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Abstract
This paper presents an experimental study to understand the key differences in the neural
representations when the subject is presentedwith speech signals of a known and an unknown
language and to capture the evolution of neural responses in the brain for a language learning task. In
this study, electroencephalography (EEG) signals were recordedwhile the human subjects listened to a
given set of words fromEnglish (familiar language) and Japanese (unfamiliar language). The subjects
also provided behavioural signals in the formof spoken audio for each input audio stimuli. In order to
quantify the representation level differences for the auditory stimuli of two languages, we use a
classification approach to discriminate the two languages from the EEG signal recorded during
listening phase by designing an off-line classifier. These experiments reveal that the time-frequency
features alongwith phase contain significant language discriminative information. The language
discrimination is further confirmedwith a second subsequent experiment involvingHindi (the native
language of the subjects) and Japanese (unknown language). A detailed analysis is performed on the
recorded EEG signals and the audio signals to further understand the language learning processes. A
pronunciation rating technique on the spoken audio data confirms the improvement of pronuncia-
tion over the course of trials for the Japanese language. Using single trial analysis, wefind that the EEG
representations also attain a level of consistency indicating a pattern formation. The brain regions
responsible for language discrimination and learning are identified based onEEG channel locations
and are found to be predominantly in the frontal region.

1. Introduction

Speech is the easiest and the most effective way of
communication used by humans. Humans are inher-
ently capable of distinguishing between sounds from
familiar and unfamiliar languages when they listen to
them. Previous work has shown that humans can
instantaneously differentiate while listening to songs
from known and unknown languages [1]. Also, the
studies on brain activations showed interesting differ-
ences in the areas of the brain that are activated when
exposed to native and non-native languages [2].

With the use of functional magnetic resonance
imaging (fMRI), it was seen that cerebral activations in
the brain are more pronounced when presented with
foreign language compared to a known language [3].
Similarly, in speech production it was seen that the
right frontal areas are more involved when the subject
is attending to speak a new language. The activity in

the right pre-frontal cortex was also found to be indi-
cative of the language proficiency of the subject [4].

The difference in response of the human brain to
known and unknown stimuli has been of significant
interest to facilitate the full understanding of the audi-
tory encoding processes. For example, a stronger P300
peak was observed in electroencephalogram (EEG)
signals of the subject when presented with their own
names compared to the peak values observed when
other stimuli were presented [5]. For infants, the
representation in EEG for familiar language and for-
eign language as well as for familiar and unfamiliar
talker was analyzed in [6], where the delta and theta
bands showed important differences.

In the case of learning, several studies have shown
that with experience, we gain proficiency in an
unknown language and the function and structure of
the brain changes during this learning process [7, 8].
Similar to the task of musical training, the experience
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of learning a new language also includes changes in the
brain states. The complexity of speech and language
causes challenges in understanding the questions rela-
ted to how, when andwhere these changes occur in the
brain.

The attempts to answer these questions may also
throw light on the fundamental questions of primary
language acquisition in an infant [9]. With the exemp-
tion of a few studies that have attempted to quantify
the anatomical changes in the brain during language
learning [10–12], very little is known regarding the
changes in the brain during a new language learning in
terms of when these changes occur, and how they
reflect in the learning. In this work, we attempt to
quantify some of these questions at the representation
level using electroencephalogram (EEG) recordings.

While the primary language learning for most
adults happens at a very young age, the acquisition of a
new language can happen at any point in their lifetime.
For the language learning task, the age of acquisition
showed little impact in terms of brain representations
when normalized for the proficiency levels [13]. The
fundamental question of whether there is knowledge
transfer from a known language to a new language is
still open-ended. Several studies have shown that the
known languages play a key role in acquiring new lan-
guages. The first language was found to provide an
understanding of the grammar [14, 15]. The popular
hypothesis for a secondary language learning is the
establishment of a link of the representations of the
new language to the features of the already known lan-
guage. Also, the continued exposure to the foreign lan-
guage can help in learning the language faster [16, 17].
In the past, studies usingMEG signals have shown that
there are two major effects seen in the brain when the
same words are presented repeatedly. In Repetitive
Enhancement (RE), the frontal regions in the brain get
activated when the same word from an unknown lan-
guage is presented to the subject multiple times [18]
after which the activations drop leading to Repetitive
Suppression (RS). The RS is also observed when a
word familiar to the subject is presented. These studies
indicate that activations are seen till new brain connec-
tions are formed after which the intensity of the activa-
tions drop.

The task of learning a new language can be quite
complicated in analysis. This can be done at multiple
levels like phonemic, syllabic, word-level or sentence
level. The evaluation of language learning can also be
analyzed for multiple tasks like reading task, sponta-
neous speaking etc. In this study, we aim to under-
stand the major differences in the brain
representations at a word level from a familiar and an
unfamiliar language. Additionally, we propose a
method to perform trial-level analysis to understand
the changes in the representation of words when the
subject listens towords from anunfamiliar language.

