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Abstract

The conventional i-vector approach to speaker and language recognition con-
stitutes an unsupervised learning paradigm where a variable length speech
utterance is converted into a fixed dimensional feature vector (termed as
i-vector). The i-vector approach belongs to the broader family of factor
analysis models where the utterance level adapted means of a Gaussian Mix-
ture Model - Universal Background Model (GMM-UBM) are assumed to lie
in a low rank subspace. The latent variables in the low rank model are as-
sumed to have a standard Gaussian prior distribution. In this paper, we
rework the theory of i-vector modeling in a supervised framework where the
class labels (like language or accent) of the speech recordings are introduced
directly into the i-vector model using a mixture Gaussian prior where each
mixture component is associated with a class label. We provide the mathe-
matical formulation for minimum mean squared error estimate (MMSE) of
the supervised i-vector (s-vector) model. A detailed analysis of the s-vector
model is given and this is contrasted with the traditional i-vector frame-
work. The proposed model is used for language recognition tasks using the
NIST Language Recognition Evaluation (LRE) 2017 dataset as well as an
accent recognition task using the Mozilla common voices dataset. In these
experiments, the s-vector model provides significant improvements over the
conventional i-vector model (relative improvements of up to 24% for LRE
task in terms of primary detection cost metric).

Keywords: Unsupervised i-vector, s-vector, minimum-mean square error
(MMSE) estimate, language recognition.
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1. Introduction

The problem of language (accent) recognition involves the development
of algorithms that automatically infer the language (accent) from a speech
recording. Language and accent recognition has important applications in
call centers, helplines, voice assistants, robotics and also in security and
defence applications. Over the last three decades, various approaches like
phonotactic, acoustic modeling using statistical methods and recent approaches
involving neural networks have been explored for the development of language
(accent) recognition systems. Factors such as the presence of multiple speak-
ers, content based variability in short duration speech, noise etc severely
degrade the performance of language (accent) recognition systems. The Na-
tional Institute of Standards and Technology (NIST) has been organizing a
series of Language Recognition Evaluations (LRE) since 1996 to benchmark
the performances of LID systems and to highlight the challenging scenarios
where the systems typically fail. The last two cycles (LRE 2015, 2017) fo-
cused on distinguishing between closely related languages and dialects, which
is a challenging problem.

Traditionally, phoneme recognition followed by language modeling (PRLM)
was one of the popular methods for automatic LID task [1, 2]. This approach
uses a multilingual phoneme recognizer to generate phoneme sequences which
are converted to language model (n-gram) features for the LID classifier. The
success of this approach is dependent on the performance of the phoneme de-
coder. For relatively clean data with linguistic resources, the PRLM method
provides good performance comparable to acoustic systems [3]. However,
most of the successful LID systems developed in the last decade (on noisy
data) are devoid of phoneme recognition engines.

Regarding the features for language recognition, while traditional sys-
tems use mel frequency cepstral coefficients (MFCC) [4] or shifted delta
coefficient (SDC) [5] features, the deep neural network (DNN) based pos-
terior features were attempted recently for LID [6]. The Tandem features
have shown promising results for noisy language recognition as well [7]. The
use of bottleneck features derived from a speech recognition acoustic model
has also shown to benefit language recognition [8, @, [10]. In this paper, we
use acoustic features based on bottleneck representations from a deep neural
network trained for speech recognition using Switchboard English corpus.

In the last decade, the most popular approach to language (accent) and
speaker recognition consists of modeling a database of speech recordings (in



the form of a sequence of short-term feature vectors) with a Gaussian Mix-
ture Model - Universal Background Model (GMM-UBM) [111, 12]. The initial
approaches for speaker recognition using log-likelihood scores were replaced
with the factor analysis models [I3] where the adapted Gaussian mean com-
ponents (spliced as a single high dimensional vector called the supervector)
are expressed as a sum of speaker and session factors. The parameters in
this model were derived using a maximum likelihood (ML) framework with
an iterative expectation maximization (EM) approach. The approach of
joint factor analysis (JFA) was further simplified by total variability model-
ing (i-vector modeling) where all variabilities were captured by a single fixed
dimensional latent vector [14]. With a prior of standard normal distribution
(having zero mean and identity covariance), the latent variables were called
i-vectors. The i-vector features, extracted using a EM framework with a ML
objective, were used for further processing. For example, the speaker verifi-
cation systems use a probabilistic linear discriminant analysis (PLDA) [15]
to model channel variability [I6]. The language (accent) recognition systems
with i-vectors used a cosine based scoring [17] or a support vector machine
(SVM) model for language classification [I§]. A modification of prior density
was attempted in [19], however the changes to standard normal prior did
not show consistent improvements. The baseline system for the LRE 2017
evaluations [20] used the i-vector features with length normalization [21] and
linear discriminant analysis [17] followed by a SVM classifier.

Recently, speech recognition systems have also incorporated i-vector fea-
tures for speaker adaptation [22]. The replacement of GMM-UBM with
a deep neural network (DNN) speech recognition front-end has shown im-
provements in speaker/language recognition tasks [9,[8]. While normalization
methods like length normalization have been proposed in the post process-
ing of the i-vectors [21], all the efforts outlined above use the unsupervised
ML framework for the training the i-vector models. A previous attempt
was made to utilize supervision in i-vector learning by using the label infor-
mation included with the supervector [23]. However, the approach merely
appends the label information (in the form of one-hot encoding) along with
the adapted supervector and does not explicitly model the label distribution
in a statistical model.

Recently, we have proposed a fully supervised version of the i-vector model
[24] where each label class is associated with a Gaussian prior with a class
specific mean parameter. The joint prior (marginalized over the sample space
of classes) on the latent variable then becomes a GMM. In this paper, we
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expand this approach with a detailed account of the EM algorithm for this
choice of prior. Specifically, we show that the GMM forms a conjugate prior
for this framework (given the statistics, the posterior distribution of the la-
tent vectors is also a GMM). This choice of prior is motivated by the use of
a Gaussian back-end [25], where the conventional i-vectors for each language
are modeled with a single Gaussian distribution. In the proposed model, the
posterior distribution of the i-vectors is a GMM. Thus, the maximum apos-
teriori (MAP) estimates are not useful for the multi-modal GMM posterior
distribution. We resort to the minimum mean square error (MMSE) estimate
of the latent variables which we refer as the supervised i-vector (s-vector) for
a given test recording. Furthermore, the use of class dependent prior also
allows us to weigh the importance of the prior with a factor (the belief on
the prior can be varied based on the duration of the recording).

With detailed data analysis and visualization, we show that the s-vector
features yield representations that succinctly capture the language (accent)
label information. We also show that the conventional i-vectors are a special
case of the more generic s-vectors proposed in this work, where all the label
information is assumed to belong to one class.

