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In typical x-vector based speaker recognition systems, standard linear
discriminant analysis (LDA) is used to transform the x-vector space with
the aim of maximizing the between-speaker discriminant information
while minimizing the within-speaker variability. For LDA, it is customary
to use all the available speakers in the speaker recognition development
dataset. In this study, we investigate if it would be more beneficial to
estimate the between-speaker discriminant information and the within-
speaker variability using the most confusing samples and the most distant
samples (from the target speaker mean) respectively in the LDA based
channel compensation. The between-speaker variance is estimated using
a pairwise approach where the most confusing non-target speaker samples
are found based on the Euclidean distance between the speaker mean
and adjacent speaker’s samples. The within-speaker variance is estimated
using the mean of each speaker and the furthermost samples in the speaker
sessions. Experimental results demonstrate the proposed LDA approach
for an x-vector x-vector based speaker recognition system achieves over
17% relative improvement on EER over standard LDA based x-vector
speaker recognition systems on the NIST2010 corext-corext condition.

Introduction

In recent times, research in speaker recognition has focused on
deep learning based approaches. Deep learning approaches have been
incorporated into i-vector-based speaker recognition systems using
two main approaches: (1) A speech-based DNN is used to extract
bottleneck (BN) features from the middle layer [1]. Instead of mel
frequency cepstral coefficient (MFCC) features, the BN features are used
in i-vector speaker recognition systems; and (2) DNN senone approach,
where the calculation of Baum-Welch statistics is based on a speech-based
DNN [2]. Even though DNN senone based speaker verification systems
achieves state-of-the-art performance, the approach is computationally
more expensive and its use is limited in practical applications [3].

More recently, the end-to-end speaker recognition systems and x-
vector speaker recognition systems have become popular in speaker
recognition research [4, 5]. In the x-vector/ speaker embedding based
speaker recognition systems, the variable length speaker utterance is
mapped to fixed-length x-vectors using a deep neural network [4]. Once
the x-vectors are extracted using a deep neural network, the standard
linear discriminant analysis (LDA) approach is used to transform the
x-vector. The LDA compensates the channel mismatch by maximizing
the between-speaker discriminant information (between-speaker variance)
while minimizing the within-speaker variability (within-speaker variance).
Finally, the length normalized Gaussian probabilistic linear discriminant
analysis (GPLDA) is used as a backend to calculate the scoring [6].

There has been a few recent efforts to improve the performance of
LDA for speaker verification, however, these have been based mainly on
i-vector based speaker verification systems. These efforts have included:
source-normalized LDA [7] which normalize the scatter matrices across
different sources; the weighted LDA [8] which weights class pairs
in an inverse proportion to their distance; nonparametric discriminant
analysis (NDA) [9] which calculates both within- and between-class
scatter matrices on a local basis using a nearest neighbour rule; and
local pairwise LDA [10] which maximizes the local pairwise covariance,
which represents the local structure between the target class samples and
neighboring non-target class samples.

In this work, we focus on improving LDA based channel compensation
in x-vector based speaker recognition. Specifically, we investigate whether
it would be more beneficial to estimate between-speaker discriminant
information in LDA using the most confusing samples and within speaker
variability using the most distant samples as opposed to estimating these
variances using all the available speaker samples in the development set
as is routinely performed. Our investigation reveals that the proposed
approach can provide a significant reduction in error rate compared to the
standard LDA in x-vector based speaker verification.

This paper is structured as follows; Section 1 provides a brief
introduction to x-vector based speaker recognition systems. Section 2
initially details the standard LDA based channel compensation approach
and also subsequently introduces the proposed channel compensation

approach. The experimental protocol and corresponding results are given
in Section 3 and Section 4. Section 5 concludes the paper.

1. X-vector based speaker recognition systems

A feed-forward DNN is used to compute the x-vectors from speech
samples of variable utterance length. Once fixed length x-vectors are
extracted from speech segments, the LDA based channel compensation
is used to increase the between-speaker variability and reduce the
within-speaker variability. The details of standard and proposed channel
compensation approaches are given in Section 2. Finally, a GPLDA based
back-end classifier is used to classify the speakers.