We record EEG signals from the subjects when the
subjects are presented with word segments from a

familiar and an unfamiliar language. Along with EEG
signals, we also record behavioral data from the sub-
ject where the subject reproduces the stimuli pre-
sented to him. The key findings from the work can be
summarized as follows,

• With various feature level experiments, we identify
that the time-frequency representations (spectro-
gram) of EEG signals carry language discriminative
information. These features are also verified for two
separate tasks, English versus Japanese and Hindi
(native language) versus Japanese.

• The brain regions that contain the most language
discriminative information are in the frontal cortex
and the temporal lobe (aligned with some of the
previous fMRI studies [2]).

• It is seen that the inter-trial variations are more
pronounced for the words from unfamiliar lan-
guage than those from the familiar language in both
EEG signals and spoken audio signals. Furthermore,
the inter-trial variations in the spoken audio are
correlated with those from the listening state EEG
representations.

• The EEG signals for the Japanese stimuli are more
correlated with the audio signal than those for the
English stimuli indicating a higher level of attention
to Japanese stimuli.

To the best of our knowledge, this study is one of the
first of its kind to probe the linguistic differences in
EEG level and in uncovering the language learning
process from single-trial EEG analysis.

The rest of the paper is organized as follows. In
section 2, we describe the data collection procedure
along with the pre-processing steps used for EEG data
preparation. The feature extraction of EEG signals and
the classification between the two languages is descri-
bed in section 3. A similar analysis is done to extract
features and to classify the spoken audio signals and
this is also described in section 3. The evidence of lan-
guage learning is established in section 4. The inter-
trial analysis performed on the EEG and the audio sig-
nals is described in section 4.2. The relationship
between the EEG and the audio signals is analyzed and
described in section 4.2.2. In section 5, we provide a
discussion of the findings from this work and contrast
it with previous studies. Finally, a summary of the
paper is also provided in section 6.

2.Materials andmethods

2.1. Subjects
All the participants were Indian nationals with self-
reported normal hearing and no history of neurologi-
cal disorders. In the first experiment, English and
Japanese languagewordswere usedwhile in the second
subsequent experiment Hindi (native language) and
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Japanese language words were used. The first experi-
ment had 12 subjects while the second experiment had
5 subjects. All the subjects in the first experimental
setup had an intermediate or higher level of English
proficiency. In the English/Japanese experiments, six
subjects were males (median age of 23.5) and six were
females (median age of 24). The subjects were natives
of south Indian languages or Hindi language. In the
second experiment of Hindi vs Japanese, all the
subjects were natives ofHindi language.

2.2. Experimental paradigm
Each block of the recording procedure consisted offive
phases as illustrated in figure 1. The first phase was the
rest period of 1.5 s duration followed by a baseline
period of 0.5 s. The subjects were instructed to
attentively listen to the audio signal played after the
baseline period. Then, they were given a rest of 1.5 s
where they were encouraged to prepare for overt
articulation of the stimuli. The last phase is the
speaking phase where the subject was asked to speak
the word overtly. The spoken audio was recorded
using a microphone placed about one foot from the
subject. The subjects were alerted about the change in
phase by the display of a visual cue in the center of the
computer screen placed in front of them. The partici-
pants were asked to refrain from movement and to
maintain visual fixation on the center of the computer
screen in front of them. All subjects provided written
informed consent to take part in the experiment. The
Institute Human Ethical Committee of Indian Insti-
tute of Science, Bangalore approved all procedures of
the experiment.

2.3. Stimuli
In each experiment, the stimuli set contained words
from 2 languages. The words were chosen such that
they have uniform duration and speech unit variabil-
ity. In the first experimental setup, the stimuli-set
includes 12 English words and 12 Japanese words
(table 1). The duration of all audio stimuli ranges from
0.5 s to 0.82 s. In the second experimental setup, the

stimuli-set includes 12 Hindi words (native language
of the subject) and the same 12 Japanese words
(table 1)).

The Japanese was the unfamiliar language for all
the subjects who participated in this experiment. In
thefirst experimental setup, all the trials of English and
the first 10 trials of Japanese were presented in random
order, while the last 10 trials of Japanese were pre-
sented in a sequential manner. In the second exper-
imental setup using Hindi and Japanese language
words, all the trials were presented in a randomorder.