The proposed s-vectors are used for a language recognition task in the
NIST Language Recognition Evaluation (LRE) 2017 dataset. We use the
same setup as in the baseline LRE system [20] except for the replacement of
the unsupervised i-vectors with the s-vectors. The subsequent steps including
the SVM training for language classification are also performed. In our ex-
periments comparing the supervised and unsupervised i-vector features, the
proposed approach provides significant improvements in LRE task (relative
improvements of up to 24% in terms of the primary cost metric). We also
show that the proposed approach yields consistent gains for RATS language
recognition experiments [26] on short duration conditions.

We also perform accent recognition experiments on the Mozilla Common-
Voices dataset [27]. In these experiments, we train and test with very short
duration utterances of accented English speech and the task is to recognize
the accent of the test utterance. We use s-vector/i-vector based representa-
tions with Gaussian backend (GB) classifiers for these experiments.

The rest of the paper is organized as follows. In Sec. [, we provide the
mathematical derivation of the proposed supervised EM framework for s-
vector model parameter estimation. We emphasize primarily the difference
in the formulation compared to the traditional i-vectors. The minimum di-
vergence re-estimation step is also discussed here. In Sec. [3|, we derive the
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expressions for s-vector extraction for a given test utterance. The language
recognition experiments are reported in Sec. [l A detailed analysis of the
results with confusion matrices and data visualization is provided in Sec. 5]
This is followed by a brief summary in Sec. [6]

2. The s-vector model

The i-vector model that is popularly used in speaker and language recog-

nition is outlined in [Appendix Al We follow notations similar to the con-

ventional i-vectors to derive the s-vector features. In the traditional i-vector
approach, the Total Variability Model (TVM) (Eq. (A.1)) together with the
Gaussian Mixture Model - Universal Background Model (GMM-UBM) con-
stitute a latent variable based generative model for the short-time sequence
of features. In the s-vector model, we incorporate the class label information
in this generative modeling framework. We denote the feature sequence of
recording s by

X(s) ={z1(s),... Tu(s)} (1)

where H(s) denotes the length of recording s. The corresponding label is
denoted as [(s). Note that the values of (s) are discrete (I(s) = 1,..., L),
where L denotes the total number of classes. The adapted means of the
GMM-UBM are modeled as:

M(s) = Mo+ Ty(s) (2)

where M (s), My and T are similar to the definitions used in the conven-
tional i-vector model (Eq. [A.1)). Though this equation is identical to the
conventional i-vector model, the key difference is that the latent vector y(s)
depends on the class label [(s). The prior on y(s) conditioned on the class
[ is modeled as a Gaussian with mean my;, and a shared, identity covariance
matrix for all classes [ € {1,..., L}, i.e.,

p(y(s)|i(s) = 1) ~ N(y(s);my, I) (3)
For recordings without a known label, the prior distribution is then a
Gaussian mixture model,

L

> p(ON(y|my. 1) (4)
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By parameterizing the class conditioned means my, ..., my along with the
other model parameters, we make use of the labels of the train recordings to
estimate the model parameters, thereby introducing supervision. If m; = 0
is set for all [ € {1,..., L}, the proposed model reverts back to the standard
i-vector model. In the s-vector model, we make the following statistical
assumptions:

1. The apriori probability of observing label [ is uniform, i.e., p(l) =
1 Vlie{l,...,L}
2. Given the latent variable y(s), X(s) is conditionally independent on

the class label I(s)

pr(l(s) [ y(s), X(s)) = pr(l(s) [y(s)) ()

While the full covariance model for each label class is feasible in the proposed
framework, the shared covariance model allows for simplicity in model esti-
mation (and greatly reduces the memory requirements) compared to having
each mixture class with its own covariance. As some of the classes have a
very small number of recordings, the class conditioned covariance matrices
may not be well estimated (for example, the language classes like British-
English in LRE2017 have very small number of recordings). The popularly
used Gaussian backend model [25] for log likelihood computation also doesn’t
model the covariance of each class separately. The reason for using an Iden-
tity covariance matrix is because a model with a shared covariance matrix
W can be converted to an equivalent model with identity covariance matrix
by the following transformation:

M(s) = My+ Ty(s)
= Mo+ TW:W 2y(s)
=M, +T'y'(s)

where y’ follows a GMM distribution with Identity mixture covariances. This
is achieved through the minimum divergence re-estimation procedure in each
iteration (Appendix B.3|). A similar approach has been used in the con-
ventional i-vector framework where a standard Gaussian distribution with
identity covariance is used instead of a model with full covariance.

We derive the steps involved in the estimation of s-vector model param-
eters in the following subsection.




2.1. EM Algorithm for Parameter Estimation

The set of parameters in the s-vector model that need to be estimated
are denoted as,

O ={Tm,,....,mp}. (6)

2.1.1. E-step
For each recording s, using the parameter estimates O at iteration t,
we compute the following quantities

Eou [y(s) | X(s),1(s)] = 9i())(s) = £2(s) " {muy + TS Fx(s)} (7)
Eow [y(s)y(s)" | X(s),1(s)] = B\ (s) = LO(s) " + i) ()51, (5)" (8)

where F'x(s) and N(s) are the Baum-Welch statistics in matrix form (defined
in[Appendix A) and LO(s) = 1 + TS N(s)T"
2.1.2. Maximization Step

The s-vector model parameters are re-estimated using the following up-
date rules. The update equation for the T matrix is

T = (ZN JES) (s >> (ZFXC T >> (9)

where T, is the sub-matrix of T' corresponding to ¢*® mixture of GMM-UBM.
The update equations for the class conditioned means are given by

1 N
m{ = = N gl (s) (10)

where 5 is the number of training recordings with class label [. The detailed

derivations of the update equations are given in [Appendix B]

2.2. Mimimum divergence Re-estimation

The idea of minimum divergence estimation [13] is to model the 7" ma-
trix in such a way as to force the empirical distribution to conform to the
GMM prior as assumed. Specifically, it is required that the class conditioned
covariances are shared among all classes and equal to the identity matrix.

7



We require the within class covariance matrix to be identity. The minimum
divergence update equation is given by T «— TWL, where LL" is the

Cholesky decomposition of the matrix K,,, given below as,

T a(t) (t) 7 () () (T ) () T
K@SZ =3 Z( yl(s (s) — yl(s)(s)ml(s) - ml(s)yl(s)(s) + Iy My >

More details on the above expression are provided in [Appendix B.3|

3. S-vector extraction

The conventional i-vectors are simply the maximum aposteriori (MAP)
estimates of y(s) given the Baum Welch statistics N(s) and Fx(s). In the
proposed model, for an unlabeled test recording, the posterior distribution
of y(s) turns out to be a GMM (similar to the prior). This model belongs to
the broad class of Bayesian models with conjugate prior (The conventional
i-vector model is also a conjugate prior Bayesian model, where the prior and
posterior are Gaussian distributed). The posterior distribution of y(s) is
given by

p(y(s) [ X(s)) = Y p(l] X(5) ply(s) | X(s),]) (12)
=1

Given the multi-modal nature of the posterior distribution, there are more
than one local maxima (one maximum per label class) to consider if we per-
form a MAP estimation, and choosing just one of them is tedious when the
label information is unknown. One way of deriving i-vector like representa-
tions from this model is to splice all the label conditioned MAP estimates
to form the recording level representation that can be further dimensionality
reduced using principal component analysis. Another option is to perform an
average of the individual label conditioned MAP estimates. However, both
of these options have statistical limitations as we had observed previously
[24].