1.1. Extraction of x-vector features

The extraction of x-vectors using a feed-forward DNN network is
shown in Figure 1. The feed-forward DNN is trained using a large amount
of training data to classify the speakers [11]. The first four layers of the
networks operate at the frame-level. If the t is the current time step, t-2, t-1,
t, t+1, t+2 frames are spliced together at the input layer. As the 23 MFCC
features are extracted for our experiments, the input layer dimension is
115. The size of the output layer is 512. In the first hidden layer, t-2, t,
t+2 frames are spliced together and the size input is 1536 (512x3). In the
second hidden layer, t-3, t, t+3 frames are spliced together and the size of
the input is 1536 (512x3). The dimensions of the third and fourth layers
are respectively 512 and 1500. The fifth layer is stats pooling where all the
frames are aggregated together and the mean and standard deviation are
estimated and concatenated together (1500x2). From this layer onward,
the utterance level parameters are estimated. The sizes of the sixth and
seventh layers have a dimension of 512. Finally, the softmax layer is trained
to classify the speakers from the training dataset. The DNN architecture
is trained to classify the 3413 speakers in the training dataset. After the
network training, the x-vectors (512) are extracted from layer 6.

Fig. 1 A block diagram of the x-vector extractor is shown where the first four
layers of network operate at the frame level, the fifth layer is stats pooling, and
the sixth and seventh layers of the network operate at the utterance level.

1.2. PLDA classifier

The length-normalized GPLDA is used as a backend classifier as
it is a simplified and computationally efficient approach compared to
heavy-tailed PLDA. The length-normalization approach is applied on the
development and evaluation data prior to GPLDA modeling [12].

A speaker and channel dependent length-normalized i-vector, wr , can
be defined as,

wr = m + U1x1 + εr, (1)

where for the given speaker recordings r= 1, .....R; U1 is the eigenvoice
matrix and x1 is the speaker factor and εr is the residual. The
covariance matrix, U1U1

T , represents the between-speaker variability,
and the covariance matrix, Λ−1, describes the within-speaker variability.
The model parameters, U1, and Λ are iteratively estimated using the
expectation maximization algorithm. Scoring is calculated using the batch
likelihood ratio between a target and test x-vectors.
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2. Channel compensation approaches

As the x-vector features have both speaker and channel information,
the channel compensation approaches are used to compensate for the
within-speaker variability and increase the between-speaker discriminating
information. In typical x-vector based speaker recognition systems,
standard LDA approaches are used to increase the between-speaker while
reducing the within-speaker variability [6]. In standard LDA, all the
speakers and all their sessions that are available in the development data
set are used to estimate these two variances.

2.1. Standard LDA approach

The between-speaker variance, Sb, and within-speaker variance, Sw ,
can be calculated as follows,

Sb =

S∑

s=1

ns(w̄s − w̄)(w̄s − w̄)T , (2)

Sw =

S∑

s=1

ns∑

i=1

(ws
i − w̄s)(ws

i − w̄s)T , (3)

where the mean x-vector for across-all-speakers, w̄, is defined by
1
N

∑S
s=1

∑ns
i=1 ws

i . N is the total number of sessions. ns is the number
of available sessions per speaker s and S is the total number of speakers in
the development set.

LDA attempts to find a reduced set of dimensions that minimize the
within-class variability while maximizing the between-class variability
through the eigenvalue decomposition of,

Sbv = λSwv. (4)

2.2. Proposed pairwise approach

In the standard between-speaker variance estimation, the variance is
estimated between each speaker mean w̄s and the global mean w̄.

In contrast, the pairwise between-speaker variance is estimated as
follows,

Sp
b =

1

N

S−1∑

i=1

S∑

j=i+1

ninj(w̄i − w̄j)(w̄i − w̄j)T . (5)

In the pairwise between-speaker variance, the variance is estimated
between the mean of each pair of speakers i and j. It can be proved that,

Sp
b = Sb. (6)

Therefore, the pair-wise estimation of between-speaker variance

Fig. 2 The illustration of the proposed pairwise variance estimations. The
between-speaker variance is estimated between w̄i and wc

j where wc
j is the

non target speaker’s sample closest to target speaker mean w̄i. The within-
speaker variance is estimated between w̄i and ws

i where ws
i is the speaker

sample furthermost from the target speaker mean w̄i.

estimation depicted in Eq (5) is equivalent to the standard representation
in Eq(2). In the rest of manuscript, we will use the pairwise estimation
represented by Eq (5) for between-speaker variance.

