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Abstract

Over the last decade, the factor analysis based modeling of a
variable length speech utterance into a fixed dimensional vec-
tor (termed as i-vector) has been prominently used for many
tasks like speaker recognition, language recognition and even
in speech recognition. The i-vector model is an unsupervised
learning paradigm where the data is initially clustered using a
Gaussian Mixture Universal Background Model (GMM-UBM).
The adapted means of the Gaussian mixture components are di-
mensionality reduced using the Total Variability Matrix (TVM)
where the latent variables are modeled with a single Gaussian
distribution. In this paper, we propose to rework the theory
of i-vector modeling using a supervised framework where the
speech utterances are associated with a label. Class labels are
introduced in the i-vector model using a mixture Gaussian prior.
We show that the proposed model is a generalized i-vector
model and the conventional i-vector model turns out to be a
special case of this model. This model is applied for a language
recognition task using the NIST Language Recognition Evalu-
ation (LRE) 2017 dataset. In these experiments, the supervised
i-vector model provides significant improvements over the con-
ventional i-vector model (average relative improvements of 5 %
in terms of Cgayg).

Index Terms: Supervised Expectation Maximization, Total
Variability Matrix, i-vector Modeling, Gaussian Back-end.

1. Introduction

The popular paradigm of speaker and language recognition con-
sists of modeling the database of speech recordings (in the form
of a sequence of short-term feature vectors) with a Gaussian
mixture model-universal background model (GMM-UBM) [1].
At the utterance level, the GMM-UBM model is then adapted
at the level of mixture component means [2]. The initial ap-
proaches for speaker and language classification were replaced
with the factor analysis modeling [3] where the adapted Gaus-
sian mean components (spliced as a single high dimensional
vector called the supervector) are expressed as a sum of speaker
and session factors. The parameters in this model are derived
using a maximum likelihood (ML) framework with an iterative
expectation maximization (EM) approach.

The approach of joint factor analysis (JFA) was further sim-
plified by a total variability modeling (TVM) where all variabil-
ities were captured by a single fixed dimensional latent vector
[4]. With a prior of standard normal distribution (having zero
mean and identity covariance), the latent variables were called
i-vectors. The i-vector features, extracted using a EM frame-
work with a ML objective, were used for further processing in
speaker/language/speech recognition systems. For example, the
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speaker verification systems use a probabilistic linear discrimi-
nant analysis (PLDA) [5] to model channel variability [6]. The
language recognition systems with i-vectors used a cosine based
scoring [7] or a support vector machine (SVM) model for lan-
guage classification.

Recently, speech recognition systems have also incorpo-
rated i-vector features for speaker adaptation [8]. The re-
placement of GMM-UBM with a deep neural network (DNN)
speech recognition front-end has also shown improvements in
speaker/language recognition tasks [9, 10]. While normaliza-
tion methods like length normalization have been proposed in
the post processing of the i-vectors [11], all the efforts outlined
above use the unsupervised ML framework for the training the
i-vector models. A previous attempt was made to utilize su-
pervision in i-vector learning by using the label information in-
cluded with the supervector [12].

In this paper, we derive the i-vector modeling framework
in a supervised setting. This modification involves the use of
additional variable for the class label and the application of class
dependent Gaussian mixture model (GMM) prior density for
the latent variable where each mixture component of the GMM
corresponds to a label. This choice of prior is motivated by
the use of a Gaussian back-end [13], where the conventional i-
vectors for each language are modeled with a single Gaussian
distribution. The use of class dependent prior also allows us
to weigh the importance of the prior with a factor. Instead of
the approach of deriving i-vectors using a TVM followed by a
Gaussian back-end [13], we show that the proposed supervised
i-vector framework is able to perform these modeling steps with
a joint EM based learning.

The proposed approach is applied for a language recogni-
tion task in the NIST Language Recognition Evaluation (LRE)
2017 dataset. For the test data (without labels), we extract the i-
vector equivalent under each language specific prior and merge
all the i-vectors into a single vector. A dimensionality reduc-
tion is applied using principal component analysis (PCA) to
provide the final feature representation. These representations
are used in SVM training for language classification. In our ex-
periments comparing the supervised and unsupervised i-vector
features, the proposed approach provides significant improve-
ments in LRE task (average relative improvements of 5 % in
Cavg measure). Furthermore, we show that weighting the prior
distribution on the latent variable appropriately can significantly
improve the duration specific performance.