2.4.Data acquisition
The EEG signals were recorded using a BESS F-32
amplifier with 32 passive electrodes (gel-based)
mounted on an elastic cap (10/20 enhancedmontage).
The EEG data was recorded at a sampling rate of
1024 Hz. A separate frontal electrode (Fz) was used as
ground and the average of two earlobe electrodes
(linked mastoid electrodes)was used as reference. The
channel impedances were kept below 10 kOhm
throughout the recording. The EEG data was collected
in a sound-proof, electrically shielded booth. A pilot
recording confirmed that there wasminimal line noise
distortion or other equipment related artifact. The
pre-processing steps are described in detail in the
supplementary material (sectionA). In this paper, all
the analyses are performed with EEG signals recorded
at listening state and with the audio signals used in
stimuli as well as the spoken audio (behavioral data)
collected from the subjects.

3. Language classification in EEG signals

The language classification approach is used to identify
the key features that discriminate the EEG representa-
tions of familiar and unfamiliar language. In part-
icular, we try to uncover the best feature and classifier
settings for discriminating English and Japanese from
EEG signals (and Hindi vs Japanese from the second
experimental setup). In these experiments, the chance
accuracy is 50%. The training data set consists of 70%

Figure 1.Experimental setup used for EEG and behavioral data collection.
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of the trials of each stimulus and the rest of the trials
form the evaluation set for each subject. A support
vector machine (SVM) with a linear kernel has been
used as the classifier to validate the performance of
different feature extractionmethods. The input data to
the SVM classifier is normalized to the range of 0 to 1
along each feature dimension. The SVM classifier is
implemented using the LIBSVM package [19]. In the
later experiments, the SVM classifier is also shown to
be the best classification technique. The classification
performance on channels with the best accuracies are
reported in this paper.

3.1. Feature extraction
A spectrogram is computed using the Short-Time
Fourier Transform (STFT) of a signal. The spectro-
grams are used extensively in the field of speech
processing [20], music, sonar [21], seismology [22],

and other areas. The spectrogram has been used to
analyze the time frequency characteristics of EEG
rhythms [23] and to detect seizures in epileptic
patients [24].

In our spectrogram computation, we use a ham-
ming window of duration 400 ms and step size of
200 ms on the input EEG signal. We compute spectro-
gram up-to a maximum frequency of 30 Hz. In
figure 2(a), we show the spectrogramwith 400 mswin-
dow of EEG signal recorded in channel 7 when the
subject was listening to an English word and
figure 2(b) shows the spectrogram for a Japanese
stimulus.

3.2. Trial averaging
In order to reduce the effect of noise and background
neural activity, the EEGdata from each trial is averaged
with two other random trials of the same stimulus,

Table 1.The list of stimuli used for the experiments, the duration of thewords in seconds and the
number of speech units. English andHindi are phonetic languageswhile Japanese is a syllabic language.
Thefirst experiment uses the 12 English and 12 Japanese wordswhile the second experiment uses the 12
Hindi and 12 Japanesewords.

English Japanese Hindi

Word Duration (s) Word Duration (s) Word Duration (s)
(#units) (#units) (#units)

beg 0.50 (3) 南極 0.82 (4) 0.73 (4)

cheek 0.67 (3) 抜き打ち 0.83 (4) 0.62 (3)

ditch 0.70 (3) 仏教 0.77 (3) 0.63 (3)

good 0.50 (3) 弁当 0.72 (3) 0.88 (4)

late 0.77 (3) 偶数 0.76 (2) 0.80 (4)

luck 0.64 (3) 随筆 0.83 (3) 0.61 (4)

mess 0.60 (3) 先生 0.74 (4) 0.74 (4)

mop 0.54 (3) ポケット 0.82 (3) 0.74 (3)

road 0.59 (3) 計画 0.84 (4) 0.72 (4)

search 0.76 (3) ミュージカル 0.83 (4) 0.82 (4)

shall 0.70 (3) ウィークデイ 0.76 (4) 0.69 (4)

walk 0.66 (3) 行政 0.80 (3) 0.68 (3)
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either in temporal domain or in spectral domain. The
number of trials averaged is restricted to 3 as it helps to
remove noise and at the same time provides enough
number of samples to train the classifier. The EEGdata
recorded for fixed 0.8 s duration after the onset of
audio stimulus is used for analysis (the duration of all
the audio stimuli range from 0.5 s to 0.82 s). The
logarithm of magnitude of spectrogram computed on
temporal domain average of EEG trials is termed as
Spec(Avg) feature. In spectral domain averaging (Avg
(Spec)), the spectrogram is computed for each trial of
the stimulus and then averaged. The logarithm of the
average of magnitude spectrum along with the average
of cosine of phase of the spectrograms is used as the
feature vector (termed asAvg(Spec+Phase)).