Our aim is to find out if it would be advantageous to estimate the
pairwise between-speaker variance based on the speaker i and the closest
sample of speaker j instead of using all the samples of speaker j as
customarily computed. The illustration of the proposed pairwise between-
speaker variance estimation is shown in Figure 2, and is estimated as
follows, where we replace the x-vector mean of the speaker j in Eq (5)
with the x-vector value of speaker j’s sample which is closest to speaker i,

Sp
b =

1

N

S−1∑

i=1

S∑

j=i+1

ni(w̄i − wc
j)(w̄i − wc

j)T , (7)

where wk
j is considered as the kth in-class sample of speaker j. The closest

sample of the jth speaker is determined as follows: the Euclidean distance
between w̄i and all the jth speaker’s samples wk

j are estimated. All the
samples are sorted in ascending order based on the Euclidean distance and
the closest sample of speaker j to speaker i is selected as wc

j .
Note that in the pairwise between-speaker variance estimation, the

variance is estimated between speaker i and all the pairwise speakers.
Some of speakers are closer to speaker i and some others would be far
away from speaker i. We wish to determine if it would be advantageous
to use only speakers who are close to speaker i in estimating the between-
speaker variance. The proposed approach is represented by Eq (8),

Sp
b =

1

M

S−1∑

i=1

M∑

j=i+1

ni(w̄i − wc
j)(w̄i − wc

j)T . (8)

The Euclidean distance between wi and wc
j are estimated and the

individual pairwise variance between speaker i and j is sorted in ascending
order and the specific percentage of speakers j who are close to i is selected
for between-speaker variance estimation. The value of M calculated based
on the percentage value. The percentage is given by (M/S) × 100. We
will discuss later the choice of the percentages of selected speakers for
computing the between-speaker variance.

2.3. Modified within-speaker variance estimation

In the standard within-speaker variance estimation Eq (3), the intra-
speaker variance is estimated between each in-class samples, ws

i and the
mean of speaker s, w̄s. The within-speaker scatter depends on several
factors arising from session to session variations including variations due
to microphones, acoustic environments and transmission channels. The
objective of the within-speaker variance is to reduce the intra-speaker
variability.

We want to determine if it would be advantageous to estimate the
between-speaker variance based on the mean of speaker s, w̄s, and the
furthermost samples, ws

i instead of using all the samples of speaker s as is
performed customarily.

The with-in speaker variance is estimated as follows,

Sw =

S∑

s=1

nm∑

i=1

(ws
i − w̄s)(ws

i − w̄s)T . (9)

The Euclidean distance between ws
i and w̄s is estimated. Following

this, the individual variances are sorted in descending order based on
the Euclidean distance and the specific percentage of the furthermost
samples are used for within-speaker variance estimation. The value of
nm is selected based on the percentage value. The percentage is given by
(nm/ns) × 100 where nm is the number of speaker samples selected for
each speaker s. Again, we will discuss later, the choice of the percentages
of samples for computing the intra-speaker variance.

3. Experimental methodology

The experiments were conducted using the kaldi toolkit [13]. The
x-vector based experiments were evaluated using the NIST 2010
corpora [14]. For NIST 2010, the performance was evaluated using the
equal error rate (EER).

The DNN architecture was trained using NIST and Switchboard data.
The NIST data consists of NIST SRE 04, 05, 06, 08, and Switchboard
data consists of Switchboard 2 Phases 1, 2, 3 and Switchboard Cellular.
The DNN speaker embedding system is trained with 23 MFCCs without
their first derivative. The DNN speaker embedding system is trained using
the Kaldi recipe. The dimension of x-vector is 512 and the dimension of
standard and the proposed LDA approaches is 200. The PLDA classifiers
are trained on NIST SRE 04, 05, 06 and 08.
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4. Results and discussions

In the initial experiments, the pairwise-between speaker variance
is estimated using the most confusing non-target speaker sample for
each non-target speaker using the Eq (7). Table 1 compares the EER
performance on NIST2010 corext-corext conditions.

Table 1: Performance comparison of x-vector speaker recognition
systems on NIST 2010 corext-corext when pairwise between-speaker
variance is estimated using the most confusing sample of each non target
speaker. Baseline performance is calculated using standard LDA where all
the samples are used for the variance estimation as depicted in Eq (2).