In this work, we resort to the minimum mean-square-error (MMSE) esti-
mate of y(s) which is referred as the s-vector representation (similar to the
MAP estimate in the conventional model which is widely referred to as the



i-vector representation). The MMSE estimate (s-vector) is computed using
the following expressions.

L

Yrarse(s) = Y (L] X(9)g(s) (13)

=1

We refer to g,(s) as a class conditioned s-vector (conditioned on class [) and
it is given by

—1

9,(s) = (1 + TTE_IN(s)T) (ml + TTE”FX(S)) (14)

and the posteriors p(l | X(s)) are calculated from the class conditioned like-
lihoods pg(X(s) |{). The detailed derivations of above equations are given
in [Appendix B| and [Appendix C|

As shown in the experiments, the MMSE based s-vectors perform the best
when the posteriors, p(l | X(s)), are well estimated. Setting p(l | X(s)) =1
for the true class [ and 0 for the other classes (true label based one-hot
encoding) gives us oracle s-vectors (cheat experiment). Using the oracle s-
vectors, we are able to show the performance upper-bounds of the proposed
s-vector model. On the other hand, the worst case situation would be when
the class posterior distribution is assumed to be uniform (p(I|X(s)) = 1),
which are referred to as average s-vectors. The results generated using these
average s-vectors are also shown (Sec. {]) in order to illustrate the performance
lower bounds in the MMSE estimation.

3.1. Re-weighting the priors

Although the proposed model incorporates label information, the algo-
rithm only tries to maximize the joint likelihood. This does not ensure that
the model is discriminative. In an attempt to make the proposed model more
discriminative, the class conditioned prior covariance (Eq ) can be scaled
by a factor %

Using the modified prior distribution, it can be shown that the E-step
will be modified as follows:

LO(s) = M\ +TO'S " N(s)T® (15)

9 () = £0(s) " (i) + 7O F(s) ) (16)
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Figure 1: Illustration of the variation of prior distribution with varying A. In this example,
the means of Gaussian mixtures my, ..., my represent five language classes.

With a prior re-weighting factor of A, the class conditioned s-vector of
Eq.(14) will be modified as

-1

,(s) = </\] + TTE*N(S)T> </\ml + TTE”FX(S)) (17)

Figure 1 highlights the effect of A on the prior density. When the value of
A is increased, the GMM means are unchanged and the mixture component
covariance around the means is reduced by a factor of % This forces the
latent variables to be more concise around the language means thereby en-
hancing the discriminative ability of the model. However, when a high value
of A is chosen (and in noisy conditions), the embedding could be more con-
cise around the wrong language class mean. Thus, we find that for shorter
durations (and in noisy conditions) a lower value of A is preferred, while for
longer durations in cleaner conditions (like in LRE2017), a higher value of
A improves the LID performance. By using the hyper-parameter A, we can
control the degree of confidence on the prior distribution.

4. Experiments and Results

We demonstrate the advantages of the s-vector model by applying it to
language and accent recognition problems using the NIST Language Recogni-
tion Evaluation 2017 (LRE 2017) dataset [20] and the Mozilla Common Voice
dataset [27] respectively.
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4.1. Performance Metrics
We use three different metrics for evaluating the language and accent
recognition tasks. The first two metrics, namely the LRE 2017 primary
detection cost (Cprimary) and the equal error rates (EER) report the perfor-
mance on a language detection setting. For this purpose, likelihood ratios are
computed for each language versus the rest, and a threshold of § is applied
to obtain the false alarm (Pp4) and miss (Pyy;ss) probabilities. The detection
cost at threshold S is defined as [20]
} (18)

1 1
Cunf) = & {lzpmssaﬂ b 55 S Pratinty
T
The detection cost (Cprimary) used as the primary metric in LRE 2017 is

lr IN#lT
given by

Oavg(ﬂl = 1) + Cavg(ﬁ? = 9)
2
The equal error rate (EER) is the Pra (or Ppyss) computed at the threshold
where Pry and Pyyiss become equal.
The third metric is the classification accuracy, which reports the perfor-
mance in a language identification setting (closed set language classification).

(19)

CPM'm(zry =

4.2. The NIST LRE 2017 task

The NIST Language Recognition Evaluation (LRE) 2017 [20] datasets
were used in these experiments. The training dataset consisted of 16205
files from fourteen closely related languages and dialects grouped into five
clusters. The details of the dataset are given in Table

The total duration of the train files is about 2069 hours. The development
dataset has 3661 files and evaluation dataset has 25451 files. Both dev and
eval datasets contain files of duration 3, 10 and 30 seconds from the MLS14
corpus. We trained all the systems using only the LRE 2017 train dataset
(LDC2017E22) and we report the performances on the development and
evaluation datasets (LDC2017E23).

4.8. The Mozilla Common Voice Dataset

The Mozilla Common Voice is a corpus of speech data read by users [27]
based upon text from a number of public domain sources like user submitted
blog posts, old books, movies, and other public speech corpora. The dataset
contains several different accents of English with total of approximately 64k
speech files (sentences) along with the accent labels (Table [2).
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Table 1: LRE 2017 training set : Target languages, language clusters, total number of files
per language and total duration.

Total Duration

Cluster | Target Languages #files (hours)
Egyptian Arabic (ara-arz) 440 190.9
Arabic Iraqi Arabic (ara-acm) 1406 130.8
Levantine Arabic (ara-apc) 3509 440.7
Maghrebi Arabic (ara-ary) 919 81.8
Chinese Mandarin (zho-cmn) 3331 379.4
Min Nan (zho-nan) 95 13.3
Enelish British English (eng-gbr) 98 4.8
& General American English (eng-usg) | 2448 327.7
. Polish (gsl-pol) 587 59.3
Slavic | pssian (qsl-rus) 1221 69.5
Caribbean Spanish (spa-car) 688 166.3
Iberian European Spanish (spa-eur) 121 24.7
Latin American Spanish (spa-lac) 898 175.9
Brazilian Portuguese (por-brz) 444 4.1

We perform the accent recognition task similar to the language recogni-
tion pipeline in the NIST LRE 2017 setup. The accents with less than 1 hour
were discarded, and 9 accents of English were used in training/test. For this
purpose, approximately 100 files from each accent were selected randomly
for the development set, and approximately 200 files from each accent were
selected randomly for the evaluation set. The remaining files were used for
training the accent recognition systems.

4.4. RATS LID Task

The DARPA Robust Automatic Transcription of Speech (RATS) [26] pro-
gram targets the development of speech systems operating on highly distorted
speech recorded over “degraded” radio channels. The data used here consists
of recordings obtained from re-transmitting a clean signal over eight differ-
ent radio channel types, where each channel introduces a unique degradation
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Table 2: The Mozilla CommonVoice dataset: Accents chosen, total number of files used
for training, development and testing and total duration.