3.3. Results for language classification
3.3.1. Effect of temporal context
TheEnglish and Japanese languages have phonological
dissimilarities like the difference in the production of
/r/and/l/ sounds as well as the presence of unique
phoneme sounds in English and Japanese [25]. How-
ever, it can be hypothesized that the language specific
informationmay not be evident in shorter segments of
speech (phoneme or syllable). The poor performance
of language identification at syllabic level (using a
single window of 400 ms without context) from neural
signals confirms this hypothesis. The language vari-
abilities are more pronounced at the interaction
between different sounds which is referred to as co-
articulation. Hence, incorporating context aids in
language identification. Figure 3 shows the perfor-
mance of Spec(Avg) features with SVM classifier with
and without context padding. The feature extraction

with context of size 3 provides better accuracy than
using the features extracted from single window of
EEG signal (of duration 0.4 s). The features with
context that provided the best accuracy in figure 3 are
also shown to perform the best in the classification of
Hindi vs Japanese shown infigure 4.

3.3.2. Effect of phase information in language recognition
Given the long duration of spectrogram window, we
hypothesize that the phase of spectrum in the 400 ms
windows is also a useful feature for classification. We
concatenate the cosine of the phase to the magnitude
of spectrogram feature for each frame of the input
signal and use it as feature vector using temporal
domain averaging (Spec(Avg)+Phase) or using spectral
domain averaging (Avg(Spec+Phase)). Our experi-
ments indicate that the phase adds meaningful infor-
mation to the feature regarding the familiarity of the
language as shown in figure 3. We can observe that
adding the phase information provides better language
classification accuracy than using the magnitude of
spectrogram alone, for most of the subjects. This
observation is also confirmed with the experiments
reported on Hindi vs Japanese (second experiment)
reported infigure 4.

As seen in figure 3, all subjects achieve language
classification accuracy above 59.5% for Avg(Spec
+Phase) features. Subject 1 attains the highest classifi-
cation accuracy (73.68%). The average language classi-
fication (across subjects) obtained by Avg(Spec
+Phase) is approximately 64% which is significantly
better than chance level. The t-test conducted at a sig-
nificance level of 0.05 obtained a p-value less than
10−5. This suggests that significant cues exist in the lis-
tening state EEG regarding the language identity of the

Figure 2.Top row: Audio Signal;Middle row: EEG Signal (channel 7) of subject 1 during listening task (Average of 3 trials); Bottom
row: (i) Spectrumofwindowed EEG signal centered at 0.2 s; (ii) Spectrumof windowed EEG signal centered at 0.4 s; and (iii) Spectrum
of windowed EEG signal centered at 0.6 s (windowduration is 0.4 s).
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Figure 3. Language classification accuracy obtained for the 12 subjects with different feature extraction techniques on EEGdata
recorded during the listening state. Different feature types are Spec(Avg): Spectrogramof temporal average of trials (section 3.2)- with
andwithout context, Spec(Avg)+Phase: Phase information appended to the previous feature (section 3.3.2), Avg(Spec+Phase):
Average ofmagnitude and phase of spectrograms of trials.We also compare the performance of language identification fromEEG
signals to those from the spoken audio data provided by the subjects (section 3.4).

Figure 4.Hindi vs Japanese Language classification accuracy obtained for the 5 subjects with different feature extraction techniques on
EEGdata recorded during the listening state. Different feature types are Spec(Avg): Spectrogramof temporal average of trials
(section 3.2)- with andwithout context, Spec(Avg)+Phase: Phase information appended to the previous feature (section 3.3.2), Avg
(Spec+Phase): Average ofmagnitude and phase of spectrograms of trials.We also compare the performance of language identification
fromEEG signals to those from the spoken audio data provided by the subjects (section 3.4).

Table 2. (a)Performance of different classifiers withAvg(Spec+Phase) features (Spectral Band: 0.1–30 Hz). (b)
Classification accuracy of SVMclassifierwith Avg(Spec+Phase) features in different spectral bands.

a. Performance ofDifferent Classifiers

Model type Discriminative Generative

Classifier SVM LDA Gaussian GMM GMM

2mix. 4mix.

I.EnglishvsJapaneseClassification

Average 64.06 62.79 58.64 60.46 59.99

Accuracy (%)

II.HindivsJapaneseClassification

Average 62.57 52.18 65.09 62.19 59.86

Accuracy (%)

b. LanguageClassification in EEGSpectral Bands

Spectral δ θ α β γ ALL

Band (0.1–4 Hz) (4–8 Hz) (8–13 Hz) (13–30 Hz) (30–50 Hz) (0.1–50 Hz)

I.EnglishvsJapaneseClassification

Average 62.52 61.54 64.21 63.19 63.06 62.83

Accuracy (%)

II.HindivsJapaneseClassification

Average 61.55 63.71 61.33 62.44 62.44 62.73

Accuracy (%)
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stimuli. In the Hindi vs Japanese language classifica-
tion, subject 4 attains the highest classification accur-
acy (72.73%). The classification performance for the
rest of the subjects are also above 60% with phase
information added to the feature vector.

