Metrics

Since the LRE2017 and RATS are closed language set LID eval-
uations, we use the accuracy as the primary metric for evaluat-
ing various models in this work. We also report the official LRE
cost metric Cavg for reference on the original LRE evaluation
set. It is worth noting that the cost metric of Cavg can be im-
proved with score calibration using a development set. In this
paper, we have reported LID results from raw scores without
any calibration.

4. Results
The performance of the proposed hybrid i-BLSTM model is
compared with the baseline (LDA-SVM) and the LSTM model
for the LRE2017 dataset (Table 1). In terms of the primary eval-
uation metric (Cavg), the proposed approach provides the best
results for all duration conditions except the 30 sec condition.
In addition, the proposed hybrid neural model improves signif-
icantly over the previous LSTM [28] based approach for longer
duration conditions (10 sec or more). These results highlight
that the proposed approach is effective in modeling long-term
dependencies in the audio signal compared to previous neural
network models for language recognition. We also find that the
accuracy measure is well correlated with the Cavg measure. In
the subsequent experiments on noisy datasets, we report the ac-
curacy measure alone (all the trends found in accuracy measure
for the noisy datasets are correlated with the Cavg results are
well).

The performance on noisy and partial noisy versions of the
LRE2017 dataset is shown in Table 2 for the 10 sec recordings.
In the noisy and partial noisy conditions, the LSTM model [28]



Table 3: Performance of the i-vector baseline system and the
proposed model on the RATS dataset in terms of percentage ac-
curacy, Cavg and EER.

Dur./Models LDA-SVM i-BLSTM
Accuracy (%)

3 65.39 67.99
10 77.46 79.66
30 85.38 87.72

full length 92.22 92.50
Cavg

3 1.12 0.89
10 0.81 0.65
30 0.57 0.44

full length 0.40 0.32
EER (%)

3 25.90 21.48
10 17.81 14.00
30 11.88 8.98

full length 7.64 6.08
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Figure 3: Attention weights on partially noisy LRE2017 file and
the corresponding clean LRE2017 recording.

improves over the baseline i-vector SVM system. The proposed
hybrid i-BLSTM further improves the performance on all the
SNR conditions. On average, the proposed approach yields rel-
ative improvements of 14% over the baseline system for the par-
tially noisy condition and about 11% for the noisy condition.

On the RATS dataset, the language recognition results are
reported in Table 3. The RATS recordings are inherently noisy
due to the transmission artifacts. On all the duration conditions
(and in terms of all the performance metrics considered), the
i-BLSTM model improves over the baseline system. The im-
provements are more pronounced in short duration recording
conditions. The proposed i-BLSTM model is more robust to the
channel artifacts compared the baseline i-vector SVM model.

5. Discussion
5.1. Attention Analysis

In this subsection, we analyze the role of the attention mech-
anism in the proposed i-BLSTM model. We plot the spectro-
gram of a partially corrupted speech recording (first 5 sec at 10
dB SNR) and the corresponding attention vector which is com-

Figure 4: Performance comparison for the baseline system and
i-BLSTM model for multi-talker LID and LID without SAD.

puted at 1 sec resolution in Fig. 3. The attention weights for
the same recording without any additive noise (clean recording)
is also shown for reference. As can be seen, for the partially
noisy recording, the attention weights for the later part of the
utterance are relatively higher making them more relevant to the
task. Comparing the attention weights for the clean and noisy
recording reveals that the attention mechanism, which gave high
relevance to the early part of the audio in the clean conditions,
is dynamic to the change in the SNR conditions of the audio.
The model is able to shift the focus to the regions of the audio
that are more informative for the task of language recognition.

5.2. Multi-talker LID and LID without SAD

We also performed two additional LID experiments with the
proposed i-BLSTM model. The first experiment used speech
recordings in testing that contain multiple speakers. This is ob-
tained by merging 3 sec speech utterances in the clean LRE
evaluation set from multiple talkers of the same language. The
second experiment explores the sensitivity of the LID systems
to the absence of any speech activity detection (SAD) infor-
mation on the 10 sec recordings. As seen in Fig. 4, the pro-
posed model is more robust to the presence of multiple talkers
in the evaluation dataset. Also, the baseline i-vector LDA-SVM
model experiences a significant drop in performance in the ab-
sence of SAD information while the i-BLSTM model is rela-
tively less sensitive. These experiments confirm that the hybrid
i-BLSTM framework is able to efficiently model the time series
for the language classification by relevance weighting based on
the attention mechanism.