Total Duration
(mins)

‘Train Dev Test ‘ Train Dev Test

African 926 98 196 61 7.61 14.8
Australian | 4182 104 196 239  6.83 12.6
Canada 3778 104 202 | 229 802 14.5
England 15266 96 202 | 868 6.48 14.2
Indian 4366 103 201 | 259 7.32 13.8
Ireland 679 102 200 38 6.60 19.3
NewZealand | 886 101 204 50  6.68 13.3
Scotland 1323 95 201 75 6.06 13.0
USA 31966 103 198 | 1845 6.96 13.2

Accent #iles

mode specific to the device and modulation characteristics [26]. For the
language identification (LID) task, the performance is degraded due to the
short segment duration of the speech recordings in addition to the significant
amount of channel noise [28]. The training data for the RATS experiments
consist of 20000 recordings (about 1600 hours of audio) from five target lan-
guages (Arabic, Pashto, Dari, Farsi and Urdu) as well as from several other
non-target languages. The development and the evaluation data consists of
5663 and 14757 recordings respectively from the noisy channels. We evaluate
the models on 3 sec, 10 sec and 30 sec chunks from the full length evaluation
files. All the processing steps involved in i-vector/s-vector extraction for the
NIST LRE2017 dataset are used similarly for the RATS dataset.

4.5. Ezxperiments conducted

Figure [2| depicts the pipeline of the bottleneck feature i-vector based lan-
guage/accent recognition system. In our experiments involving s-vectors, all
the components in this pipeline remain the same except for the 7" matrix
training and s-vector extraction steps (described in Sec. [2)).

The bottleneck features of 80 dimensions [20] are extracted from a deep
neural network (DNN) which was trained on switchboard and Fisher corpora
for an automatic speech recognition (ASR) task. Speech activity detection
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Figure 2: I-vector based language/accent recognition pipeline

(SAD) is applied to retain only the voiced frames. We use the implementa-
tion of Sohn’s statistical model based VAD from the Voicebox toolkit [29]. A
GMM-UBM of 2048 mixtures is trained using the bottleneck features from
LRE 2017 train set. For accent recognition experiments involving the Com-
monVoice datasets, this GMM is trained using the CommonVoice train data.
For the total variability training with random initialization, the T" matrix is
estimated using the EM algorithm for 6 iterations. We set the dimension of
the i-vector/s-vector to 500.

Following the i-vector/s-vector extraction, the representations are cen-
tered, within class covariance normalized [I7], and dimensionality reduced
with LDA to L — 1 dimensions (L = 14 for LRE and 9 for the accent recog-
nition task). We then use two different back-end models for obtaining the
language log-likelihood scores, namely the Gaussian backend (GB) [25] and
Support Vector Machines (SVM) [I§] with radial basis function (RBF) kernel.
It was observed that SVM outperformed GB for the LRE task and the GB
outperformed SVM for the accent recognition task using the baseline i-vector
features. Hence, for purpose of conciseness, we report only the performance
of the SVM based backend for LRE task and only the GB based back-end
for the accent recognition task. For the RATS LID experiments, we use the
i-vector /s-vector embeddings with a support vector machine back-end using
a polynomial kernel [2§].
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Table 3: Results on LRE Development Dataset using SVM back-end for scoring
| Dev Performances : 100C,imary [BER (%)] {Accuracy(%)}

Model config. ‘ 3 sec ‘ 10 sec ‘ 30 sec

Unsupervised i-vector [20] | 52.7 [16.6] {51.8} | 27.1[7.5] {74.0} 13.1 [3.6] {87.8}
Sup. i-vector [23] 47.2 [15.1] {61.1} | 20.2 [5.7] {80.9} | 14.8 [4.1] {85.1}
Simplified Sup. i-vector [23] | 58.2 [19.6] {47.8) | 27.3 [7.8] {73.6} | 13.4 [3.7) {87.7}
Average s-vector 47.8 [14.3] {56.3} | 22.4[6.2] {78.3} | 12.2[3.3] {88.0}
PCA s-vector [24] 57.6 [18.2] {50.4} | 27.0 [7.4] {74.6} | 12.1 [3.4] {88.2)
LSTM [30] 53.7 [15.39] {52.7} | 33.8 [9.7) {69.2} | 32.0 [8.81] {70.85}

HGRU [31] 53.1 [15.00] {57.5} | 27.6 [6.6] {76.9} | 25.5 [6.1] {78.6}

MMSE s-vector 44.4 [14.7) {63.5} 19 5 [5 9] {83.7} 11 7 [3.4] {89.4}
Oracle s-vector (cheat) 13.0 [3.9] {88.3} 6 [1.7] {94.4} 0 [1.1] {94.9}

4.6. Results on LRE experiments

We use Cprimary as the primary metric to compare the performance of
various language and accent recognition systems. In this study, we vary the
value of A, and see how Cpimary varies with A for the development dataset,
for each duration (3 sec, 10 sec and 30 sec) separately. The value of A\ that
gives the best performance on the development set is then used to compare
our s-vector systems with the baseline on the evaluation set. We also report
the EER and accuracy of the systems evaluated.

Figureshows the variation of Cpimary With A for MMSE s-vector systems
on the LRE 2017 development dataset. As seen in the figure, the optimal
choice of XA was 3, 5 and 7 for 3 sec, 10 sec and 30 sec conditions respectively.
These configurations are used on the evaluation dataset.

In Tables 3| and 4] we report the Cprimary, equal error rates (EER) and
classification accuracies for the baseline systems, namely the unsupervised i-
vectors systems, simplified supervised i-vector systems [23], and our s-vector
systems. As noted previously, the oracle s-vectors (cheat) and the average
s-vectors represent performance bounds.

On the LRE evaluation dataset the proposed s-vector improves over the
baseline relatively by [19%, 20%, 8%)] in terms of Cprimary, [16%, 24%, 4%]
in terms of EER, and [16%, 18%, 9%] in terms of accuracy for [3 sec, 10 sec,
30 sec] durations.