3.3.3. Performance of different classifiers
As shown previously, the spectrogram magnitude
information is more meaningful along with the phase
information.

The performance of different classifiers for theAvg
(Spec+Phase) features in terms of average accuracy is
shown in table 2(a). It is seen that the SVM provides
best performance amongst them (p<10−4). The
Gaussian mixture model (GMM) with two mixtures
performs better than a single Gaussian model or a
GMM model with 4 mixtures. The input to all four
classifiers other than SVM is standardized to zero
mean and unit variance along each dimension. For the
LDA based classifier, we use the mean of the two clas-
ses of training data as the threshold. The statistical sig-
nificance of the difference in the performance of
classifier models has been evaluated using paired sam-
ple t-test with significance level of 0.05 (with p <
10−4). In this statistical test, the SVMclassifier is found
to be significantly better than the rest. In the second
subsequent experiment on classifying Hindi and Japa-
nese words, the Gaussian classifier provides the best
performance (p<10−4). The Gaussian classifier,
being a simpler classifier, shows better performance in
classifying Hindi (L1) versus Japanese while the SVM
classifier performs better for the relatively harder task
of classifying English (L2) versus Japanese. Also, the
data for Hindi-Japanese experiments came from only
5 subjects compared to the data from 12 subjects used
in English-Japanese experiments.

3.3.4. Language classification in different spectral bands
of EEG -
The accuracy of the language identification task varies
depending on the different spectral bands of EEG
signal. The analysis indicates that α and β bands
capture more language discriminative information as
compared to θ and γ band (table 2(b)). We obtain the
highest classification accuracy of 64.21% in the α

band. In the classification experiment involving Hindi
vs Japanese, the θ band provides the best performance.
This indicates that the language discriminative infor-
mation is spectrally selective and the dominant
language information is present in α and θ bands. The
best performing sub-band rhythms has statistically
significant difference in performance compared to the
next best one (with p<.005).

3.4. Comparison of language classification in spoken
audio andEEG
We also perform the language classification experi-
ment on the behavioral signals (spoken audio) from

the subjects. We use the Mel Frequency Cepstral
Coefficients (MFCC) [26] as the features for this
experiment. The MFCC features with a context size of
53 (800 ms) is concatenated and a linear discriminant
analysis (LDA) is performed at word-level to reduce
the dimension of these features to 23. With these
features and SVM classifier, we obtain an average
accuracy of 93% (for both the experiments). The
comparison of resul)ts between audio and EEG shows
that, while the spoken audio contains significant
information for language classification, the EEG
signals at the listening phase can also provide language
discriminative cueswhich are statistically significant.

4. Language learning andEEG

In the rest of analysis provided, we only use the data
collected from the first experiment involving English
and Japanesewords.

4.1. Evidence of language learning
In this section, we attempt to establish the evidences
for Japanese language learning using the behavioral
data (spoken audio signals). The aspect of language
learning may cover many facets like memory, recall,
semantics and pronunciation etc. In this paper, we
limit the scope of language learning to improvement
in pronunciation of the spoken audio. We use an
automatic pronunciation scoring setup as well as
human expert evaluation for this purpose.

4.1.1. Automatic pronunciation scoring-
The automatic rating of speech pronunciation has
been a problem of interest for many analysis tasks as
well as for applications like computer assisted language
learning (CALL) [27]. Several methods have been
proposed for automatic pronunciation rating based
on stress placement in a word [28, 29], learning-to-
rank approaches [30] etc. In this paper, we use a
modified version of log-likelihood based pronuncia-
tion scoring with the force-alignment of hidden
Markovmodels(HMM) [31].

A HMM based speech recognition system is
trained using the Corpus of Spontaneous Japanese
(CSJ) [32]. A Hybrid HMM-Deep Neural Network
(DNN) model is developed using the Kaldi toolkit
[33]. For the given Japanese word used in our EEG
experiments, the word level HMM is formed by con-
catenation of the phoneme HMMs that correspond to
the phonetic spelling of the word (obtained from the
dictionary of the CSJ corpus). Using the word level
HMM (denoted as λ), the likelihood of the speech data
O={ o1, o2,K, oT } is approximated as [34],

ål l l= »( ∣ ) ( ∣ ) ( ∣ )

( )

P P PO O Q O Q, max , .

1

QQ

where Q={ q1, q2, K, qT } denotes the state-
sequence of the HMM and T denotes the time
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duration. The above likelihood can be efficiently
solved using the Viterbi algorithm [34]. In this work,
the log-likelihood of the behavioral data (spoken audio
from the subjects) and the stimuli audio are computed
with force alignment and are used as confidence
estimates of pronunciation. The main modification of
our approach compared to the previous work in [31] is
the use of state-of-art speech acoustic modeling using
deep neural networks. The details of the HMM-ASR
based pronunciation rating system are provided in
supplementarymaterial (sectionE).