6. Summary

In this paper, we have proposed a novel approach for language
recognition using a hybrid i-BLSTM model. The input to the
model is the sequence of i-vector features extracted using 1 sec
windows and the model architecture contains a bi-directional
LSTM with attention. Several experiments on the language
recognition task for LRE2017 and RATS dataset highlight the
significant improvements obtained by the proposed model. The
additional analysis using noisy data and language recognition
experiments in the absence of speech activity detection shows
that the attention mechanism is effective in dynamically re-
weighting the 1 sec i-vector segments based on their relevance
to the language classification task.



7. References
[1] A. Waibel, P. Geutner, L. M. Tomokiyo, T. Schultz, and

M. Woszczyna, “Multilinguality in speech and spoken language
systems,” Proceedings of the IEEE, vol. 88, no. 8, pp. 1297–1313,
2000.

[2] T. Schultz and A. Waibel, “Language-independent and language-
adaptive acoustic modeling for speech recognition,” Speech Com-
munication, vol. 35, no. 1-2, pp. 31–51, 2001.

[3] K. Walker and S. Strassel, “The rats radio traffic collection sys-
tem,” in Odyssey 2012-The Speaker and Language Recognition
Workshop, 2012.

[4] H. Li, B. Ma, and K. A. Lee, “Spoken language recognition: from
fundamentals to practice,” Proceedings of the IEEE, vol. 101,
no. 5, pp. 1136–1159, 2013.

[5] S. Ganapathy, M. Omar, and J. Pelecanos, “Unsupervised channel
adaptation for language identification using co-training,” in 2013
IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE, 2013, pp. 6857–6861.

[6] M. McLaren, D. Castan, and L. Ferrer, “Analyzing the effect of
channel mismatch on the sri language recognition evaluation 2015
system,” in Proc. Odyssey: Speaker Lang. Recognit. Workshop,
2016, pp. 188–195.

[7] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2011.

[8] N. Dehak, P. A. Torres-Carrasquillo, D. Reynolds, and R. Dehak,
“Language recognition via i-vectors and dimensionality reduc-
tion,” in Twelfth Annual Conference of the International Speech
Communication Association, 2011.

[9] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker veri-
fication using adapted gaussian mixture models,” Digital signal
processing, vol. 10, no. 1-3, pp. 19–41, 2000.

[10] D. Snyder, D. Garcia-Romero, and D. Povey, “Time delay deep
neural network-based universal background models for speaker
recognition,” in Automatic Speech Recognition and Understand-
ing (ASRU), 2015 IEEE Workshop on. IEEE, 2015, pp. 92–97.

[11] S. Ganapathy, K. Han, S. Thomas, M. Omar, M. V. Segbroeck, and
S. S. Narayanan, “Robust language identification using convolu-
tional neural network features,” in Fifteenth annual conference of
the international speech communication association, 2014.

[12] B. Padi, S. Ramoji, V. Yeruva, S. Kumar, and S. Ganapathy,
“The leap language recognition system for lre 2017 challenge-
improvements and error analysis,” in Proc. Odyssey 2018 The
Speaker and Language Recognition Workshop, 2018, pp. 31–38.

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[14] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image
caption generation with visual attention,” in International confer-
ence on machine learning, 2015, pp. 2048–2057.

[15] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in Ad-
vances in neural information processing systems, 2015, pp. 577–
585.

[16] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Ben-
gio, “End-to-end attention-based large vocabulary speech recog-
nition,” in Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on. IEEE, 2016, pp. 4945–
4949.

[17] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hy-
brid ctc/attention architecture for end-to-end speech recognition,”
IEEE Journal of Selected Topics in Signal Processing, vol. 11,
no. 8, pp. 1240–1253, 2017.

[18] B. Padi, A. Mohan, and S. Ganapathy, “End-to-end language
recognition using attention based hierarchical gated recurrent unit
models,” in Proc. ICASSP, 2019.

[19] S. Mirsamadi, E. Barsoum, and C. Zhang, “Automatic speech
emotion recognition using recurrent neural networks with local
attention,” in Acoustics, Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on. IEEE, 2017, pp. 2227–
2231.

[20] C.-W. Huang and S. S. Narayanan, “Deep convolutional recurrent
neural network with attention mechanism for robust speech emo-
tion recognition,” in Multimedia and Expo (ICME), 2017 IEEE
International Conference on. IEEE, 2017, pp. 583–588.

[21] S. O. Sadjadi et al., “The 2017 NIST language recognition evalu-
ation,” in Proc. Odyssey, Les Sables dÓlonne, France, June 2018.
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