4.7. Results on Accent Recognition Task

The following figure shows the variation of Cprimaery With A for MMSE
s-vectors on the development dataset using Gaussian Backend classifiers. In
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Figure 3: Variation of Cprimary with A for MMSE s-vectors on development data for each
of the durations [3 sec, 10 sec, and 30 sec]. The dotted line denotes the unsupervised
i-vector baseline.

this case, the MMSE s-vector (A = 7) gave the best performance on develop-
ment data. This configuration is used on the evaluation set and the results
are reported in Table On the evaluation dataset, the proposed s-vectors
provide only moderate improvements (over the baseline), with average rela-
tive improvements of 2% in terms of Cprimary, 2.4% in terms of EER, and 4%
in terms of accuracy. As the recordings are very short in duration and the
accent classes are highly overlapping, the posterior distribution is not well
estimated. Hence, the average s-vector also performs as good as the MMSE
s-vector for this task.
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Table 4: Results on LRE Evaluation Dataset using SVM back-end for scoring and other
neural network based approaches.

| Eval Performances : 100Cyyimary [EER (%)] {Accuracy (%)}
30 sec

Model config. 10 sec

3 sec

Unsupervised i-vector [20] | 53.6 [16.1] {53.8} | 29.9 [8.6] {72.4} 16.7 [3.9] {83.0}
Sup. i-vector [23] 46.1[14.7) {59.6} | 25.6 [7.3] {76.4} | 19.9 [5.1] {80.9}
Simplified Sup. i-vector [23] | 57.2 [19.1] {49.8} | 20.8 [8.4] {71.4} | 16.7 [4.1] {82.8}
LSTM [30] 55.2 [15.4] {54.7} | 35.4 [8.7] {72.1} | 28.1[7.3] {76.1}

HGRU [31] 55.4 [15.3] {55.1} | 32.3[7.5] {74.1} | 23.3 [4.9] {83.0}
Average s-vector 49.7 [13.9] {58.5] | 27.0 [7.0] {75.3} 15.7 [3.7] {84.0}
PCA s-vector [21] 58.2 (7.7 {54.1} | 30.5 [8.2] {73.7} | 15.8 [3.8] {83.9)
MMSE s-vector 43.7 [13.5] {61.2} 23 7 [6 5] {77.4} 15 4[3.8) {84.5}
Oracle s-vector (cheat) 12.6 [3.6] {86.9} 5 [1.6] {92.9} 7 [1.4] {93.6}

4.8. Results on RATS Language Recognition Task

The RATS LID results are reported in Table [£.7 The RATS dataset
involves language recognition on 5 target languages along with several other
imposter classes. The proposed s-vector approaches show consistent improve-
ments over the baseline system on short duration conditions (3 sec. and 10
sec.) over the baseline i-vector approach. For example, on the RATS evalua-
tion set for the 3 sec. and 10 sec. condition, the proposed s-vector approach
improves the baseline system by about 11 % relative in terms of Cprimary
metric. These results are also consistent with the NIST LRE2017 results.

4.9. Computational Complezity

With R being the dimension of the i-vectors/s-vectors and if L labels are
included in the model, the complexity of both i-vector and s-vector extrac-
tion is of order O(R?). The s-vector extraction involves an additional step of
computing the posterior probability p(l | X) and the language specific pos-
terior mean for each langauge [. Both of these steps are of the order O(RL).
In order to analyze the computation time, 50 files of 30 sec. duration from
the NIST LRE task were selected and their i-vectors and s-vectors were ex-
tracted sequentially in a single threaded mode on an Intel CPU with 256
GB of RAM. The feature extraction and zeroth/first order statistic compu-
tation was performed as a pre-processing step before the i-vector/s-vector
estimation. The total computation time for 50 recordings was about 24 sec.
and 28 sec. respectively for the i-vector and s-vector estimation procedure.
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Figure 4: Variation of Cprimary With A for the accent recognition task on the Mozilla
Commons Development Dataset.

Table 5: Results on accent recognition experiments with Mozilla CommonVoice Datasets
using Gaussian backend for scoring

Eval Performances:

Model config. 100C,rimary [EER (%)] {Accuracy (%)}

Unsupervised i-vector [20] 77.2 [21.2] {52.5}
Average s-vector 75.9 [20.7] {53.3}
MMSE s-vector 76.0 [20.7] {53.2}

Oracle s-vector (cheat) 61.5 [15.3] {62.2}

Thus, the s-vector estimation involves 15 % more computation time than
the i-vector estimation. However, we find that the effect of this increased
computation impacts the overall processing pipeline involving voice activ-
ity detection, feature extraction, embedding estimation and SVM scoring by
only about 2 % relative.

5. Discussion

5.1. Result Analysis on the LRE task

For the LRE task, the s-vectors show significant improvement over the
i-vector baseline on the dev data for most choices of A (Figure|3). As seen in
Figure[l], increasing the value of A improves the belief on the class distribution
chosen by the posterior (p({|X(s))) (the Gaussian clusters are more concise
around the mean in Figure [1)). For short duration conditions like 3 sec, the
posterior distribution p(I|X (s)) is not well estimated and has errors. Hence,
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Table 6: Results on RATS Language identification systems
| Performances : 100Cyimary [EER (%)] {Accuracy(%)}

Model config. ‘ 3 sec ‘ 10 sec ‘ 30 sec

Dev.
Unsup. i-vector [20] | 94.0 [26.3] {66.1} | 63.8 [17.6] {77.1} | 40.5 [10.9] {86.9}
MMSE s-vector | 86.7 [25.2] {70.2} | 59.5 [16.6] {80.2} | 41.3 [11.3] {87.5}

Eval
Unsup. i-vector [20] | 89.0 [25.1] {64.8} | 63.0 [17.9] {76.2} | 40.3 [11.6] {85.7}
MMSE s-vector | 79.5 [22.5] {65.8} | 56.3 [16.3] {77.5} | 39.5 [11.4] {85.4}

increasing the value of A\ makes the distribution concise on poorly estimated
posteriors which degrades the performance. On the other hand, for the longer
duration condition of 30 sec, the posterior p({|X(s)) is well estimated and
having a concise distribution (by increasing the value of \) improves the
performance. Thus, there is a trade-off in the choice of A that can provide
the optimal performance based on the duration of the utterance. For shorter
duration utterances like 3 sec, the best performance is achieved at A = 3,
for moderately long duration utterances (10 sec), the best performance is
achieved by using A = 5, and for long recordings of 30 sec, the best choice is
A = 7. Also, the relative improvements for the proposed s-vector approach
over the conventional i-vector system are more significant on the 3 sec and
10 sec conditions which are more challenging.

We also compare the performance of the proposed s-vectors with super-
vised i-vectors and simplified supervised i-vectors introduced in [23] (Table
, . This previous approach of using language labels fails to statistically
model the label distribution as the label information (in the form of one-hot
encoded vectors) is appended to the adapted means of the GMM (without
any change in the i-vector modeling framework). In the proposed work, the
labels are handled as discrete symbols and the label information impacts the
choice of the prior distribution in the EM framework. The results indicate
that the proposed approach of using labels is superior to the previous work
[23] for all durations.

The results for neural network based approaches for language recognition
in LRE2017 development and evaluation data [30, 32], B1] are also reported
in Table {4). The long short term memory (LSTM) recurrent neural network
(RNN) based LID system [30] 32] uses an end-to-end LSTM model for lan-
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guage recognition. An end-to-end hierarchical model for language recognition
[31] using gated recurrent units (GRU) improved the LSTM based model for
longer duration speech recordings. Both these models, use the same training
and test data compared to the proposed s-vector model. As seen in Table
and Table [, the s-vector model improves over the baseline neural network
models in all test duration conditions .