4.1.2. Pronunciation scoring by human expert -
We also evaluate the pronunciations using a human
expert1 based pronunciation rating (for Japanese
audio). Given the large number of spoken audio
recordings (20 recordings per subject per word), we
use a smaller subset of this audio (4 recordings per
subject per word from the 1st, 6th, 11th and 16th trial)
for evaluation from the human expert in Japanese
language. This was done in a scale of 1-10 (where 1
indicates a poor pronunciation and 10 indicates a
native speaker pronunciation). In this evaluation, the
human expert was also provided with the stimuli (in a
hidden randomized manner similar to hidden refer-
ence in audio quality testing [35]) in order to ensure
the effectiveness of the rating. Out of the 12 Japanese
words, the 3 words for which the stimuli recording
had a pronunciation rating of less than 8 were
excluded from further analysis.

4.1.3. Improvement of pronunciation over trials -
In figure 5, we compare the evaluations from the
human expert for Japanese language recordings along
with the automatic pronunciation scores. For this plot,
the logarithm of likelihood scores are normalized and
are linearly mapped to the range of 1–10 in order to

make the comparison with the human scores. The
average rating of all the spoken audio data from the
subjects (12 subjects) is plotted for two phases
separately—Phase-I (1–10 trials) and Phase-II (11–20
trials). The stimuli ratings are also recorded for both
human expert and automatic rating.

As seen in figure 5 (left panel), both the human
scoring and the automatic scoring indicate an
improvement in the pronunciation of the Japanese
words for the Phase-II over the Phase-I. At the subject
level, we also find that 10 out of 12 subjects showed an
increase in scores (both human expert and automatic
method) for the Phase-II over the Phase-I. Also, using
the approach of log-likelihood with forced alignment
shows a good match with the human expert based
scoring.We also find the score improvement to be sta-
tistically significant for the human expert scoring and
the machine scoring (with p=0.027, 0.017
respectively).

In both cases, the mean of the log-likelihood
scores for the stimuli are different from the mean of
the spoken audio recordings from the subjects. This is
expected as the stimuli are clean speech utterances
which were recorded in a close talking microphone
setting while the spoken audio recordings from the
participants were collected in a far-field microphone
setting. However, in the case of English spoken audio
recordings, the mean of the log-likelihood scores for
the stimuli is more similar to the rest of distribution
compared to the Japanese language (the percentage of
data below the mean value of the stimuli is 70 % in the
case of English while is 95 % in the case of Japanese).
This difference between the two languages is also sta-
tistically significant.

4.2. Understanding language learning via the EEG
In this section, we use two types of analyses, (i) based
on inter-trial distances and (ii) based on distance
between audio and EEG envelopes.

Figure 5.The left panel depicts the comparison of human andmachine pronunciation scoring for Japanese language audio data. The
right panel depicts the histogramof log-likelihood scores (rawmachine scores) for English and Japanese spoken audio data. In both
cases,mean of the stimuli is also highlighted for reference.

1
The human expert used in our study was a professional Japanese

language tutor. The text used in the stimuli was provided before the
pronunciation evaluation.
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4.2.1. Inter-trial distance analysis -
We use the inter-trial distance between EEG signals to
quantify the change in representation while listening
to the sameword over time. The hypothesis here is that
in the case of a known language like English the inter-
trial distance is some what random (due to the
measurement noise in EEG) but small in value
throughout. However, in the case of Japanese, the
inter-trial distances may show a pattern of reduction
over trials as a consistent representation is formed in
the brain.

For testing this hypothesis, the EEG signals recor-
ded during each trial are converted into a log magni-
tude spectrogram (window length of 100 ms and
shifted by 50 ms). Themagnitude spectrogram of each
channel is converted into a single long vector and a
pairwise distance between trials is computed using
Euclidean distance between spectrogram vectors. An
inter-trial distancematrix of size 20×20 is computed
for each channel separately. This is a symmetrical
matrix whose elements contain the inter-trial dis-
tances between any pair of trials. An example of inter-
trial distance in EEG is shown in figure S 3 of supple-
mentarymaterial.

In order to further analyze the inter-trial distances,
the trials are broken down into two phases as before—
Phase-I (trials 1–10) and Phase-II (trials 11–20). The
mean of the inter-trial distances in Phase-I (denoted as
d1) and the Phase-II (denoted as d2) are calculated. The
difference d1−d2 is indicative of change in inter-trial
distances over the course of 20 trials. We compare
d1−d2 averaged over all words and all subjects.