Baseline EER EER with most confusing sample of all
non target speakers

2.53% 2.40%

It can be observed that the system achieves better performance when
pairwise between-speaker variance is estimated between the speaker mean
of speaker i and the most confusing sample wc

j .
In Table 2, we provide the results for estimating the pairwise between-

speaker variance using speaker i and the most confusing sample of several
confusing non-target speakers (M speakers) as depicted by Eq (8). Table 2
compares the EER performance on NIST2010 corext-corext conditions.
Note that in this experiment we use the most confusing sample of each of
the selected confusing speakers. We estimate the error rate for 3 different
percentages.

Table 2: Performance comparison of x-vector speaker recognition
systems on NIST 2010 corext-corext when pairwise between-speaker
variance is estimated with different percentages of the confusing speakers.
The percentage is given by (M/S) × 100 where S is total number of
speakers and M is the selected number of confusing speakers.

Baseline EER for different amounts of confusing speakers
50% 25% 15%

2.53% 2.27% 2.25% 2.22%

It can be observed that the x-vector system achieves better performance
when the pairwise between-speaker variance is estimated using 15% of
the most confusing samples. The results suggest that it would be better
to estimate the pairwise between-speaker variance based on a selected
number of confusing non-target speakers who are closer to the target
speaker. Note that in Table (2) we couldn’t reduce the error rate further by
reducing the percentage of selected confusing speakers below 15% since
the actual number of confusing speakers available in the database becomes
insufficient to provide a stable estimation of the variance of LDA. The
results suggest that if larger databases were available with more non-target
speakers close to the target speaker, the EER may be further reduced.

In the final experiment, we investigate whether the use of the
furthermost samples to estimate the within-speaker variance can provide
additional improvements. Table 3 compares the EER performance on
NIST2010 corext-corext conditions when the within-speaker variance
estimated using Eq (9).

Table 3: Performance comparison of x-vector speaker recognition
systems on corext-corext when within-speaker variance estimated using
furthermost samples as depicted by Eq (9). The percentage is given by
(nm/ns) × 100 where ns is the total number of samples for speaker s
and nm is the selected number of distant samples for speaker s. Note
that the between-speaker variance for the LDA is estimated using the best
percentage ie:15% of the confusing speakers (based on results in Table (2))

Baseline EER for different amounts of furthermost samples
50% 25%

2.53% 2.12% 2.09%

It can be observed from the results the x-vector systems achieves better
performance when the within-speaker variance is estimated using 25%
of the least confusing samples. As noted for Table (2), in Table (3) we
couldn’t reduce the error rate further by reducing the percentage of selected
furthermost samples below 25% since the number of samples available
in the database becomes insufficient to provide a stable estimation of the
variance for LDA. The results suggest that if larger development databases
are available with large number of samples further from the mean for each
speaker we may be able to reduce the EER further.

The objective of the within-speaker variance is to reduce the intra-
speaker variability. The results suggest that the in-class samples which are
close to the speaker mean, do not help to estimate the robust within-speaker

variance. The samples which are far away from the speaker mean are the
best samples for within-speaker variance estimation.

Through these experimental results we have demonstrated that
the proposed LDA for x-vector systems achieves over 17% relative
improvement on EER over baseline systems on NIST2010 corext-corext
condition. This improvement in EER has been achieved using an intuitively
appealing approach, where the pairwise between-speaker variance is
estimated using the most confusing sample of the most confusing set of
speakers and the within-speaker variance is estimated using the speaker
samples that are further away from the speaker mean for each speaker.

5. Conclusion

The results presented in this paper confirms that all speakers are not
required to estimate the between-speaker variance and the most confusing
samples a play significant role when training the LDA transform. It is
also found that the samples which are far away from the speaker mean
are the best samples to use for within-speaker variance estimation. Overall
the proposed approach achieves a 17% relative improvement on EER over
baseline systems on NIST2010 corext-corext condition. This is achieved
when the pairwise between-speaker variance is estimated using the most
confusing sample of the most confusing speakers and the within-speaker
variance is estimated using the samples further away from the speaker
mean when implementing the channel compensation for x-vector based
speaker recognition using LDA.

A. Kanagasundaram et al (Speech and Audio Research Lab, SAIVT,
Queensland University of Technology, Brisbane, Australia.)
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