The rest of the paper is organized as follows. Sec. 2 de-
scribes the modeling framework of the conventional i-vectors.
In Sec. 3, we provide the mathematical derivation of the pro-
posed supervised EM framework for i-vector model parameter
estimation. The language recognition experiments are reported
in Sec. 5. This is followed by a brief summary in Sec. 6.
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2. The Conventional i-vector Model

We provide the mathematical derivation of the conventional i-
vector modeling [3]. This is required as the supervised i-vector
modeling is built on this model. The notations used here follow
those from the work of Kenny and Dehak et. al. [3, 4].
Given a dataset of S recordings, let X(s)
[©1,...,ZH(s)] denote the sequence of [ dimensional
front-end feature vectors, where H (s) is the number of voiced
frames in recording s. Let A = {7, pte, Xc}<_, denote the
parameters of a C' component Gaussian mixture universal
background model (GMM-UBM). The UBM mean supervector
is denoted by Mo = [p1,...,p.] . It is assumed that for
each recording s, an adapted mean supervector M (s) was
used to generate X (s) = [@1, ..., Tp(s)]. The total variability
model (TVM) is a generative model for M (s) and is given by

M(s) = Mo + Ty(s) (2.1)

where T is a matrix of dimension C'F' x R called the total vari-
ability matrix, and y(s) is a latent vector of dimension R x 1.
A standard normal distribution is used as the prior density for
y(s). The i-vector of recording s is defined as the MAP esti-
mate of y(s) given X (s). The Baum-Welch statistics of record-
ing s for mixture c is given by

Ne(s) =Y palc| ) 2.2)
=1
H(s)

Fx.c Z pale] @) (@i — pe) 2.3)

Sx,x,c(s) = Z pi(c|@i) (@i — pe) (@i — NC)T 24
=1

The BW statistics are sufficient statictics for estimation of the
model parameters. In matrix form, the zeroth and first order
statistics are written as:

Nl(S)I 0
N(S) - I
0 No(s)I

FX71(S)
Fx(S) = .

Fx.c(s)

where I is an identity matrix of size F' x F'. It can be shown
that the log-likelihood function of y(s) is

X(s) [y(s)) = G(s) + Hr(s, y(s))

where G/(s) is a term containing the second order BW stats (Eq
(2.4)). G(s) is independent of T" and y(s), so it will not play a
role in estimating 7" and y(s). The second term is

log pp( 2.5

= y(s)TTTEﬂFX (s)

— U TS NE)Ty(s)

Hr(s,y(s))

(2.6)

It can be shown that the aposteriori density function of y(s)

given X (s) is Gaussian with covariance £(s)  and mean
ﬁ(s)flTTElex(s) where
L(s)=I+T'S 'N(s)T .7

Estimating 7" by maximum likelihood is done by using the
Expectation-Maximization algorithm.
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2.1. Expectation (E) step:
The @ function is given by:

s
®)\ _
Q (T |'T ) = ;Ey(s)\X(s),Tm log pr(X(s),y(s))

S
= ZEy(s)\X(s),T(U IngT(X(S) | y(S))
s=1 S

+ ZEy(s)|X(S)7T(t) logp(y(s)) (2.8)

s=1

The second term is independent of 1" and doesn’t play a role in
the M-Step, and hence it can be ignored. Substituting for the
likelihood term, ignoring the irrelevant terms and simplifying
yields:

o(rir?) -3¢

s=

{1 P |

-

1 T
— gt {2 N(s)TES) (s)T } 2.9)
where
LOG) =T +T®" s N(s)T® (2.10)
§0(s) = L) 1O () @.11)
Ef)(s)=L£9s) +50 ()5 (s) 2.12)

The E-step can be summarized as computing the quantities in
Eq (2.10 - 2.12). The vector g (s) is also the MAP estimate
of the latent variable computed using the total variability matrix
T® which is usually termed as the i-vector.

2.2. Maximization (M) step:
The update equation for the matrix 7" is obtained by maximizing
the @ function w.r.t T'.

T = argmax Q (T | T(t>) (2.13)
T

Differentiating Eq (2.9), equating it to zero and simplifying
yields the system of linear equations in every row of T,

S

ZN(S)T(t+1)(£(t)(S) + A(t)( )i (t)(S)T)

s=1
S

T+Y s obtained by solving the above systems of linear equa-
tions.

yTu) s) (2.14)

3. The Supervised i-vector Model

In the traditional i-vector approach, the TVM together with the
GMM-UBM constitute a latent variable based generative model
for the front end feature sequence X (s). In the supervised
TVM, we incorporate the class label information in this genera-
tive model by assuming that the sequence of front-end features
X (s) and the label I(s) follow a joint distribution. Assuming
that there are L classes under consideration, and p(l) as the



prior probability of class [, we can write the prior distribution
of the latent variable y as

L

> pp(y 1)