As hypothesized, the inter-trial distances reduce
over time in the case of Japanese but remains more or
less uniform in the case of English as seen in (figure 6).
The histograms depicting the difference values
(d1−d2) for all the channels and the stimuli are plot-
ted separately using a Gaussian fit for Japanese lan-
guage and English language. In order to confirm the
statistical significance, we performed a two-tailed test
with null hypothesis being that the values of d1−d2
for both English and Japanese come from the same
distribution and the alternative hypothesis being that
Japanese measurements of d1−d2 come from a differ-
ent distribution compared to English. The tolerance
level alpha was set to 0.05. It is seen the distributions of
the difference values for English and Japanese are sta-
tistically different.

The brain regions that show the language differ-
ences the most are shown in the scalp-plot of the dif-
ference in terms of (d1−d2) (for English and Japanese
separately for each channel averaged over all the sub-
jects) in figure 6. A plot which differentiates the two
language level scalp plots is also shown here. The
regions that show more changes in English stimuli are
in the temporal region while the frontal regions also
show this effect in the case of Japanese stimuli. The
regions that have higher difference between the two

languages are predominately in the frontal brain
regions.

An extension of this analysis performed for the
spoken audio data is done using the audio recorded
during the speaking phase of each trial. The silence
portion of each recorded audio is removed. Each audio
signal is converted into a sequence of MFCC feature
vectors. Similar to analysis done in the previous
section, a symmetrical distance matrix of size 20×20
is computed for each word. Since the duration of the
spoken audio for the same word differs each time, an
Euclidean metric based Dynamic Time Warping
(DTW) distance is calculated for the pair-wise trial dis-
tance. Similar to the EEG analysis, the trials are divided
into Phase-I and Phase-II. The mean inter-trial dis-
tance in Phase-I (denoted as a1) and Phase-II (denoted
as a2) are calculated. The difference a1–a2 is computed
similar to EEG and the histogram of the difference in
the case of audio for Japanese and English (using the
spoken audio data from all subjects) is plotted using a
Gaussian fit (shown in the middle of the top panel of
figure 6). As seen in the case of EEG, the difference
(a1–a2) in themean distance between the two phases is
greater in the case of Japanese than English. The dis-
tribution obtained in the case of Japanese has a mean
that is significantly larger than zero but not for Eng-
lish. Similar to the case of EEG signals, a two-tailed
t-test was performed on theGaussian fit of English and
Japanese (alpha=0.05) and the two distributions
were found to be statistically different.

We also analyze the correlation between EEG
recorded during the listening state and the spoken
audio in terms of the mean inter-trial difference in the
Phase-I and Phase-II (i.e correlation between (d1–d2)
and (a1–a2)). A scatter plot is shown with the differ-
ence values for EEG signals along the y-axis and the
corresponding difference for audio signals along the
x-axis (i.e. (d1–d2) versus (a1–a2)). An example of the
scatter plot difference of (d1–d2) versus (a1–a2) for the
frontal EEG channel (FC4) is shown in figure 6. Each
point on the plot indicates a (subject,word) pair. The
values along both the axes are normalized between 0
and 1. A line of best fit is plotted through the points.
The slope of the line (denoted by m) of best fit is posi-
tive for most of the channels. Since the scales for the
EEG spectrogram and the audio MFCC features are
different, the amount of correlation between the lis-
tening state EEG and the audio spoken may be unnor-
malized. Additionally, the mean slope of best fit lines
for Japanese words is found to be higher than English.
These observations indicate that the pattern formation
seen in the behavioral data is also correlated with the
patterns seen in EEG recordings.

4.2.2. Distance between EEG and audio envelopes-
A direct relationship between the EEG signals
recorded during the listening and the audio spoken by
the subject during the speaking phasemay also present
useful insights. Previous studies have attempted to
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predict the audio envelope using EEG [36] or to
perform a correlation analysis between the EEG and
audio envelope [37]. In our study, we try to align the
EEG and audio envelopes (after down-sampling to the
same rate) and measure a distance between the two.
Thus, the distance measure is inversely proportional
with the correlation measures used in the past, as
smaller distances between audio and EEG envelopes
are associated with higher correlations and vice-versa.
The choice of distance is to maintain consistency with
the previous analysis based on distances. A sample plot
of EEG and audio envelopes that are time aligned is
shown infigure S 4 of supplementarymaterial.

For the distance computation, the silence portion
of the audio is removed and the length of the EEG sig-
nals are kept to stimuli length plus 100 ms. Both the
signals are converted to their corresponding Hilbert
envelopes and the envelopes are down-sampled to
64 Hz. The DTW distance between the two aligned
envelopes is calculated. It is seen that the mean dis-
tance between the two envelopes is greater in the case
of Japanese than English (figure 7).