The proposed model involves a Bayesian estimation of embedding vec-
tors y(s) using data statistics X (s) and a prior distribution p(y(s) which is
assumed to be a Gaussian mixture model (GMM). The baseline approach
(based on standard i-vector framework) also involves a Bayesian estimation
using a standard Gaussian prior. As the duration of given utterance in-
creases (from 3 sec. to 30 sec.), the data statistics X (s) are well estimated
and the prior information has a vanishing effect in the latent vector estima-
tion. Given that the difference between the two models (baseline and the
proposed approach) is in the choice of prior density, we hypothesize that the
proposed approach has more significant improvements on the short duration
data (where the prior information has a dominant effect). We also re-weight
the prior to increase the significance of the prior density in the embedding
vector estimation using the hyper-parameter \.

5.2. Data Visualization

In order to analyze the improvements obtained using the proposed ap-
proach, we use a data visualization approach using the t-distributed stochas-
tic neighborhood embedding (tSNE) [33]. The tSNE is an unsupervised
dimensionality reduction method which preserves local neighborhood of the
data space in the lower dimensional subspace. We perform tSNE dimen-
sionality reduction to two dimensions on the unsupervised i-vectors and the
proposed s-vectors (on the LRE development set for 3 sec recordings). The
two dimensional scatter plot is separately shown for each of the five language
clusters (Arabic, Chinese, English, Slavic and Iberian). This is because most
of the confusions in language classification happen within the broad language
cluster. The tSNE plots are shown in Figure[5] As seen here, for most of the
language clusters, the s-vectors have a reduced within class variance in the
cluster distribution. For English and Chinese languages, the between class
separability is also improved for the proposed s-vectors. The tSNE plots il-
lustrate that the s-vectors provide representations that are better suited for
language recognition compared to the unsupervised i-vectors.
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Figure 5: t-SNE scatter plots of unsupervised i-vectors (left) and MMSE s-vectors with
A = 3 (right) for the LRE 2017 development dataset with 3 sec recordings. The language
clusters belong to Arabic, Chinese, English, Slavic and Iberian (from top to bottom).
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Figure 6: Row-normalized Confusion Matrices of i-vector system (left) and s-vector system
with A = 3 (right) on LRE 2017 development dataset for the 3 sec condition.

5.8. Confusion Matriz Analysis

The row-normalized confusion matrix plots for 3 sec recordings in the LRE
development set is shown in Figure [0l The ideal confusion matrix plot is a
identity matrix where all the non-diagonal entries are zeros and the matrix is
diagonally dominant. The confusion matrix plot of the baseline system (left
side plot) indicates that for many languages like eng-gbr, ara-arz and spa-eur
the diagonal entries are not the highest in the row (indicating that majority
of the examples of the particular language class are confused as another
class within the same broad language cluster). While this issue persists for
the ara-arz class in the proposed s-vector model (right side plot), all the
other language classes have the desired diagonal dominance. In particular,
the two language clusters that showed a good class separation in the tSNE
plots (Figure [5)) for the s-vector model (eng-usg versus eng-gbr and zho-cmn
versus zho-nan) also showed significantly reduced confusions(Figure @ Part
of the degradation of the baseline system on these dialects of English and
Chinese language cluster may be attributed to the highly imbalanced training
data for these languages (Table . Thus, the confusion plots highlight that
the proposed model not only improves the overall performance, but is able
to improve the class-specific performances on challenging cases where the
training data is somewhat limited.
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5.4. Relationship to Prior Work

In this paper, we have proposed the s-vector representation. This is based
on MMSE estimation of latent representations that have a GMM prior den-
sity in the factor analysis model. In the original i-vector model [13], a stan-
dard Gaussian density is used. The motivation of standard Gaussian density
in the factor model is two fold - i) the Gaussian prior density results in a
conjugate prior where the posterior density is also Gaussian distributed, ii)
the MAP estimate is simply the posterior mean and that allows efficient esti-
mation of latent representation for speaker/language recognition. However,
the standard i-vector model is unsupervised and does not use the language
labels of the training dataset even when they are available for the language
recognition task. The proposed approach overcomes this limitation by using
a GMM prior density for the latent representation. The mixture components
correspond to the target language classes. Comparing with the standard i-
vector model, the proposed approach also yields a conjugate posterior density.
However, the simple MAP estimation is no longer feasible and more involved
minimum-mean square error (MMSE) estimate is required to obtain the la-
tent s-vector representations. We have highlighted mathematical formulation
to generate the s-vector representations using MMSE approach in Sec. 2] and
[Appendix B] Thus, with moderate increase in computational complexity, we
show that the proposed approach is able to efficiently incorporate the label
information in the training data for the embedding extractor.

The use of GMM prior density has been attempted in the past in [19], 34]
35]. While the modeling strategy in these works are similar to the proposed
approach, they make approximations to simplify the posterior estimation
that defy the underlying the Bayesian factor analysis model assumptions.

In [19], the authors use the GMM prior density with each mixture compo-
nent corresponding to one of the language class labels similar to the proposed
approach. However, the authors approximate the posterior as shown below,

p(y(s)|X(s)) = s), 11X (s)) (20)

2
= Z (U1X(s), y(s)p(y(s)|l)

The posterior p({| X (s),y(s)) is assumed as p(l) which is the prior probability
of the language label [19]. This serves as an approximation at best and
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Table 7: Results on NIST LRE 2017 Evaluation Dataset for two conditions where the A
is fixed and when the A is tied to the trace of the posterior covariance matrix.

| Performances : 100Cyrimary [EER (%)] {Accuracy(%)}
Model config. ‘ 3 sec ‘ 10 sec ‘ 30 sec

MMSE s-vector (A fixed) | 43.7 [13.5] {61.2} | 23.7 [6.5] {77.4} | 15.4 [3.8] {84.5)
MMSE s-vector (A tied) | 43.6 [13.8] {61.5} | 24.7 [6.8] {77.2} | 15.5 [3.9] {84.5}

violates the Bayesian posterior probability model. The resulting embedding
used in [19] (E(y(s)| X (s)) with this approximation is not a MMSE estimate
of the latent vector. In our work, we derive the exact expression for p({| X (s))
under the specific case where the prior covariances of each class (mixture
component) are shared and equal to %I (Eq. . Then, we proceed to use
the posterior to find the MMSE estimate E(y(s)|X(s)).

The methods developed in [34], [35], use a GMM prior density on the
latent representations where the mixture components correspond to pho-
netic groups. The authors use an external phonetic recognizer (Hungar-
ian phoneme recognition system) to obtain frame-level phoneme posteriors.
These frame level posteriors are converted to utterance level posteriors using
an accumulation of frame level posterior statistics. In our approach, we do
not employ an external model for posterior estimation as they are directly
obtained from the s-vector model itself. In addition, the proposed approach
has utterance level language labels which is different from the frame level
phoneme labels used in [34], 35]. Hence, there is no approximation needed to
convert posterior information from frame level to utterance level.