=1

p(y) 3.1

where p(y | 1) is the prior distribution of y conditioned on class
l. We shall assume the usual total variability model (Eq (2.1))
for the GMM-UBM adapted mean supervectors, and introduce
a supervised flavour to it by making the following assumptions:

1. The apriori probability of observing label [ is uniform,
ie,p(l)=1 Vie{l,...,L}

2. The “class conditional prior” of the latent variable y(s)
is Gaussian with mean m; and identity covariance ma-

trix. That is, foreach{ € {1,..., L}
1 —s5(y—m T —m
(2m) ¥

3. Given the latent variable y(s), X (s) is conditionally in-
dependent on the class label [(s)

pr(l(s) [y(s), X(s)) = pr((s) [ y(s))

The class conditional means m, ..., m; can be parametrized
along with the matrix 7". We define the new parameter set as
0= {T,mh...,ml}

The likelihood function of © in terms of X(s),l(s) and
y(s)is

Po (X (), y(s),1(s))

(3.3)

Po(X(s),y(s) [1(s))p(l(s)) (3.4)
= %p@(X(S) ly(s))pe (y(s) [ 1(s))

The complete data log likelihood is

s
Z log pe(X (s
s=1

_SlogL ZIOgP@ s) [ y(s)

y(s),1(s))

+ Zlogp@ s)[U(s)) (3.5)

It can be shown that the aposteriori density function of y(s)
" (s) which
) +

given X (s) and I(s) is Gaussian with covariance £
is the same as Eq (2.7) and mean given by £’ (s
T'S ™ Fx(s)}.
The EM algorithm (supervised EM) is used to solve for the
parameters © = {T,my,...,m;} which maximize the joint
s

likelihood function 3~ log pg (X (s),1(s)).
s=1

3.1. Expectation (E) Step:
The @ function in terms of X (s) and I(s) is given by

Q(016") =228,

195}

5)|X (s),l(s),0(1) logpe(X(s),1(s), y(s))

E (s)|X(s) o logpe (X(s) | y(s))

»
Il
=

’Mw

+ Z]Ey(e)\X( y.em logp(y(s) | 1(s)) (3.6)

s=1
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Substituting the required terms from Eq (2.5, 3.2 & 3.5) and
simplifying gives

alore) -

where £® () is the same as established in Eq (2.10) and

_1 T -1
97() = £9(s) {muiy + T S Fx(9)} (38
T
By () = £96) " + " ()8, (5) (3.9)
The term g)l(t) (s) represents a “class conditional i-vector” com-

puted using the parameters oW,

3.2. Maximization (M) step:

The update equation for the matrix 7" is same as in Eq (2.14),
and the update equation for m; can be obtained by partially
maximizing the ) function w.r.t m; and is given by

L
S

9"

l

my =

Mm

(s) (3.10)

s
(s

Il
[| =

where S; is the number of utterances having class label I. It can

L
be noted that S = Y .S;.

=1

3.3. Weighting of Priors

Although the proposed model incorporates label information,
the algorithm only tries to maximize the joint likelihood. This
does not ensure that the model is discriminative. This problem
is evident when the duration of the recording is long and the

first order BW statistics is large. The term T(t)TEﬂFX (s)
in Eq (3.8) would dominate, making 772;(,) negligible. In an
attempt to make the proposed model more discriminative, the
class conditional prior covariance (Eq (3.2)) can be scaled by a
factor % By doing this, it can be shown that the E-step will be
modified as follows:

LO(s) = AT+ TO 57 N(s)T® 3.11)

90 (s) = £O(s) " ()\ml(t) n T(t>T2_1FX(5)) (3.12)

The weighting parameter A may be fixed or made duration de-
pendent. We report the performances of language recognition
systems for different values of A in Sec. 5.

4. I-Vector Extraction Methods

In the traditional TVM, the i-vectors were defined as the MAP
estimate of the latent variable y(s) given the front-end features
X (s) of recording s. This is given by

-1

9s) = (I+T'S N()T) T'S Fx(s) @D



Table 1: Overall Cqvg scores for different i-vector and backend
models on LRE 2017 development and evaluation datasets.