As a follow up to the comparison done between
the envelope of the EEG signals and the audio spoken,
a similar analysis is done between the envelope of the
EEG signals and the stimuli presented to the subject. A
DTW distance is computed between envelope of lis-
tening EEG and envelope of stimuli. A histogram of all
the distances (between listening stimuli and EEG as
well as those between the spoken audio and EEG) for
both the languages are shown in figure 7. The average
distance values between envelopes (for listening state)

is less in the case of Japanese compared to speaking
state. The distance between the envelopes of the EEG
signal and the spoken audio is more than the distance
between the envelopes of the EEG and stimuli pre-
sented as well.

A two-tail t-test was performed on the distribu-
tions of distance between the envelopes of EEG and
audio for English and Japanese. This was done for both
distance measures between EEG and stimuli envelope
as well as EEG and spoken audio envelope. In both the
cases, the null hypothesis was that the distributions of
English and Japanese are not statistically different and
the alternative hypothesis being that the two distribu-
tions are statistically different. In both the cases, the

Figure 6. (above)Histograms plotted using aGaussian fit depicting difference between themean inter-trial distance in the Phase-I and
Phase-II (d1−d2) for EEG signals. A two-sample t-test is performed between the distribution of English and Japanese in the case of
both EEGand audio. It is observed that in both the cases the distributions are statistically significant(α=0.05). On the right,
correlation between audio and EEG inter-trial distance differences for Japanese trials is shown (EEGdata from electrode site FC4 is
plotted here). (below) Scalp plots indicating the channels with higher d1−d2 difference for English, Japanese and the difference of the
two languages.

Figure 7.Probability Distribution Function of distances
between the envelope of listening state EEG and envelope of
stimuli presented and the envelope of spoken audio. A two-
sample t-test is performed and it is seen that the distributions
of the two languages are statistically different for each state.
(α=0.05).
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t-test indicated statistically significant deviation from
the null hypothesis. This supports our claim that the
distributions obtained for the relationship between
the envelopes of EEG and audio are statistically differ-
ent for the two languages.

5.Discussion

As seen in figure 6, the inter-trial distances reduce over
time in the case of Japanese but remains more or less
uniform in the case of English. The familiarity of the
subjects to the words from English language may have
resulted in generating invariant EEG responses when
presented with these stimuli. In the case of Japanese
stimuli, subjects are listening to those words for the
first time. Over the trials, subjects form a consistent
neural representation for the unfamiliar stimulus. It is
evident from the reduction of inter-trial distances of
the EEG responses.

The stimuli presentation and listening state EEG
recording happens in parallel. Hence, a higher correla-
tion is expected between the two compared to the cor-
relation between the envelopes of listening state EEG
and the spoken audio. This is seen in figure 7. Since
Japanese is unfamiliar, the spoken audio is not well
aligned to the stimuli. Hence, the distance between
spoken audio and EEG envelopes may be more for
Japanese compared to English.

All the subjects who participated in our recordings
were not exposed to Japanese before but had a good
proficiency to English. We hypothesize that due to
their unfamiliarity of Japanese their attention while
listening to Japanese stimuli is much more than Eng-
lish resulting in lesser distance between envelopes of
EEG and Japanese stimuli compared to English. The
absence of semantic processing in Japanese could also
explain the reduced distance between stimuli envelope
and EEG envelope for Japanese. In the speaking state,
the subjects tend to reproduce audio that is less corre-
lated with stimuli for Japanese language than English
language. This may explain the rightward shift of the
distribution of distances for Japanese spoken audio in
figure 7.

6. Conclusions

The keyfindings from this work are the following,

• A consistent neural representation is formed when
exposed repeatedly to words from an unfamiliar
language. This is also consistent with language
learning established using pronunciation rating.

• In the listening state, the correlation between audio
stimuli and EEG envelope is more for Japanese trials
than English trials (smaller distance values). The
correlation between EEG envelope of listening state

and envelope of the spoken audio is less for Japanese
than English.

• The discriminative signatures of the language are
encoded in the time-frequency representation of the
EEG signals in the range of 0–30 Hz both in
magnitude and phase.

We have additionally performed analysis to find
out the channels that capture the language learning the
most. The channels are identified as the ones that show
the maximum difference between the Phase-I and
Phase-II. The top five channels are found to be (O2,
AF3, F8, AF4, F7), located primarily in the frontal
region of the brain.

In the current setup, the unfamiliar words are pre-
sented to the subjects without the semantic meaning
or the context of the word. In future experiments, we
plan to see how the neural responses change when the
unfamiliar words are provided with semantics. Addi-
tionally, longer content is expected to provide future
insight between language level differences compared
to word level analysis. This can be achieved with sti-
muli containing longer words, phrases and sentences.
The current setup lacks any feedback to the subjects on
how well they perform the learning task. In future, we
also plan to introduce a scoringmodel which rates and
gives feedback to the subject depending on how well
they pronounce the words during the experiment
itself.
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