The MMSE approach also addresses a crucial drawback of our previous
work [24] in the estimation of the embedding vector (s-vector). The previous
work [24] using PCA does not estimate any posterior probability and merely
computes the i-vector representation for each language class. These language
specific i-vectors are concatenated and a PCA is applied for dimensionality
reduction. In this work, a full Bayesian estimation of the embedding vector is
proposed where the estimation is approached using a MMSE criterion. The
proposed approach is more elegant mathematically while it also simplifies
the computation over the PCA method. In addition, as seen in results in
Table |3| and Table [4], the proposed s-vector approach improves significantly
over PCA based embedding vectors.
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Table 8: Performance in terms of equal error rate (EER) % for a closed set speaker
recognition experiment on the Librispeech dataset.

Model config. ‘ 50 spk. 100 spk. 200 spk.

0.122 0.156 0.215
0.122 0.158 0.218

Unsup. i-vector
MMSE s-vector

5.5. Estimating the Prior Weight Using Posterior Covariance

In the language recognition experiments reported in Table [3]and Table [4]
the hyper-parameter A that controls the weighting of the prior (covariance
matrix of the prior density is %I ) is chosen based on the performance in
development data. In a subsequent analysis, we attempt the estimation of
the hyper-parameter A as function of the trace of the posterior covariance
L®(s)~1. We use a second order polynomial (obtained using the development
set) to find the value of \ for each utterance. Note that, the prior-weighting
changes for each utterance in this case and it is tied to the posterior covari-
ance unlike the fixed choice of \ per duration used in the previous experi-
ments. Table [7] compares the results on NIST LRE2017 evaluation dataset
for the two cases 1) with fixed A that is duration specific, 2) with utterance
level choice of A\ that is tied to the trace of the posterior covariance matrix.
As seen in this Table, the language recognition performance is similar in
both cases indicating that prior density covariance parameter A can be cho-
sen based on the statistics of the data for each utterance. The approach of
tying the A value to the posterior covariance is partly motivated by previous
efforts on uncertainty propagation in factor analysis [36].

5.0. Application to Closed Set Speaker Recognition

One of the potential drawbacks of the proposed approach is the reliance on
the supervised labels in the embedding extraction. For language recognition
tasks, the number of class labels are typically small thereby allowing the
modeling of each language class with a GMM component. In tasks such
as speaker recognition, where i-vector approaches are dominantly used, the
number of class labels (speakers) can be significantly high. In order to test
the limits of the proposed approach for cases with large number of classes, we
perform a closed set speaker recognition task on the librispeech dataset [37].
Here, we train a background model and the total variability matrix from a
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set of background speakers (from the librispeech dataset). The test dataset
consists of varied number of speakers (50, 100 and 200) and the multi-class
SVM is used as back-end model for speaker recognition. The i-vector/s-
vector embeddings are used in these experiments and the performance is
measured in terms of equal error rate (EER). Table [§| reports the results for
speaker recognition experiment on librispeech dataset. As seen in Table [8]
the s-vector system did not improve over the i-vector approach in the closed
set speaker recognition task. However, even with 200 speaker classes, the
performance of the proposed s-vector model does not degrade compared to
the i-vector approach. Omne potential future research direction for speaker
verification would be to use an unsupervised speaker clustering approach
to generate the label classes for the s-vector model. This may reduce the
number of classes while still preserving the speaker discriminability used in
the s-vector model.

6. Summary
The major contributions from this work are summarized as follows,

e We have established the theory for supervised i-vector (s-vector) mod-
eling where the label information is incorporated in the prior density
modeling.

e We have proposed the use of a hyper-parameter A to control the degree
of importance assigned to prior distribution in the MMSE estimation
of s-vector representations.

e The conventional i-vector model is shown to be a special case of the
proposed model where the class conditioned means m; are forced to 0
for all language classes.

e The benefits of the proposed s-vector modeling are illustrated using the
NIST LRE 2017 task where the s-vector approach is compared with
the unsupervised i-vectors. The proposed approach yields significant
improvements in terms of LRE primary cost metric for all duration
specific conditions considered. The results on a separate accent recog-
nition task further highlight the advantages of the proposed s-vector
framework.

26



e A detailed analysis using data visualization and confusion matrices
shows that the s-vector representations improve the separability of di-
alect variations with the same broad language cluster where the training
data is highly imbalanced.
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Appendix A. An account of the conventional i-vector Model

We provide the mathematical derivation of the conventional i-vector mod-
eling [I3]. This is required as the s-vector modeling is built on this model.
The notations used here follow those from the work of Kenny and Dehak et.
al. [13, [14].

Given a dataset of S recordings, let X (s) = [x1, ..., ()] denote the se-
quence of F' dimensional front-end feature vectors, where H(s) is the number
of frames in recording s. Let A = {7, w., Zc}§:1 denote the parameters of a C
component Gaussian Mixture Model - Universal Background Model (GMM-
UBM). The UBM mean supervector is denoted by Mo = [py", ..., p,']". It
is assumed that for each recording s, an adapted mean supervector M (s) was
used to generate X (s) = [x1,...,@y(s]. The i-vector model ( also known as
the total variability model) is a generative model for M (s) and is given by

M(s) = My + Ty(s) (A.1)

where T' is a matrix of dimension C'F' x R called the total variability matrix,
and y(s) is a latent vector of dimension Rx 1. A standard normal distribution
is used as the prior density for y(s). The i-vector of recording s is defined
as the MAP estimate of y(s) given X(s). The Baum-Welch statistics of
recording s for mixture ¢ are given by

H(s)

Ne(s) = Z palc | @) (A.2)
H(s)

Fx.(s) = Z palc | @) (@i — ) (A-3)
H(s)

Sxx.e(s) = Z pale | i)(@i — po) (i — )’ (A.4)

The BW statistics are sufficient statictics for estimation of the model pa-
rameters. In matrix form, the zeroth and first order statistics are written
as:

Ny (s)I 0 Fyi(s)
N(s) = . Fxe)=|
0 Nc(S)I FX,C<3)
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where [ is an identity matrix of size F' x F. It can be shown that the log-
likelihood function of y(s) [14] is

logpr(X(s) [y(s)) = G(s) + Hr(s,y(s)) (A.5)

where G(s) = 3.9 N.(s)log <(27r)*§ ]Zcr%) — g tr (E_ISXX(S)) is a term
independent of T" and y(s). Hence it will not play a role in estimating 7" and
y(s). The second term is

Hrls,y(s)) = y() TS Fx(s) = Jy(s) TS Ns)Tyls)  (A6)

It can be shown that the aposteriori density function of y(s) given X (s) is
Gaussian with covariance £(s) ' and mean £(s) T'%  Fx(s) [14] where

L(s)=1+T'S 'N(s)T (A7)

Estimating 7" by maximum likelihood is done by using the Expectation-
Maximization algorithm.