Model | LDA+SVM | GB
‘ ‘ Dev ‘ Eval ‘ ‘ Dev ‘ Eval
Baseline | 0.309 | 0.187 || 0.287 | 0.201
MMSE i-vectors
using true labels, A — 1 || 0308 | 0-174 [ 0321 | 0188
PC’; 1;"‘31““ 0.321 | 0.185 || 0.292 | 0.199
PC’;Z’Z“OI 0.347 | 0.180 || 0.416 | 0.199
MMSE i-vectors
0.309 | 0.187 || 0.322 | 0.201
p(l|X(s)) = ¢

In the proposed model for a test utterance of unknown label, the
posterior distribution of y turns out to be a mixture of Gaussians
which is multi-modal. This is given by

L

p(y(s) | X(s) =D _p(l| X(s)p(y(s) | X(s),1) (42)

=1

Hence, there would be more than one locally maximum apos-
teriori estimates, and choosing just one of them would be
meaningless. However, if we have access to another model
like a deep neural network which gives us the class posteri-
ors p(l | X(s)), we could use the minimum mean-square-error
(MMSE) estimate of y(s) using:

M=

Ymnsn(s) p(L[ X () E(y(s) | X(s),1)

1

M=

p(L[ X ()3 (s) (43)

Il
=

MMSE i-vectors perform the best when the posteriors
p(l]| X (s)) is close to 1 for all the true labels. To show the
lower bounds on the costs (Cqug), We extract the MMSE i-
vectors by setting p(l | X (s)) = 1 for the true class [ and 0
for the other classes. This gives us the lower bounds on costs
that can be achieved with when the posteriors denote the true
class.

When we do not have access to the posteriors from another
model, one way to extract i-vector like representations is by av-
eraging the class conditional i-vectors over all the classes. This
is a special case of MMSE i-vectors where p(l | X (s)) is set to
%‘ The costs (Clqvg) computed this way could serve as an upper
bound.

Another approach to extract i-vector like representations is
concatenate the L class conditional i-vectors (of size R x 1) into
one single vector of size RL X 1 and then apply dimensional-
ity reduction techniques such as principle component analysis
(Referred as PCA i-vectors in Table. 1).

5. Experiments and Results

The NIST Language Recognition Evaluation (LRE) 2017 [14]
datasets were used in all our experiments. The training dataset
consists of 16205 files from fourteen closely related languages
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Table 2: Duration specific Cqavg scores for LDA+SVM system
with different vlues of A computed on Dev and Eval datasets

Model H Dev Caug H Eval Coug
| 3sec 10sec 30sec || 3sec 10sec 30 sec
Baseline || 0.527 0.271 0.131 0.35 0.14 0.071
A=1 0.556 0.276 0.132 0.34 0.143 0.071
A=2 0.693 0.302 0.132 0.337 0.137 0.071
A=3 0.63 0.286 0.128 0.335 0.135 0.07
A=5H 0.577 0.272 0.121 0.341 0.134 0.071
A=10 0.569  0.267 0.126 0.35 0.131 0.07

and dialects grouped into five clusters. The total duration of the
train files was about 2069 hours. The dev dataset had 3661 files
and eval dataset has 25451 files. Both dev and eval datasets
contain files of duration 3, 10, 30 and 1000 sec. We trained all
the systems using the LRE 2017 train dataset (LDC2017E22)
and we report the evaluation metric Cy,y computed on the de-
velopment and evaluation datasets (LDC2017E23).

The front-end features used were bottleneck features of
80 dimensions from an automatic speech recognition (ASR)
trained deep neural network (DNN) which was trained on
switchboard and Fisher corpora. Speech activity detection
(SAD) [15] was applied to retain only the voiced frames. A
GMM-UBM of 2048 mixtures was trained using the bottle-
neck features with a subsample factor of 8. The 7" matrix was
randomly initialized, the class conditional means m, ..., my;
were initialized to zero and TVM was trained using the super-
vised EM algorithm for 10 iterations.

We performed several experiments using different i-vector
extraction strategies discussed in sec. 4. We extracted i-vectors
using different values of A and used two different backends for
obtaining the language log-likelihoods, namely the Gaussian
backend (GB) and Support Vector Machines (SVM) with radial
basis function (RBF) kernel.

In Table. 1, we compare the overall Cg.4 scores (exclud-
ing the 1000 sec files) of different i-vector representations us-
ing the two backends. In Table. 2, we compare the duration
specific scores for different models on the evaluation dataset.
Here, “baseline” represents the conventional i-vector systems.

6. Summary and Conclusion

We have established the theory for supervised i-vector model-
ing and it can be noted that the conventional i-vector model is
a special case of the proposed model where the class condi-
tional means m; is forced to O for all classes, and not updated
as mentioned in Eq (3.10). The early results suggest that this
approach provides features with much more information than
conventional unsupervised i-vectors. Even simple techniques
such as concatenating class conditioned i-vectors followed by
PCA results in improved performance over the unsupervised i-
vectors. Furthermore, weighting of priors are shown to not only
improve the overall performance, but choosing the right value
of X given the duration for extracting i-vectors can significantly
improve the duration specific performance.
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