Appendiz A.1. Ezpectation (E) step:
The ) function is given by:

S
Q (T | T(t)) = Z Ey(s)\X(s),T“) lOg pT<X(8)7 y(S))

1

@
Il

I
M

Ey(s)\X(s),ﬂw log pr(X(s) | y(s))

@
Il
—

s
+ Z Eys)1x ()70 10g P(Y(s)) (A.8)
s=1

The second term is independent of 7" and doesn’t play a role in the M-
Step, and hence it can be ignored. Substituting for the likelihood term from
Eq (A.5)), ignoring the irrelevant terms and simplifying yields:

Qi)=Y

1

{15 Peln o))

S

_ %tr {21 N(S)TE;Q(S)TT} (A.9)
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where
LO(s)=T+TOS " 'N(s)T® (A.10)
9 (s) = LO(s) ' TO'S Fx(s) (A.11)
EQ(s) = L9(s)” + 99 (s)5" () (A.12)

vy
The E-step can be summarized as computing the quantities in Eq (A.10] -
m The vector §*) (s) is the MAP estimate of the latent variable computed
using the total variability matrix 7™ which is usually as the i-vector.

Appendiz A.2. Mazximization (M) step:
The update equation for the matrix 7' is obtained by maximizing the @)
function w.r.t 7'

T = argmax Q (T| T(t)) (A.13)
T

Differentiating Eq (A.9)), equating it to zero and simplifying yields the system
of linear equations in every row of T(¢+1:

ZN 0 (£0(5) +§0(s)5"(s)") = ZFX &) (A14)
T(’”rl is obtained by solving the above systems of linear equations.

Appendix B. Expectation Maximization algorithm for estimating
the parameters of the s-vector model

The class conditioned means m,...,m; can be parameterized along

with the matrix 7. We define the new parameter set as © = {T,m, ..., m}
The likelihood function of © in terms of X(s),[(s) and y(s) is

Po(X(s),y(s),U(s)) = pe(X(s), y(s) [ I(s))p(l(s)) (B.1)

= o(X(s) | y(s)po(y() | 1(s))

The complete data log likelihood is

S
S logpe (X (s), y(s), i(s))
= Slog 1 + Zlogp@ Zlogp@ () (B2)
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It can be shown that the aposteriori density function of y(s) given X (s
and [(s) is Gaussian with covariance £ (s) which is the same as Eq (A.7)
and mean given by Eil(s){ml(s) + TTEleX(s)}.

The EM algorithm (supervised EM) is used to solve for the parame-
ters © = {T,mq,...,mp} which maximize the joint likelihood function

3 108 b (X(). 1))

Appendiz B.1. Expectation (E) Step:
The @ function in terms of X (s) and [(s) is given by

Mm

Q (@ | 9@) = E y(s)| X (s),l(s),0®) log pe (X (s),1(s), y(s))

1

©
Il

I
DQOJ

y(s)| X (s),0) log pe (X (s) [ y(s))

@
Il
-

s
+ Z Eys)1x(s).00 10gp(y(s) [ 1(s)) (B.3)
s=1

Here, we have used the independence assumption (Eq . Substituting the
required terms from Eq (A.5] 4| & [B.2) and simplifying gives

Qe =3

-1 R T 1 T
tr {T S Fx(s)g(s) }— §u~{z N(s)TES), ()T }

where £ (s) is the same as given in Eq (A.10) and

i (s) = L (s) " {ml(s) + T(t>Tz‘1FX(s)} (B.5)
El(/z/l( )( 5) = ‘C(t)(SY1 + @((>)( )'!AJZ(? )( 5)' (B.6)

Appendiz B.2. Mazimization (M) step:

The update equation for the matrix 7" is same as in Eq (A.14)), and
the update equation for m; can be obtained by partially maximizing the @
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function w.r.t m,; and is given by
1S
t+1 . (t
m{™ = = 3" gl (s) (B.7)

where S is the number of utterances having class label [. It can be noted
L

that S = Z Sl.
1=1

Appendix B.3. Minimum Divergence Re-estimation

In the traditional (unsupervised) EM algorithm, Minimum divergence re-
estimation of the T matrix is done after every M-step to ensure that the
model is consistent with the prior on the latent variable y. Assume that the
current estimate 7' results in i-vector estimates with covariance K, instead
of identity covariance, the TVM equation can be written as

M(s)=My+ Ty(s)

—~~
o
o

N~—

=M, + TKEy (K;yiy(s))
r (s)
Y'(s

Hence, by making the modifications 7" < TKEy and y'(s) < Ky_y%y(s),
and re-estimating {m;}/, using y'(s), the KL divergence of the distribution
of i-vectors using updated model from the prior on y(s) will be minimized.
The quantity K, is computed as

s
1 T
Ky, = g E Eys)ix ) [y(s)y(s)'] (B.10)
s=1

It can be shown that by making these updates, the total data log likelihood
also improves [13].

S S
D logpr(X(s)) = ) logpr(X(s)) (B.11)

If the mean of the i-vectors is assumed to be m instead of zero mean, K,
must be computed as

S
Ky = ¢ 3 Eyarxnr [B(s) ~m)(y(s) ~m)]  (B12)
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For the s-vector model, we have modeled the class conditioned prior on y(s)
for each class [ to be Gaussian with mean m,; and identity covariance matrix
shared by all classes. Hence, the covariance normalization done in the earlier
can be replaced by within class covariance normalization. That is, K, should
be the within class covariance of y and is computed as

1 T
Kyy = g ZEy(snX(s),z(s),T [(y(s) — mue) (y(s) — M) (B.13)
s=1

Expanding and simplifying using the parameters at time step t,

(O (&) ~(t) (T ) )T
_yl(s)<8)ml(s) _ml(s)yl(s)(s) T my g my ) (B.14)

Appendix C. Computing label posteriors for s-vector extraction

The MMSE s-vectors are extracted using the expression in Eq. .
Here, we explain how is the quantity p(/ | X(s)) computed.
The log likelihood of X (s) for class | can be written as

log p(X(s) | 1) = log / p(X(s), y(s) | 1(s)) dy(s) (1)
<y(s)>

~ log / p(X () | w(s). 1()) p(y(s) | (s)) dy(s)  (C.2)
<y(s)>

~ log / p(X(5) | 5(s)) py(s) | (s)) dyls) (C3)
<y(s)>

The [(s) term vanishes due to the independence assumption (Eq[f]). Substi-
tuting for the log likelihood from Eq. (A.5) and the expression for the class
conditioned prior of y(s) with reweighting factor A\, we get

;e*%/\(y(s)*ml) Wls)=m) qy ()

logp(X(s) 1) =log / o(G(&)+Hr (sy(s)) _
(2m)2

<y(s)>
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Simplifying, we get

1 . 1
logp(X(s) |1) = G(s) — §Aml g log | L(s)|

Amy +T'S Fx(s) L(s) (Amy+T'S " Fx(s))
(C.5)

+

N |

The class posteriors p({| X (s)) can be calculated using the Bayes’ formula,
and terms G(s) and —3 log |£(s)| are independent of I and can be ignored
while calculating the posteriors.
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